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SUMMARY The presence of the complex scaling behavior
in network traffic makes accurate traffic prediction a challeng-
ing task. Some conventional prediction tools such as the recur-
sive least square method are not appropriate for network traffic
prediction. In this paper we propose a timescale decomposition
approach to real time traffic prediction. The raw traffic data
is first decomposed into multiple timescales using the à trous
Haar wavelet transform. The wavelet coefficients and the scaling
coefficients at each scale are predicted independently using the
ARIMA model. The predicted wavelet coefficients and scaling
coefficient are then combined to give the predicted traffic value.
This timescale decomposition approach can better capture the
correlation structure of the traffic caused by different network
mechanisms, which may not be obvious when examining the raw
data directly. The proposed prediction algorithm is applied to
real network traffic. It is shown that the proposed algorithm
outperforms traffic prediction algorithms in the literature and
gives more accurate results.
key words: traffic prediction, wavelet, timescale, traffic scaling

1. Introduction

It is well known that some characteristics of Inter-
net traffic fall beyond the conventional framework of
Markov traffic modeling. Leland et al. demonstrated
self-similarity in a LAN environment (Ethernet) [1].
Paxson et al. showed self-similar burstiness manifest-
ing itself in pre-World Wide Web WAN IP traffic [2].
Beran et al. demonstrated self-similairty in variable-bit-
rate (VBR) video traffic [3] and Crovella et al. showed
self-similarity for WWW traffic [4]. Recent measure-
ments and simulation studies further revealed that wide
area network traffic has complex multifractal character-
istics on small timescales, and is self-similar on large
timescales [5], [6]. Cao et al. [7] and Furuya et al.
[8] analyzed the small timescale behavior of traffic and
found that WAN traffic tends to be Poisson on small
timescales due to statistical multiplexing.

Accurate forecasting of the traffic is important in
the planning, design, control and management of net-
works. Traffic prediction at different timescales has
been used in various fields of networks, such as long-
term traffic prediction for network planning, design and
routing; and real-time traffic prediction for dynamic
bandwidth allocation, and predictive and reactive traf-
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fic and congestion control. The presence of the complex
scaling behavior makes the accurate forecasting of net-
work traffic a challenging task. An implication of the
self-similarity in network traffic is that the autocorre-
lation function r(k) of the traffic rate decays hyperbol-
ically rather than exponentially fast:

r(k) ∼ Crk
−β , 0 < β < 1 (1)

where Cr is a positive constant and β is related to
the Hurst parameter by H = 1 − β/2. Hurst pa-
rameter is a measure of the self-similarity. As a re-
sult the autocorrelation function is non-summable, i.e.∑

k r(k) = ∞. Together with the slowly-decaying auto-
covariance function and the traffic non-stationarity, it
suggests that some conventional prediction tools such
as the recursive least square method [9] are not appro-
priate for network traffic prediction [10].

In this paper, we shall present a timescale de-
composition approach to traffic prediction. In addi-
tion to the characteristics of the applications generat-
ing the traffic, traffic variations at different timescales
are caused by different network mechanisms. Traffic
variations at small timescales (i.e. in the order of ms
or smaller ) are caused by buffers and scheduling algo-
rithms etc. Traffic variations at larger timescales (i.e.
in the order of 100ms) are caused by traffic and con-
gestion control protocols, e.g. TCP protocols. Traffic
variations at even larger timescales are caused by rout-
ing changes, daily and weekly cyclic shift in user pop-
ulations. Finally long-term traffic changes are caused
by long-term increases in user population as well as
increases in bandwidth requirement of users due to
the emergence of new network applications. This
fact motivates us to decompose the traffic into dif-
ferent timescales and predict traffic independently at
each timescale. The proposed timescale decomposi-
tion approach to traffic prediction allows us to explore
the correlation structure of network traffic at differ-
ent timescales caused by different network mechanisms,
which may not be easy to investigate when examining
the raw data directly.

