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Abstract— In this paper, we describe a novel localization
method for ad hoc wireless sensor networks. Accurate self-
organization and localization is an essential characteristic of high
performance ad hoc wireless sensor networks. Many researchers
have approached the localization problem from different angles.
DV-hop method and convex optimization based semi-definite
programming method are some of the well-known methods.
In this paper, we propose a localization method based on
the simulated annealing technique. Simulated annealing (SA)
is used to estimate the approximate solution to combinatorial
optimization problems. In this paper we show that our simulated
annealing based localization (SAL) method can be used in ad
hoc sensor networks to estimate the location of nodes accurately.
The SAL can be viewed as an extension of the gradient search
method. However, unlike the gradient search method which
only allows downhill move, the SAL scheme can bring the
convergence out of the local minima as it allows both up hill
and down hill moves in a controlled fashion. We have tested
our SAL scheme on a distributed sensor network of 200 nodes
whose distance measurements are corrupted by Gaussian noise.
Simulation results show that this novel scheme gives accurate
and consistent location estimates of the nodes, which is better
than the performance offered by other well-known schemes such
as DV-hop method and convex optimization based semi-definite
programming method.

I. I NTRODUCTION

Recent advances in integrated circuit design, embedded
systems and novel sensing materials have enabled the devel-
opment of low cost, low power, multi functional sensor nodes.
These nodes with wireless interfaces and on-board processing
capacity bring the idea of wireless sensor network into reality.
It changes the way information is collected, specially in
situations where information is hard to capture and observe.

Cheap, smart sensors, networked through wireless links
and deployed in large numbers, with automatic localization
capabilities provide unprecedented opportunities in manyap-
plications. Some of them include monitoring patients and
assisting disabled patients in the health sector; monitoring and
controlling homes and cities; monitoring bush fire, water qual-
ity surveillance etc. in the environment; monitoring humidity,
temperature etc. in the agriculture. In addition, there area
broad spectrum of applications in the defense related area,
where smart sensors offer new capabilities for reconnaissance
and surveillance as well as other tactical applications.

In a sensor network, there will be a large number of
sensor nodes densely deployed at positions which may not
be predetermined. The information gathered and transferred by

these micro-sensors will be meaningless unless they are tagged
with the location where the information is obtained from.
This makes self-organization and localization capabilities a
fundamental requirement in sensor networks.

The rest of the paper is organized as follows: sectionII
summarizes similar efforts in sensor network localization;
sectionIII presents a brief review of the simulated annealing
method; sectionIV describes our proposed SAL approach and
the related constrain setting and sectionV presents simulation
results. We conclude this paper in sectionV I with intended
future work as an extension to our proposed SAL method.

II. RELATED WORK

The primary function of a location estimation method is to
estimate the coordinate of sensor nodes with respect to a set
of anchor nodes with known global location information. Lo-
cation estimation has been done in many different ways in the
literature. Here we focus on a category of localization methods
which estimate coordinate based on distance measurements.

A. Distance Measurement

Distance measurement may be done by using signal propa-
gation time or received signal strength (RSS) information.

Different ways of using signal propagation time in distance
measurement include time of arrival (ToA), round trip time
of flight (RToF) or time difference of arrival (TDoA) of a
signal [1]. In these propagation time based methods, expected
high accuracies of distance measurements between nodes
demands a stringent synchronization resolution. Furthermore,
high propagation speed of wireless signals will magnify a
small error in time measurement into a large error in distance
measurements.

Since most of the mobile units in the market already have
RSS indicator built in them, RSS method looks attractive for
range measurements. But the accuracy of this method can be
very much influenced by multi-path, fading, non-line of sight
(NLoS) conditions and other sources of interference.

B. Coordinate Estimation

In the literature, different approaches are considered for
coordinate estimation of the sensor nodes. The main aim of
these methods is to estimate the coordinates of the sensor
nodes with minimum error.



