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Abstract— Accurate prediction of variable bit rate (VBR)
video traffic can be used to improve the network utilization
efficiency while supporting guaranteed QoS requirements of VBR
video. On-line prediction algorithms have been proposed in the
literature to forecast real-time VBR video traffic for dynamic
bandwidth allocation. In this paper, we survey a number of
algorithms both in time domain and wavelet domain for video
traffic prediction. The features of the existing algorithms are
summarized, and on the basis of it we propose a time-domain
and a wavelet-domain normalized least mean square (NLMS)
based adaptive prediction scheme respectively. Our proposed
time-domain scheme combines the separation and differential
techniques in the literature to reduce short-term bit rate variation
of VBR video traffic and smooth the data for more accurate
perdition. Our proposed wavelet-domain prediction scheme uses
the à trous wavelet transform instead of conventional decimated
wavelet transform to improve the prediction accuracy by ex-
ploiting the redundant information in the wavelet transform
coefficients. Simulations using three half-an-hour long full-motion
Moving Picture Experts Group (MPEG) video traces show that
our proposed methods can achieve better performance than those
in the literature.

I. INTRODUCTION

Real-time variable bit rate (VBR) video applications such as
video conferencing and multimedia streaming are emerging as
major applications over a variety of high-speed networks. The
transmission of real-time VBR video traffic has put a stringent
requirement on Quality of Service (QoS) such as guaranteed
bandwidth, delay, jitter and packet loss. In order to satisfy the
specified QoS requirements of video traffic during an entire
transmission, the allocated bandwidth must meet the QoS
requirements at peak rate. However, in addition to meeting
the QoS requirements, the efficient use of network resources
also needs to be considered. Therefore, a static bandwidth
allocation scheme which allocates a bandwidth equal to the
peak rate is not desirable because a significant amount of
bandwidth may be wasted due to the bursty nature of the VBR
video traffic. As such, it is desirable to allocate bandwidth
dynamically according to the accurate prediction of future
video frames. The statistical characteristics of VBR video
traffic have been investigated in a number of researches [1],
[2] and can be exploited to forecast the real-time VBR video
traffic. A number of prediction algorithms have been proposed
in the literature, which include neural network approach [3],
Normalized Least Mean Square (NLMS) approach [4], [5] and
wavelet decomposition approach [6]. The existing algorithms
can be broadly classified into two categories: time-domain

approaches and wavelet-domain approaches.
In time domain, two different NLMS-based methods exist

in addition to the neural network approach. Traffic prediction
based on the neural network approach can be quite compli-
cated to implement. The accuracy and applicability of the
neurula network approach to traffic prediction is limited [7].
Normalized Least Mean Square (NLMS) based prediction
approaches are of particular interest due to its simplicity and
relatively good performance. In addition, they do not require
any prior knowledge of the video statistics, nor do they assume
stationary [4]. Thus, they are suitable for on-line VBR video
traffic prediction. However as I, P and B frames of MPEG-
encoded video sequences are encoded with different degrees
of compression and possess different statistical characteristics,
which causes short-term bit rate variation, the video sequence
is a highly fluctuating time-series in small timescale. In addi-
tion, there exists long-term bit rate variation caused by scene
changes, which makes the situation even worse. Therefore, it is
difficult to directly predict the VBR video frames using NLMS
algorithm. Adas [4] proposed separating the MPEG-encoded
video sequence into I, P and B subgroups and predicting video
frames separately in each subgroup using NLMS algorithm.
However the prediction error is increased when frequent scene
changes occur. Xu and Qureshi [5] proposed a composite
prediction method which smoothed the predicted data based on
differential technique and predicts the relative size difference
of the same frames in adjacent group of pictures (GOP). Since
I, P and B frames are encoded with different schemes, the
smoothed composite traffic is still highly fluctuating and thus
the prediction is not effective. [4] used separation technique
to reduce the short-term bit rate variation whereas [5] used
differential technique to smooth the predicted video sequence
for VBR video prediction.

A natural extension of their work would be to combine both
the separation and differential techniques to reduce short-term
bit rate variation and smooth the predicted video traffic. Based
on the work of [4] and [5], we propose a method which first
separates the original video sequence into I, P and B subgroups
and then predicts the size difference between adjacent frames
in each subgroup.