The rest of the paper is organized as follows: in
section 2, we shall review existing work in the area; in
section 3, we shall introduce the use of the à trous Haar
wavelet transform to decompose the traffic into differ-
ent timescales; in section 4 the prediction algorithm
will be introduced; simulation results using real traffic
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traces are given in section 5 and finally some conclu-
sions and further work are summarized in section 6.

2. Related Work

Some algorithms have been proposed in the literature
for real-time traffic prediction, which include traffic pre-
diction based on the FARIMA (fractional autoregres-
sive integrated moving average) model [11], the neural
network approach [12], [13] and method based on the
α-stable model [14], [15], etc. Traffic prediction based
on the FARIMA model relies on the accurate estima-
tion of the Hurst parameter. Despite a number of esti-
mators reported in the literature, the accurate estima-
tion of the Hurst parameter remains a difficult problem
even in off-line conditions [16]. The presence of non-
stationarity and complex scaling behavior in network
traffic makes the situation even worse. Therefore, traf-
fic prediction based on the FARIMA model is not suit-
able for real applications. Traffic prediction using the
neural network approach can be quite complicated to
implement. The accuracy and applicability of the neu-
ral network approach to traffic prediction is limited [13].
Finally, traffic prediction based on the α-stable model
has the same problem as traffic prediction based on the
FARIMA model, which relies on the accurate estima-
tion of the Hurst parameter. Moreover, the α-stable
model is based on a generalized central limit theorem
and its application is limited by that. It might achieve
a good performance in heavy traffic or when there is a
high level of traffic aggregations. However when traf-
fic conditions deviate from that, the performance may
be poor. Furthermore, the α-stable model is a parsi-
monious model, which may not be able to capture the
complex scaling behavior of the traffic.

Earlier work also exists on using wavelet for traf-
fic prediction. In [17], Wang et al. use the Daubechies
40 wavelet filter to decompose the raw traffic rate into
the wavelet coefficients and the scaling coefficients at
one scale only and predict the wavelet coefficients and
scaling coefficients using the recursive least square al-
gorithm. The predicted wavelet and scaling coefficients
are combined to give the predicted traffic rate. Their
approach suffers from the fundamental flaw that in a
Daubechies 40 wavelet, the wavelet coefficients and the
scaling coefficients at the current time t rely on the
future values of the raw signal. Therefore their algo-
rithm actually cannot do any prediction. In [18], Pa-
pagiannaki et al. use the à − trous wavelet transform
for long-term traffic prediction. By using a B3 spline
filter, they decompose the raw signal, i.e. an exponen-
tially weighted moving average of the 10s link utiliza-
tion measurements, into six scales. The wavelet coeffi-
cients and the scaling coefficients at each scale are pre-
dicted using the ARIMA model. The predicted wavelet
coefficients at scale 3 and the predicted scaling coeffi-
cients at scale 6, i.e. the largest timescale, are used to

construct the predicted traffic value. The B3 spline fil-
ter used in their approach suffers the same problem as
the Daubechies 40 wavelet filter in that the wavelet co-
efficients and the scaling coefficient at the current time
t rely on the future values of the raw signal. To solve
the problem, Papagiannaki et al. use the weekly stan-
dard deviation of the wavelet coefficients at scale 3 to
replace the wavelet coefficient at scale 3 and use the
weekly average value of the scaling coefficients at scale
6 to replace the scaling coefficient at scale 6 for long-
term traffic prediction. Their approach may distort the
physical meaning of the wavelet transform and is cus-
tom made for the traffic being analyzed, which do not
have general significance. Moreover, their focus is on
the prediction of long term traffic trend, which allows
them to discard traffic variations at small scales (i.e.
wavelet coefficients at small scales). The same method
is not applicable to real time prediction of the instanta-
neous traffic rate, where the small scale traffic compo-
nent constitutes a substantial part of the instantaneous
traffic rate.

Wavelet transform has been widely used in traffic
analysis and modeling, in this paper we use a special
kind of redundant wavelet transform, i.e. the à− trous
Haar wavelet transform, which is particularly suited
for traffic prediction, and the ARIMA model for traffic
prediction. A major advantage of the à − trous Haar
wavelet transform is the calculation of the scaling co-
efficients and wavelet coefficients at the current time t
uses information before time t only. Hence it solves the
problem in [17], [18].