Niculescu [2] proposed a distributed, hop by hop local-
ization method (APS). It uses a similar principle as that of
GPS. Unlike in GPS, not all sensor nodes will have direct
communication with the anchors in a sensor network. They
can only communicate with their one-hop neighbors which
are within their transmission range. So if a node wants to
communicate with the anchor, it has to use the hop-by-
hop propagation method. Each non-anchor node maintains an
anchor information table and exchanges updates only with its
neighbors. APS method starts with all anchors broadcasting
hop counts which are set to zero. When the sensor nodes
receive them, they will update the anchor information table
and broadcast it again with hop count increased by one.
Once all the anchors have received the distance of the other
anchors in terms of number of hops, they estimates the average
distance for one hop. This is broadcasted by the anchors as a
correction factor to the entire network in hop-by-hop fashion.
On receiving the correction factor, a non-anchor node may
estimate distances to anchor nodes and perform triangulation
to get its estimated coordinate.

Savarese [3] proposed a method whose function has two
phases, HOP-TERRAIN and refinement. The HOP-TERRAIN
phase is a similar method to that of Niculescu’s, allowing all
nodes to arrive at initial location estimates. The refinement
phase of the method is an iterative method. This uses the
results of the HOP-TERRAIN phase and the distance mea-
surements of the immediate neighbors to do the least square
triangulation. To mitigate error propagation, a confidencelevel,
which is a value between(0, 1), was associated with each
node’s estimated location. Nodes, like anchors, that have high
faith in their location estimate select a high confidence value.
A node that observes poor conditions (e.g., few neighbors)
select a low confidence value. These are used to weigh the
equations when solving the system of linear equations and
the higher confidence value neighbor has more impact on the
outcome of the triangulation performed by its neighbors.

Savvides [4] extended the single hop technique of GPS to
multi-hop operation as in Niculescu’s thus waiving the lineof
sight requirement with anchors. Non-anchor nodes collaborate
and share information with one another over multiple hops to
collectively estimate their locations. To prevent error accumu-
lation in the network, they have used least squares estimation
with a Kalman filter to estimate locations of all the non-anchor
nodes simultaneously. In order to ensure that the solution is
unique, they have introduced a method called computation
trees. To avoid converging at local minima, they have used
a geometrical relationship to obtain an initial estimate that
is close to the final estimate. His algorithm is based on the
assumptions that the distance measurement between the nodes
and their neighbors are accurate.

Doherty [5] has approached the problem using convex
optimization based on semi-definite programming. The con-
nectivity of the network has been represented as a set of
convex localizing constraints for the optimization problem.
Pratik [6] extended this technique by taking the non-convex
inequality constraints and relaxed the problem to a semi-
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definite program. Tzu-Chen Liang improved pratik’s method
further by a gradient-based local search method [7]. All
these semi-definite programming methods requires rigorous
centralized computation.

In this paper, we propose to use simulated annealing tech-
nique to optimize a cost function in order to estimate the
location of the sensor nodes. Initially all nodes, except the
anchors, are assigned a random estimate of the location. A
cost function, which represents the quantitative measure of the
“goodness” of the coordinate estimate, was formulated using
the estimated coordinates of the nodes and their measured
distances with respect to their neighbors. Simulated annealing
technique is used to optimize the cost function. This technique
is very similar to iterative improvement method. But unlikethe
iterative improvement method, our proposed SAL method also
allows uphill moves in a controlled fashion. Since simulated
annealing accept bad moves in a controlled fashion, it is
possible to jump out of the local minima and converge to
a global minimum.

III. S IMULATED ANNEALING TECHNIQUE

Simulated annealing theory explains how a defect free
crystal can be formed from a liquid. At a low temperature
the atoms of a liquid are in a highly ordered state, like that as
a crystal lattice. But low temperature alone is not sufficient for
finding the ground state of the substance. At high temperatures
many atomic rearrangements happen. If it is cooled in an
un-controlled manner, it may form a glass or a crystal with
defects. Care must be taken to cool the liquid slowly and
carefully to form a defect free crystal. The liquid must attain
thermal equilibrium at each temperature while cooling. This is
the efficient technique, called simulated annealing, modeled in
early days to make the atoms to arrange themselves in a highly
ordered state at each given temperature by Metropolis [8].