Due to the slow convergence property of time-domain
NLMS algorithm [8] and complex scaling behaviors of VBR
video traffic [9], a wavelet-domain NLMS based predictor was
proposed in [6]. Instead of predicting the original video frames
directly, this method first decomposes the traffic into wavelet



coefficients and scaling coefficients at different timescales
using the decimated Haar wavelet transform [10] and then
predicts the coefficients independently at each scale using
NLMS algorithm. The predicted values of the original video
frames can be constructed based on the predicted coefficients.
On the basis of [6], we propose a wavelet-domain NLMS
prediction method based on the non-decimated à trous Haar
wavelet transform [11] to exploit the redundant information in
the wavelet transform coefficients for more accurate predic-
tion. The predicted values of the original video frames can be
reconstructed simply as a sum of predicted scaling and wavelet
coefficients.

The rest of the paper is organized as follows. Section II
briefly describes the characteristics of MPEG (Moving Picture
Experts Group) video; in Section III, the NLMS algorithm
is described and the time-domain NLMS methods in the
literature are surveys; in section IV, we propose a new time-
domain NLMS method; in Section V, the decimated and non-
decimated wavelet transform is introduced and the wavelet-
domain NLMS method is examined; in Section VI, we propose
a new wavelet-domain NLMS method; Section VII provides
the simulation results to compare the performance of each
method and Section VIII concludes this paper.

II. CHARACTERISTIC OF MPEG VIDEOS

In this section, we shall briefly introduce the characteristics
of MPEG video. It is well known that MPEG [12] is one
of the most widely used video encoding standards. MPEG
encoder that compresses a video signal at a constant picture
rate produces a coded stream with variable bit rate. Three
types of frames are generated during compression, namely, I-
frame (Intra-frame), P-frame (Predictive-frame) and B-frame
(Bidirectional-Predictive-frame), each with different encoding
methods. As a result of different compression rate of I, P
and B frames, the MPEG video stream is a highly fluctuating
time-series. Typically, I-frames have more bits than P-frames.
B-frames have the least bits. After encoding, the frames are
arranged in a deterministic periodic sequence called Group of
Picture (GOP), e.g IBBPBBPBBPBB. Refer to [12] for details
of MPEG encoding algorithm.

III. LEAST MEAN SQUARE PREDICTOR

The k-step ahead LMS linear prediction involves the estima-
tion of x (n+ k) through a linear combination of the current
and past values of x (n) [13]. A pth order predictor can be
expressed as in equation (1)

x̂(n+ k) =
p−1∑
l=0

wn(l)x(n− l) = WT
nX(n), (1)

where Wn is the prediction coefficient vector which is time
varying and updated by minimizing the mean square error ξ

ξ = E[e2(n)]. (2)

X(n), Wn and e(n) are defined in (3)-(6), where µ is the
step size

X(n) = [x(n), x(n− 1), ..., x(n− p+ 1)]T (3)

Fig. 1. Architecture of the separate NLMS prediction operation

Wn = [wn(0), wn(1), ..., wn(p− 1)]T (4)

Wn+1 = Wn + µe(n)X(n) (5)

e(n) = x(n+ k) − x̂(n+ k). (6)

The normalized LMS (NLMS) is a modification of LMS where
Wn+1 is updated as (7)

Wn+1 = Wn +
µe(n)X(n)
‖X(n)‖2

, (7)

where ‖X(n)‖2 = X(n)T X(n). Since at time n, the value of
x(n + k) is not available to compute e(n), e(n − k) is used
instead [4].

A. Separate NLMS prediction

It is apparent that the prediction accuracy depends on the
correlation between frames. In order to exploit the different
correlation structures and statistical characteristics within I, P,
B frames, Adas [4] proposed separating the MPEG encoded
video sequence into I, P, B subgroups and forecasting each
type of frames independently. The architecture of separate pre-
diction operation is shown in Fig. 1. The separation technique
makes the video traffic smoother, more correlated and thus
easier to predict than the original one. However, the prediction
error increases when frequent traffic variations caused by
scene changes occur. In addition, the video traffic within each
subgroup is still highly fluctuating even after separation. Due
to the slow convergence characteristics of NLMS predictor [8],
the prediction error is fairly large when the traffic is highly
fluctuating.