3. Wavelet Traffic Decomposition

Wavelet has many advantages when used for traffic
analysis. Fundamentally, this is due to the non-trivial
fact that the analyzing wavelet family itself possesses a
scale invariant feature, a property not shared by other
analysis methods. Quite different kinds of scaling fea-
tures can be analyzed by the same technique.

Wavelet analysis is based on the decomposition of a
signal using orthogonal bases†. Discrete wavelet trans-
form (DWT) consists of the collection of coefficients

cJ(k) =< X,ϕJk(t) >, dj(k) =< X, ψjk(t) >, j, k ∈ Z,
(2)

where < ∗, ∗ > denotes inner product, {dj(k)} are the
wavelet coefficients and {cJ(k)} are the scaling coeffi-
cients. Equation (2) compares the signal X to be ana-
lyzed with a set of analysis functions

ψjk(t) = 2−j/2ψ(2−jt− k), (3)

which is constructed from the mother-wavelet ψ(t) by

†Some other wavelet bases exist, such as semi-orthogonal
or bi-orthogonal wavelet bases. However in this research, we
only consider orthogonal bases.
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a time-shift operation and a dilation operation. The
mother wavelet is a band-pass or oscillating function,
hence the name “wavelet”. Function ϕJk(t) is a time
shifted version of the mother scaling function ϕJ(t):
ϕJk(t) = ϕJ(t− k). ϕJ(t) is a low-pass function which
can separate the large timescale (low frequency) com-
ponent of the signal. Thus wavelet transform decom-
poses a signal into a large timescale approximation and
a collection of details at different smaller timescales.
Theoretically the scale j can span from −∞ to ∞. For
practical signals, i.e. network traffic, we limit the scale
to 0 ∼ J , where scale J is the largest timescale and
scale 0 is the smallest timescale.

Define a dilated and shifted function ϕjk(t) of ϕ(t)
as

ϕjk(t) = 2−j/2ϕ(2−jt− k). (4)

Denote the subspace spanned by the basis functions
{ϕjk, k ∈ Z} as Vj and the subspace spanned by the
basis functions {ψjk, k ∈ Z} as Wj . Multiresolution
analysis (MRA) requires the subspaces satisfy

VJ ⊂ VJ−1 ⊂ ·· · ⊂ V0 and Vj+1

⊕
Wj+1 = Vj . (5)

Equation (5) implies that we can zoom into any
timescale that we are interested in and use the coef-
ficients of the wavelet transform to directly study the
scale dependent properties of the data. For example,
if we fix a scale j and investigate certain statistics of
the wavelet coefficients at that scale across time we can
obtain information about the scaling behavior of the
signal as a function of j (the global-scaling behavior).
Alternatively, if we fix a point in time t and examine
how the wavelet coefficients within the cone of influence
of t change across scales as we examine finer and finer
scales, we can determine the local irregularity (the local
scaling behavior) of the signal about the point t. More-
over the analysis of each scale is largely decoupled from
that at other scales [6]. Refer to [19], [20] for details of
the wavelet theory.

The roles of the mother scaling function ϕ(t) and
the mother wavelet function ψ(t) can also be repre-
sented by a low-pass filter h and a high pass filter g.
Thus the analysis and synthesis of a signal x(t) can be
implemented efficiently as a filter bank [19]. The ap-
proximation at scale j, cj(t) is passed through the low-
pass filter h and the high pass filter g to produce the
approximation cj+1(t) and the detail dj+1(t) at scale
j +1. At each stage, the number of coefficients at scale
j + 1 is decimated into half of that at scale j, due to
downsampling. This decimation reduces the number of
data points to be processed at the larger timescales and
removes the redundancy information in the wavelet co-
efficients and the scaling coefficients. Decimation allows
us to represent a signal X by its wavelet and scaling co-
efficients whose total length is the same as the original
signal. However decimation has the undesirable effect
that we cannot relate information at a given time point

at different scales in a simple manner. Moreover, while
it is desirable in some applications (e.g. image compres-
sion) to remove the redundancy information, in time se-
ries prediction the redundancy information can be used
to improve the accuracy of the prediction.