This principle of simulated annealing technique with an
analogous set of “controlled cooling” operations was used
in combinatorial optimization problems, such as minimizing
functions of very many variables, to obtain a highly optimized,
desirable solution by Kirkpatrick [9]. The “balls and hills”
diagram [10] in Fig. 1 illustrates an optimization problem in
one dimension. The cost surface is defined by including all
the possible values of the cost functionf(x), taken over all
legal configuration ofx. In a normal gradient search method,
the current configuration is perturbed only in the directionof



reducing cost. Each new perturbation moves to a configuration
downhill from the previous one. This may results in the
solution trapped in a local minima. Simulated annealing allows
perturbations to move uphill in a controlled fashion. Because
each perturbation can transform one configuration into a worse
configuration, it is possible to jump out of local minima and
potentially fall into a more downhill path. However, because
the uphill moves are carefully controlled; when we get closer
to a good, final solution, we need not worry about getting out
of it by an uphill move to some far worse one.

Even though simulated annealing could organize randomly
placed variables into an optimized meaningful solution, itdoes
not guarantee to get the optimum answer; but will give an
acceptable answer in a reasonable time. Obtaining a good
estimate for an optimization problem depends on the ability
to simulate how the system reaches thermodynamic equilib-
rium at each fixed temperature in the schedule of decreasing
temperatures.

IV. SIMULATED ANNEALING BASED LOCALIZATION

The location estimation problem has a natural analogy with
the simulated annealing algorithm. All the non-anchor nodes
are initialized with random locations (xi,yi) within the bound-
aries. All the nodes have the ability to measure the distances
between them and their one hop neighbors, which impose
constraints on the possible values of the estimated coordinates.
The measured distance is the true distance between the non-
anchor node and its one hop neighbor, together with Gaussian
noise describing the uncertainty of the distance measurement.
A cost function(CF ), which represents the quantitative mea-
sure of the “goodness” of the coordinate estimate is defined
in Eq.1.

CF =

N
∑

i=1

∑

jǫNi

(d̂ij − dij)
2

d̂ij =
√

(x̂i − x̂ij)2 + (ŷi − ŷij)2 (1)

Where:
N -total number of non-anchor nodes
Ni-set of neighbors of nodei
d̂ij-estimated distance of perturbed nodei with its neighborj
dij-measured distance of perturbed nodei with its neighborj
(x̂i,ŷi)-estimated coordinate of perturbed nodei
(x̂j ,ŷj)-estimated coordinate of one hop neighborj of
perturbed nodei

∆(CF ) = CFnew − CFold (2)

Our aim is to optimize the cost function using simulated
annealing technique to get the optimal solution without getting
trapped in a local minimum. When the simulated annealing
algorithm initially starts, the system is in a high energy state
due to the random initial estimates of the coordinates of the
non-anchor nodes.

In each step of the algorithm, a non-anchor node is chosen to
be perturbed. The coordinate estimation (x̂i,ŷi) of the chosen
node is given a small displacement in a random direction.
The new value of the cost function is calculated for the new
location estimation. If the change in cost function∆(CF ),
is less than or equal to zero,(i.e. ∆(CF ) ≤ 0) then the
perturbation is accepted and the new configuration is used as
the starting point of the next step.

The case(∆(CF ) > 0) is treated probabilistically: the
probability that the displacement is accepted isP (∆(CF )) =
exp(−∆(CF )/T ). Here T is a control parameter, which by
analogy with the application of SA is known as the system
“temperature” and P is a monotonically increasing function
of T. A random probability (RP) uniformly distributed in the
interval (0, 1) is selected and compared withP (∆(CF )). If
it is less thanP (∆(CF )) then the perturbation is accepted
and the new configuration is used as the starting point of the
next step. If not, the perturbation is rejected and the original
configuration is used as the starting point of the next step.

Initially, the “temperature” T is set to a high enough
value to permit aggressive, essentially random search of the
configuration space. At a higher “temperature” the probability
of accepting a large uphill move is high. This could help
the system jump out of local minimum. With the increase
in the number of iterations, the system temperature decreases.
When the temperature decreases, the probability of accepting
a bad move decreases. The temperature is simply a control
parameter. The idea is to employ a cooling method to moderate
the acceptance of uphill moves over the course of the solution.
Most of the uphill moves are allowed at higher temperatures.
As the temperature cools, fewer uphill moves are allowed. In
SAL the initial “temperature” was set such that the probability
of accepting a bad uphill move is about 80%

A. Basic Components of Simulated Annealing based Localiza-
tion (SAL)

The simulated annealing method needs four basic compo-
nents [10]. They are set as follows in SAL:

• Configurations: This is a model of what a legal place-
ment is. In SAL only planer situation is considered. (But
augmenting to 3D is straight forward.) Nodes are placed
randomly and uniformly in a square region of side length
10.