B. Composite NLMS Prediction

Instead of separating video frames, the composite prediction
method [5] tries to smooth the video traffic by predicting
the relative size changes of the same frame in adjacent
GOPs. Since I, P and B frame possess different statistical
characteristics, the smoothed traffic is still highly bursty and
later simulation results will show that it is not effective.



IV. SEPARATE DIFFERENTIAL NLMS PREDICTION

In this section, we shall introduce our proposed time-
domain prediction scheme for VBR video traffic. Based on the
work of [4] and [5], we propose a method which combines
separation and differential techniques to reduce short-term
bit rate variation and smooth the predicted data. Instead of
predicting video frames directly, this method first separates
video sequence into I, P and B subgroups and then predicts
size difference between adjacent frames in each subgroup. Let
I(n) be the size of nth frame in the I subgroup. Let D(n) be
the size difference between adjacent I frames

D(n) = I(n) − I(n− 1). (8)

Once the difference D(n+ 1) is predicted, the corresponding
predicted values of I(n+ 1) can be constructed as (10).

Î(n+ 1) = D̂(n+ 1) + I(n+ 1 − 1) (9)

B and P frames can be predicted in the same way. Since
D(n) is smoother and its values are small, it is easier to
predict. Later simulation results will show that our proposed
method performs better than those time-domain methods in
the literature.

V. WAVELET DOMAIN NLMS PREDICTION

Wavelet transform has been widely used for traffic analysis.
Fundamentally, this is due to the non-trivial fact that the
analyzing wavelet family itself possesses a scale invariant
feature, a property not shared by other analysis methods.
Quite different kinds of scaling features can be analyzed
by the same technique. Wavelet transform when combined
with adaptive prediction has shown advantages over its time-
domain counterparts [14], [15]. Before delving into the details
of wavelet-domain NLMS prediction algorithms, we shall
introduce some fundamental knowledge of wavelet transform.

A. Discrete Wavelet Transformation

Wavelet analysis is based on the decomposition of a signal
using orthogonal wavelet bases. There are many types of
wavelet bases available [16] and among which, we are most
interested in the orthogonal bases. Discrete wavelet transform
(DWT) consists of a collection of coefficients, namely wavelet
coefficients DJ(k) and scaling coefficients CJ(k) as in (10)

CJ (k) =< X, ϕJk(t) >,Dj(k) =< X, ψjk(t) >, j, k ∈ Z,
(10)

where < ∗, ∗ > denotes the inner product; ϕJk(t) = ϕJ (t−
k) are constructed through time shifting operations of the
mother scaling function ϕJ(t); ψjk(t) = 2−j/2ψ(2−jt−k) are
constructed through a time shifting and a dilation operations of
the mother wavelet function ψ(t). DWT decomposes a signal
into a large timescale approximation and a collection of details
at different scales and positions. The original signal can be
reconstructed from the wavelet and scaling coefficients as (11)

X(t) =
∑

k

CJ(k)ϕJk(t) +
J∑

j=1

∑
k

Dj(k)ψjk(t). (11)

Theoretically, the scale j can span from −∞ to +∞. For
practical signals, we limit the scale to [0, J] where J is the
largest scale and 0 is the smallest scale. Details of wavelet
transform can be found in [16], [17].

An efficient way to implement DWT is to represent the
mother wavelet ψ(t) and scaling function ϕ(t) as a low-
pass filter h and a high-pass filter g respectively [17]. The
approximation at scale j, Cj(t) is passed through the low-pass
filter h and the high-pass filter g to produce the approximation
Cj+1(t) and the detail Dj+1(t) at scale j + 1. At each stage,
the number of coefficients at scale j + 1 is decimated into
half of that at scale j, due to decimation. This decimation
reduces the number of data points to be processed at the
larger timescales and removes the redundancy information in
the wavelet coefficients and the scaling coefficients. Thus it is
desirable for some applications such as image processing to
remove the redundant information. However, in the occasion
of traffic prediction, it is not necessary to be implemented
because in time series prediction, the redundant information
can be used to improve the prediction accuracy. In addition,
decimation has the undesirable effect that it prevents us from
relating the information at a given time instant at different
timescales in a simple manner.