In this paper, we use a redundant wavelet trans-
form, i.e. the à − trous wavelet transform [21], to
decompose the signal. The à − trous wavelet trans-
form is a non-decimated wavelet transform which pro-
duces smoother approximations of the signal. Using the
à− trous wavelet transform, the scaling coefficients at
different scales can be obtained as:

c0(t) = x(t) (6)

cj(t) =
∞∑

l=−∞
h(l)cj−1(t + 2j−1l). (7)

where 1 ≤ j ≤ J , and h is a low-pass filter with compact
support. The wavelet coefficients at scale j are given
by:

dj(t) = cj−1(t)− cj(t). (8)

The set {d1, d2, ..., dJ , cJ} represents the à − trous
wavelet transform of the signal up to the scale J , and
the signal can be expressed as a sum of the wavelet
coefficients and the scaling coefficients:

x(t) = cJ(t) +
J∑

j=1

dj(t) (9)

Many wavelet filters are available, such as
Daubechies’ family of wavelet filters, B3 spline filter,
etc. Here we choose the Haar wavelet filter to imple-
ment the à− trous wavelet transform. A major reason
for choosing the Haar wavelet filter is the calculation
of the scaling coefficients and the wavelet coefficients
at time t uses information before time t only. This is
a very desirable feature in time series prediction. The
Haar wavelet uses a simple filter h = (1/2, 1/2) [19],
[20]. The scaling coefficients at the higher scale can be
easily obtained from the scaling coefficients at the lower
scale:

cj+1,t =
1
2
cj,t−2j +

1
2
cj,t. (10)

The wavelet coefficients can then be obtained from
Equation (8).

4. The Prediction Algorithm

In this section, we use the aforementioned à − trous
Haar wavelet decomposition for traffic prediction. In-
stead of predicting the original signal directly, we pre-
dict the wavelet coefficients and the scaling coefficients
independently at each scale and use the wavelet co-
efficients and the scaling coefficients to construct the
predicted value of the original signal.
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Fig. 1 Architecture of the prediction algorithm

Fig. 1 shows the architecture of the prediction algo-
rithm. Coefficient prediction can be represented math-
ematically as

ĉJ(t + p) = F̂J(cJ(t), cJ (t− 1), ..., cJ(t−m)),(11)

d̂j(t + p) = f̂j(dj(t), dj(t− 1), ..., dj(t− nj)), (12)

where m and nj is the number of coefficients taken
for prediction and p is the prediction depth. In this
paper, we only consider one-step prediction, i.e. p =
1. Multistep prediction can be achieved by using the
predicted value as the real value or by aggregating the
traffic into larger time interval.

ARIMA(p, d, q) model is used for prediction. An
ARMA(p,q) (autoregressive moving average) model
can be represented as:

Xt−φ1Xt−1−···−φpXt−p = Zt+θ1Zt−1+···+θqZt−q,
(13)

where Zt is a Gaussian distributed random variable
with zero mean and variance σ2 and the polynomials
(1−φ1z−· · ·−φpz

p) and (1+ θ1z + · · ·+ θqz
q) have no

common factors [22]. Equation (13) can also be written
in a more concise form as:

φ(B)Xt = θ(B)Zt, (14)

where φ and θ are polynomials of degree p and q re-
spectively and B is the backward shift operator:

BjXt = Xt−j , j = 0, 1, ... (15)

ARMA model assumes that the time series are station-
ary. For nonstationary time series, differencing opera-
tion can be used to remove the non-stationary trend in
the time series. We define the lag-1 difference operator

∇ by
∇Xt = Xt −Xt−1 = (1−B)Xt. (16)

An ARIMA(p,d,q) model is an ARMA(p,q) model that
has been differenced d times:

φ(B)(1−B)dXt = θ(B)Zt. (17)