• Move set: This is a set of allowable moves that will
reach all feasible configurations and one that is easy
to compute. A simple move set is taken as a random
direction in the planer multiplied by a small change
in distance (∆d) in that direction. In order to bias
the generation of random moves at lower temperatures,
we empirically restrict the change in distance as the
temperature cools by introducing a shrinking factorβ < 1
where(∆d)new = β ∗ (∆d)old.

• Cost function: This represents the quantitative measure
of the “goodness” of the coordinate estimate of the
localization configuration. It is defined in Eq.1.



T = initial temperature

(∆d) = initial move distance

WHILE (final temperature not met and change in cost function,∆(CF ), is not acceptably

small)

{

FORi = 1 to (q ∗ N)

{

pick a node to perturb

DO p times

{

generate a random perturbation to a node’s estimated location

evaluate the change in cost function,∆(CF )

if (∆(CF ) ≤ 0)

//downhill move=> accept it

accept this perturbation and update the configuration system

else

//uphill move=> accept with probability

pick a random probabilityP (∆(CF )) = exp(−∆(CF )/T )

if(∆(CF ) ≤ P (∆(CF )))

accept this perturbation and update the configuration system

else

reject this perturbation and keep the old configuration system

}

}

Tnew = α ∗ Told

(∆d)new = β ∗ (∆d)old

}

Fig. 2. Simulated Annealing Algorithm

• Cooling schedule: It is used to anneal the problem
from a random solution to a good, frozen solution. It
is taken as the simplest one:Tnew = α ∗ Told, α < 1,
where the initial starting temperature and cooling rate
are determined empirically to give a good result.

To get the optimum performance out of the simulated anneal-
ing technique, it is necessary to cool carefully and slowly,
allowing it to come to thermal equilibrium at each temperature.
At each temperature,p ∗ (q ∗ N) perturbations is done in
order to get the system into equilibrium in that particular
temperature step. Herep is the number of perturbations given
to a particular non-anchor node at a particular temperature
and(q ∗N) is the number of non-anchor nodes perturbed at a
particular temperature wereN is the number of nodes in the
sensor network and q is a reasonably large number to make
the system go into thermal equilibrium.

Two criteria can be used to stop the SAL simulation: when
the change in the cost function (∆(CF )) is smaller than a
predefined small number or when the predefined final tem-
perature is reached. The structure of the simulated annealing
algorithm is shown in Fig.2.

V. SIMULATION RESULTS

In order to evaluate our SAL method, we ran many exper-
iments on SAL using visual studio .NET. In this paper, we
have chosen a sensor network with200 nodes including the
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anchor nodes. They were uniformly distributed in a square
region of10∗10. The values ofp andq in Fig.2 are chosen as
10 and2 respectively, which defines the number of iterations
done in our SAL method. The measured distance between the
neighboring nodes, which is used in the cost functionCF , is
blurred by introducing a Gaussian noise into the true distance
as shown in equation Eq.3.

d̂ij = dij ∗ (1.0 + Gaussian Noise() ∗ Noise Factor)

dij =
√

(xi − xj)2 + (yi − yj)2 (3)

Where:
(xi, yi) and (xj , yj) are original coordinates of two different
sensor nodes.
dij is true distance and̂dij is measured distance between the
two sensor nodes.

In our simulations noise factor is taken as10%. The
Gaussian noise has a mean of0 and a standard deviation of1.
If the true distance between two nodesdij is smaller than the
transmission range then the nodes are said to be neighbors.
The connectivity (average number of neighbors per node) is
controlled by specifying the transmission range. A relationship
of transmission range vs. connectivity is tabulated in Table
I. To allow for easy comparison between different scenarios,
errors in location estimates are normalized to the transmission
range (i.e5% location error means absolute location error is
0.05 ∗ transmission range). For every set of simulation, the
number of nodes are fixed and the transmission range is varied
in order to vary the connectivity. In Fig.3 to Fig.5, the original
and estimated sensor locations are shown and an error offset
line has been drawn between original and estimated locations.
Fig.3 is for the case when there is no error in the distance
measurements.