Owing to the above drawbacks, we propose using a redun-
dant wavelet transform, i.e. the à trous wavelet transform
[11], to decompose the video frames. The à trous transform
exploits the redundant information by eliminating the deci-
mation effect to generate intact approximations and details.
Using the à trous wavelet transform, the scaling coefficients
at different scales can be obtained as

C0(t) = x(t), (12)

Cj(t) =
∞∑

l=−∞
h(l)Cj−1(t+ 2j−1l), (13)

where 1 ≤ j ≤ J and h is a low pass filter with compact
support. The wavelet coefficients at scale j can be obtained
by taking the difference of the successive smoothed version
of the signal as (14)

Dj(t) = Cj−1(t) − Cj(t). (14)

The vector [D1,D2, ...,DJ , CJ ] represents the à trous
wavelet transform of the signal up to resolution level J . The
signal can be reconstructed as a linear combination of the
wavelet and scaling coefficients

x(t) = CJ (t) +
J∑

j=1

Dj(t). (15)

Many wavelet filters are available, such as Daubechies’ family
of wavelet filters, B3 spline filter, etc. Here we choose the Haar
wavelet filter to implement the à trous wavelet transform. A
major reason for choosing the Haar wavelet filter is that at any
time instant t, the information after t never need to be used to
calculate the scaling and wavelet coefficients, which is a very
desirable feature in the time-series forecast. The Haar wavelet



uses a simple filter h = (1/2; 1/2). The scaling coefficients
at the higher scale can be easily obtained from the scaling
coefficients at the lower scale. In the following paragraphs,
we designate the conventional and à trous wavelet transform
as “decimated wavelet transform” and “non-decimated wavelet
transform” respectively for description convenience.

B. Decimated Wavelet-domain NLMS Prediction

The NLMS prediction, when combined with wavelet trans-
form, allows us to exploit the correlation structure at different
timescales, which may not be easily examined in the time-
domain. [6] proposed a wavelet NLMS prediction method
which decomposes the video frames into wavelet and scaling
coefficients at three timescales using decimated Haar wavelet
transform [10]. Instead of predicting the original video traffic
directly, this method predicts the scaling coefficients and
wavelet coefficients independently at different scales. The
predicted values of original frames can be constructed based
on predicted wavelet and scaling coefficients.

VI. NON-DECIMATED WAVELET-DOMAIN NLMS
PREDICTION

In this section, we propose a non-decimated wavelet-domain
NLMS prediction scheme which first separates the video
frames into I, P and B subgroups and decomposes each
subgroup into different scales using the à trous Haar wavelet
transform. Then we predict the wavelet coefficients and the
scaling coefficients independently at each scale. Finally, the
predicted values of the original frames can be constructed as
a sum of the predicted wavelet and scaling coefficients. The
prediction of coefficients can be expressed as

ĈJ(t+ p) = f(CJ (t), CJ (t− 1), ...CJ (t− k + 1)) (16)

D̂j(t+ p) = f(Dj(t),Dj(t− 1), ...Dj(t− k + 1)), (17)

where f represents the NLMS predictor and k is the length of
the NLMS predictor. Fig. 2 shows the complete architecture of
wavelet decomposition and coefficients predictions using our
proposed method.

VII. SIMULATION RESULTS

In this section, simulations using three half-an-hour long
video traces are conducted to compare the performance of
all the methods aforementioned. The data sets are frame-
size traces generated from UC Berkeley MPEG-1 encoder
software. They represent a variety of video scenes such as
action movies, TV sports events and TV shows. The GOP
pattern of all the three video traces are IBBPBBPBBPBB (12
frames). More information about the encoder parameters and
video trace files can be found in [18].