Fig. 2 and Fig. 3 shows the wavelet coefficients
and the scaling coefficients of an hour-long LAN traf-
fic trace. The time series being analyzed is the data
rate of the LAN trace measured in byte/s during 1s
measurement intervals. The details of the traffic trace
will be introduced later. A visual inspection of the
scaling coefficients and the wavelet coefficients indi-
cates that the wavelet coefficients can be reasonably
treated as a stationary time series with zero mean.
Therefore wavelet coefficients can be modeled using the
ARMA(p,q) model, or equivalently the ARIMA(p,0,q)
model. However there is significant non-stationarity in
the scaling coefficients. This non-stationarity becomes
more obvious when examining the scaling coefficients
over a longer time period as shown in Fig. 4. Therefore
for the scaling coefficients it is more appropriate to use
the ARIMA(p,d,q) model.

Box-Jenkins forecasting methodology is used to es-
tablish the ARIMA(p,d,q) model for prediction at each
scale. Box-Jenkins methodology involves four steps
[22]:

• The first step is the tentative identification of the
model parameters. This is done by examining the
sample autocorrelation function and the sample
partial autocorrelation function [22] of the time se-
ries X.

• Estimation step. Once the model is established,
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Fig. 2 Wavelet coefficients from scale 1 to 3
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Fig. 3 Wavelet coefficients at scales 4 & 5 and Scaling coeffi-
cients at scale 5

the model parameters can be estimated using ei-
ther a maximum likelihood approach or a least
mean square approach. In this paper both the
maximum likelihood approach and the least mean
square approach were tried and their results are al-
most exactly the same. Thus we stick to the least
mean square approach for its simplicity.

• Diagnostic check step. Diagnostic checks can be
used to see whether or not the model that has
been tentatively identified and estimated is ade-
quate. This can be done by examining the sample
autocorrelation function of the error signal, i.e. the
difference between the predicted value and the real
value. If the model is inadequate, it must be mod-
ified and improved.

• When a final model is determined, it can be used
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Fig. 4 Scaling coefficients at scale 5 over a 6-hour period

to forecast future time series.

5. Simulation

In this section, we apply the proposed method to the
prediction of real network traffic. The traffic traces
used were collected by WAND research group at the
University of Waikato Computer Science Department.
It is the LAN traffic at the University of Auckland on
campus level. The traffic traces were collected between
6am and 12pm from June 9, 2001 to June 13, 2001
on a 100Mbps Ethernet link. IP headers in the traffic
trace are GPS synchronized and have an accuracy of
1µs. More information on the traffic trace and the mea-
surement infrastructure can be found on their webpage:
http://atm.cs.waikato.ac.nz/wand/wits/auck/6/. Fig.5
shows the traffic rate of the traffic trace measured be-
tween 6am and 12am on June 12, 2001. The traffic rate
is measured on 1 second intervals. Five traffic traces
are available. Table 1 shows information of the traf-
fic traces. The Hurst parameters of the traffic traces
are also shown in the table for reference. The Hurst
parameters are obtained using the method in [23].

We use the traffic rate measured in the previous
1s time intervals to predict the traffic rate in the next
second. Prediction over a longer or a shorter time inter-
val can be achieved by reducing the length of the time
interval or by multistep prediction. To validate the per-
formance of the proposed prediction model, one of the
traffic traces (i.e. trace 4) was picked randomly to es-
tablish the prediction model and the prediction model
is then applied to the other traffic traces for prediction.

Table 2 shows the model parameters of the
ARIMA(p,d,q) model at each scale. Three scales are
chosen. The choice on the number of scales is made
based on the tradeoff between the model complexity
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Table 1 Trace trace used in the simulation

Trace ID File name Measurement time Duration Hurst Parameter

1 20010609-060000-e0.gz Saturday June 9, 2001 6am-12pm 0.935
2 20010610-060000-e0.gz Sunday June 10, 2001 6am-12pm 0.838
3 20010611-060000-e0.gz Monday June 11, 2001 6am-12pm 0.890
4 20010612-060000-e0.gz Tuesday June 12, 2001 6am-12pm 0.937