As shown in Fig.3, when no noise is introduced, that is in
ideal situations, simulated annealing based localization(SAL)
estimate the location of the nodes100% accurately. Fig.4
shows a SAL simulation results with noise, for10% anchors
and a transmission range of1.8. From this figure we can
see that the SAL gives a very accurate result. But this is
not the case always. When nodes are placed uniformly, all
non-anchor nodes are not uniquely localizable all the time.
These nodes which cannot be uniquely localized introduces a
situation called flip ambiguity. If a node’s neighbors are placed
in positions such that they are approximately on the same line,
and this node can be reflected across this line with no change
in the cost function, then it is said to have flip ambiguity. In
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Fig. 5. SAL with 20 Anchors and10% noise - flip ambiguity

this situation, this particular node is not uniquely localizable.
Fig.5 highlights this flip ambiguity situation. In this figure non-
uniquely localizable node is marked as a triangle and its one
hop neighbors are marked as squares. If we look closely at
the node that is not localized correctly, we could see that the
neighbors of the node create a symmetrical line against which
the node could be flipped while maintaining the same value
for the cost function CF. This phenomena of flip ambiguity
is discussed in [11]–[13]. But a good method to solve this
problem is yet to be found. When this situation arises in
SAL, most of those nodes which are not uniquely localizable
have large errors, which makes the average error increases
significantly. As the problem caused by flip ambiguity has
gone beyond the capability of the class of localization algo-
rithms based on distance measurements, we eliminate those
nodes which can not be uniquely localized when computing
the average localization error. From the simulations, it is
also noted that flip-ambiguity is more common with less
connectivity situations. When the connectivity increases,the
flip-ambiguity occurs less frequently. The number of anchor
nodes also play a part in the flip-ambiguity, but not to the
extent of the connectivity.
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Fig. 6. Location error of uniformly distributed sensor nodeswith 5% anchor
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Fig. 7. Location error of uniformly distributed sensor nodeswith 10% anchor

location error=
1

(n − m)
∗

n
∑

i=m+1

(xi − x̂i)
2 + (yi − ŷi)

2

r2
∗ 100%

(4)

Where:
n - number of nodes in the sensor network
m - number of anchor nodes in the sensor network
(x̂i,ŷi) - estimated location of non-anchor node
(xi,yi) - original location of non-anchor node
r - transmission range

From the literature review, it is observed that semi-definite
programming relaxation with gradient-based local search lo-
calization (SDPL) [7] gives much better performance than the
other methods reported in the literature. Thus we compare
the performance of our proposed SAL algorithm with SDPL
results. Fig.6 shows the SAL and SDPL simulation results
of changing transmission range while having5% anchor
nodes and Fig.7 shows the simulation results of changing
transmission range while having10% anchor nodes. For each
point in Fig.6 and Fig.7, ten simulations are performed with
different random seeds and the average error is shown. The
location error is calculated as in equation Eq.4. It is reported
in percentage, relative to transmission range. In SAL when
the connectivity is17 or above, the mean square location
error goes below0.3%, no matter how many anchor nodes are
present. When the connectivity is less, the number of anchor

nodes plays an important role in flip ambiguity and about20%
of the simulations are affected by it. From Fig.6 and Fig.7, we
could see that SAL performs better than SDPL.

VI. CONCLUSION AND FUTURE WORK

We presented a novel Simulated Annealing based Localiza-
tion method to determine the location of the non-anchor nodes
in a uniformly distributed sensor network. Localization is
based on iterative gradient search method, but allowing pertur-
bations to move uphill in a controlled manner. We have shown
via simulations that our proposed method gives better accuracy
than the semi-definite programming localization. SAL has the
following properties: it does not require special infrastructure
or setup; it does not propagate error in localization to the other
nodes; even though the simulation is done in a centralized
system, it can be easily mapped to distributed system.

SAL system localizes the nodes accurately except when
there are flip ambiguities. The performance of the localization
system using distance measurement are affected by this flip
ambiguity. However it is an objective of our future research
to solve the flip ambiguity problem. When there are no flip
ambiguities (i.e, all the non-anchor nodes can be uniquely
identifiable), SAL system localizes all the nodes very well
(location error of≤ 0.3% of transmission range).

Simulated annealing was done on centralized manner to
analyze the theoretical idea. In the future, we would be
investigating its implementation in a distributed manner,which
will improve its scalability and reduce its complexity.
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