For performance comparison of each method, we use four
metrics. The first is normalized mean square error (NMSE)

NMSE =
1
N

∑N
n=1(x(n) − x̂(n))2

var(x(n))
, (18)

Fig. 2. Architecture of the wavelet-domain separate NLMS predictor

TABLE I

PREDICTION PERFORMANCE ON “STAR WAR”

Prediction method NMSE MAE MARE SNR−1

Separate NLMS 0.12516 1927.4 0.21836 0.08192
Composite NLMS 0.17202 2483.7 0.26415 0.1131
Proposed NLMS 0.11664 1663.2 0.18261 0.07669
Non-decimated NLMS 0.1101 1918.5 0.20455 0.07246

where x̂(n) is the predicted value of x(n) and var(x(n)) is the
variance of x(n). The second is mean absolute error (MAE)

MAE =
1
N

N∑
n=1

| x(n) − x̂(n) | . (19)

The third is mean absolute relative error (MARE)

MARE =
1
N

N∑
n=1

|x(n) − x̂(n)
x(n)

|. (20)

The final one is the reciprocal of signal noise ratio

SNR−1 =
∑
e(n)2∑
x(n)2

. (21)

In our simulation, the à trous Haar wavelet transform with
a decomposition level of three is used. Both time-domain
and wavelet-domain algorithms use one-step-head prediction.
Multi-step prediction can be easily achieved with the proposed
scheme.

Tables I-III show the performance of our proposed methods
and those in the literature both in time domain and wavelet
domain. In time domain, it is readily seen that our proposed
time-domain method outperforms the other two conventional



TABLE II

PREDICTION PERFORMANCE ON “JURASSIC PARK”

Prediction method NMSE MAE MARE SNR−1

Separate NLMS 0.09169 2130.9 0.17844 0.05146
Composite NLMS 0.11384 2421.3 0.20219 0.06431
Proposed NLMS 0.06877 1584.8 0.13618 0.03859
Non-decimated WT 0.06733 1726.7 0.14527 0.03778

TABLE III

PREDICTION PERFORMANCE ON “SOCCER GAME”

Prediction method NMSE MAE MARE SNR−1

Separate NLMS 0.11781 3485.2 0.14247 0.048773
Composite NLMS 0.19971 5000.2 0.19143 0.082684
Proposed NLMS 0.10072 3040.8 0.12479 0.041908
Non-decimated WT 0.0986 3170.9 0.13454 0.04040

ones in terms of NMSE, MAE, MARE and SNR−1 values.
In wavelet domain, the SNR−1 values of decimated WT
method in table IV was obtained from [6]. Table IV shows
our proposed non-decimated method performs better than the
decimated one in terms of SNR−1 for I, P and B frames. In
addition, it performs the best in terms of SNR−1 among all
the time-domain and wavelet-domain methods. Besides, the
computation complexity of our proposed wavelet-domain is
lower than the decimated wavelet transform due to the fact that
the scaling and wavelet coefficients at time t uses information
before t only and the scaling coefficients at higher scale can
be easily obtained from the scaling coefficients in the lower
scale.

VIII. CONCLUSION

In this paper, we examined time-domain and wavelet-
domain NLMS based predictors for the prediction of VBR
MPEG video traffic. Furthermore, we proposed a time-domain
predictor and a wavelet-domain predictor respectively to im-
prove the prediction accuracy. In time domain, our proposed
method performed better than those in the literature due to its
capability of reducing short-term bit rate variation and smooth-
ing data through combining the separation and differential
operations. In wavelet domain, our proposed non-decimated
prediction scheme clearly outperformed the decimated one in
the literature and performed the best among all the methods
due to its unique capability of diagnosing the correlation
structure of the complex time-scaling input VBR video traffic
and eliminating the decimation effect.

The proposed methods and the methods in the literature
were applied to the real full-motion video traffic. The per-
formance of each method was compared with each other.
Simulation results showed that the proposed time-domain
method outperformed the conventional ones in the literature
and gave more accurate prediction. The proposed wavelet-
domain method performed best among all the methods.

TABLE IV

COMPARISON OF THE SNR−1 OF DECIMATED AND NON-DECIMATED

PREDICTION ON I, P AND B FRAMES

Sequence Frame Type Decimated WT Non-decimated WT
Star War I 0.0126 0.0063

P 0.2209 0.1142
B 0.0661 0.0348

Jurassic Park I 0.0113 0.0027
P 0.1148 0.0499
B 0.0490 0.0120

Soccer I 0.0264 0.0074
P 0.0341 0.0192
B 0.0443 0.0218
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