5 20010613-060000-e0.gz Wednesday June 13, 2001 6am-9am 0.945

Table 2 Model parameter of the prediction model

Scale Model name Model parameters φ Model parameters θ Noise σ2

Wavelet coefficient 1 ARIMA(1,0,4) φ1 = 0.8842 θ1 = 1.311, θ2 = −0.2185, 2.147× 109

θ3 = 0, θ4 = −0.1008
Wavelet coefficient 2 ARIMA(4,0,4) φ1 = 1.443, φ2 = −0.4782, θ1 = −0.04322, θ2 = 1.768 5.847× 108

φ3 = 0.04215, φ4 = −0.02682 θ3 = 0.04953, θ4 = −0.7767
Wavelet coefficient 3 ARIMA(4,0,8) φ1 = 1.384, φ2 = −0.435 θ1 = −0.1833, θ2 = −0.1531, 1.422× 108

φ3 = 0.02306, φ4 = −0.004911 θ3 = −0.1824, θ4 = 1.751,
θ5 = 0.1789, θ6 = 0.1508,
θ7 = 0.1782, θ8 = −0.7583

Scaling coefficient 3 ARIMA(2,1,8) φ1 = 0.508, φ2 = 0.02201 θ1 = −0.07853, θ2 = −0.08036 1.348× 108

θ3 = −0.07985, θ4 = −0.08014,
θ5 = −0.07935, θ6 = −0.08083,
θ7 = −0.0796, θ8 = 0.9188
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Fig. 5 Traffic rate of the LAN trace measured between 6am
and 12am on June 12, 2001

and accuracy. Further increase in the number of scales
significantly increases the complexity of the algorithm
but there is only a marginal increase in accuracy. As
shown in the table, most noise in the model comes
from the wavelet coefficients at scale 1. In compari-
son with the wavelet coefficients and the scaling coef-
ficients at other scales, the wavelet coefficients at scale
1 has very weak autocorrelations and a white noise like
power spectral density. It is almost like white noise. It
is the wavelet coefficients at scale 1 that limits the over-
all performance that can be achieved by the prediction
algorithm. Fig. 6 shows the autocorrelation function of
the wavelet coefficients at scale 1.

The ARIMA models developed from trace 4 are
then applied to the other traffic traces to establish the
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Fig. 6 Autocorrelation function of wavelet coefficients at scale
1

performance of the prediction algorithm. To measure
the performance of the prediction algorithm, two met-
rics are used. One is the normalized mean square error
(NMSE):

NMSE =
1
N

∑N
n=1(X(n)− X̂(n))2

var(X(n))
(18)

where X̂(n) is the predicted value of X(n) and
var(X(n)) denotes the variance of X(n). The other
is the mean absolute relative error (MARE), which is
defined as:

MARE =
1
N

N∑
n=1

∣∣∣∣∣
X(n)− X̂(n)

X(n)

∣∣∣∣∣ (19)

Since the relative error may be unduely affected by vary
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small values of X(n), to make meaningful observations,
we only consider those samples of X which are not small
than E(X) when computing MARE. Table 3 shows the
performance of the prediction algorithm. For compar-
ison purpose, the performance of traffic prediction al-
gorithms using the neural network approach and using
ARIMA model without wavelet decomposition are also
shown in the table. A number of neural network mod-
els with different number of input nodes, hidden nodes
and transfer functions are evaluated, including those
reported in [13], [24]. It is found that the 32-16-4-1
network architecture used in [24] gives the best perfor-
mance. Hyperbolic tangent sigmoid transfer function
is used in the hidden layer and linear transfer function
is used in the output layer. The performance of the 32-
16-4-1 neural network model is shown in Table 3 to rep-
resent the prediction performance using the neural net-
work approach. To achieve a fair comparison, the same
trace is used to train the neural network parameters.
The very large data size in the training trace ensures
the convergence of the neural network, which is also
confirmed by a visual inspection of the error signal. The
parameters of the ARIMA model without wavelet de-
composition are p = 1, d = 1, q = 4, φ1 = −0.146, θ1 =
−0.274, θ2 = −0.270, θ3 = −0.113, θ4 = −0.055.

As shown in Table 3, the proposed algorithm gives
better performance than the neural network prediction
in most cases except for trace 2, where the MARE met-
ric of the neural network approach is slightly better
than the proposed approach. However, the NMSE met-
ric of the neural network approach is much worse than
the proposed algorithm for trace 2. Since when training
the neural network and estimating the ARIMA model
parameters for the proposed prediction algorithm, the
metric used is the mean square error, we conclude that
the proposed algorithm performs better than the neural
network prediction even for trace 2. The proposed algo-
rithm outperforms the ARIMA model without wavelet
decomposition both in NMSE and MARE.

Fig. 7 shows the absolute value of the autocorrela-
tion function of the error signal for traffic trace 5 using
the proposed algorithm and using the neural network
prediction respectively. The autocorrelation function of
the error signal using the proposed algorithm is much
weaker than that using the neural network prediction
and it dies down faster. This also indicates that the per-
formance of the proposed algorithm is better than the
neural network prediction. The autocorrelation func-
tion of the error signal for other traffic traces demon-
strates similar characteristics.

As such, it can be concluded that the proposed
algorithm achieves better performance than the neural
network prediction. Moreover, only three scales are em-
ployed in the proposed prediction algorithm, which re-
quires a memory length (here the memory length refers
to the number of past raw data samples required for
prediction) of about 16. In comparison, the neural net-

5 10 15 20 25 30

0.02

0.04

0.06

0.08

0.1

0.12

Multiscale ARIMA
Neural Network

Fig. 7 Absolute value of the autocorrelation function of the
error signal for trace 5 using multiscale ARIMA model and using
neural network.

work prediction requires a memory length of 32. The
computation complexity using the proposed algorithm
is also easier than that using neural network.

6. Conclusion and further work

In this paper we proposed a real-time network traffic
prediction algorithm based on a timescale decomposi-
tion. The raw traffic data is first decomposed into dif-
ferent timescales using the à trous Haar wavelet trans-
form. The prediction of the wavelet coefficients and
the scaling coefficients are performed independently at
each timescale using the ARIMA model. The pre-
dicted wavelet coefficients and scaling coefficient are
then summed to give the predicted traffic value. As
traffic variations at different timescales are caused by
different network mechanisms, the proposed timescale
decomposition approach to traffic prediction can bet-
ter capture the correlation structure of traffic caused
by different network mechanisms, which may not be
obvious when examining the raw data directly.

The prediction algorithm was applied to the real
network traffic. The performance of the prediction
algorithm was compared with those using the neural
network prediction and using ARIMA model without
wavelet decomposition. It was shown that the proposed
algorithm outperforms traffic prediction algorithm us-
ing the neural network approach and using ARIMA
model without wavelet decomposition and gives more
accurate prediction. The complexity of the prediction
algorithm is also lower than that using the neural net-
work. The autocorrelation of the error signal of the pre-
diction algorithm is very weak, which is an indication
of the good performance of the proposed algorithm.

Furthermore, the prediction model developed from
a weekday traffic trace showed good performance when
it was applied to traffic traces collected in both week-
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Table 3 Performance of the prediction model

Trace ID Multiscale ARIMA Neural network ARIMA

NMS MARE NMS MARE NMS MARE
1 0.1319 0.1633 0.1603 0.1667 0.1860 0.2008
2 0.2296 0.2165 0.3168 0.2053 0.3485 0.2661
3 0.1507 0.1403 0.1565 0.1493 0.2190 0.1765

4 0.1592 0.1313 0.1622 0.1386 0.2299 0.1666
5 0.2197 0.1731 0.2258 0.1823 0.3167 0.2118

days and weekends where the traffic rate changes sig-
nificantly. This demonstrated the good generalization
capability of the proposed prediction algorithm. It is
expected that some work will be done in the future
to automate the parameter estimation process for the
prediction model, which will enable the proposed algo-
rithm to be easily used in a variety of environments.
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