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Abstract

Performance monitoring systems are becoming increasingly important in providing
Quality-of-Service (QoS) based services and service guarantees. Performance mon-
itoring can occur at different levels and different timescales. Either passive mea-
surements and active measurements can be employed. Currently, a large amount of
work has gone into developing mechanisms and protocols for performance and traffic
monitoring at network level and large timescales. In comparison, little work has been
done to use measurement information at small timescales for tackling network per-
formance degradation and managing congestion in operational networks in real time.
In this paper, we investigate a real-time loss performance monitoring and estimation
scheme based on virtual buffer techniques. The proposed scheme is used to perform
measurements at lower level, i.e. network node level, and small timescales, which
can be used to provide real-time QoS information for network traffic and congestion
control in ATM networks. The proposed scheme only requires modest computation
resources. Virtual buffer techniques enable the scheme to obtain QoS information in
a much reduced monitoring period, which is important for instantaneous network
traffic and congestion control actions.
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1 Introduction

Bandwidth hungry computer and communication applications are on the rise
with a variety of services, as a few examples, voice over IP, video on demand,
high-definition television, etc. Different from traditional data communication
applications, these applications are real-time applications and they have strin-
gent quality-of-service (QoS) requirements. It has been a big challenge for
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network operators to satisfy the QoS requirements of these applications and
provide value-added services to the customer. Performance monitoring sys-
tems are becoming increasingly important in providing QoS based services
and service guarantees.

A monitoring system can provide information for the following three categories
of tasks [1]:

• Assist traffic engineering in making provisioning decisions for optimizing the
usage of network resources according to small to medium timescale changes.
A real-time performance monitoring system can provide information for
traffic and congestion control, routing and re-routing, load balancing, etc.

• Assist traffic engineering in providing analyzed traffic and performance in-
formation for preventive, reactive and predictive maintenance, as well as
long-term network planning and design in order to optimize network re-
source usage and avoid undesirable conditions. The analyzed information in-
cludes traffic growth patterns, bottleneck links, and the location and causes
for the performance degradation.

• Verify whether the performance guarantees committed in service level agree-
ments (SLA) are in fact being met. SLAs are becoming more and more
popular as part of the efforts of Internet Service Providers (ISP) to provide
better QoS to the customer.

To achieve these tasks, monitoring at different levels and different timescales is
required. Monitoring can be used to derive packet level, connection level, traffic
class level, node level, and network-wide level information. Measurements can
occur at small timescales (e.g. millisecond, second) and large timescales (e.g.
hourly, daily and yearly). Monitoring at lower levels and smaller timescales is
mainly useful for real-time traffic and congestion control and monitoring at
network level and larger timescales can be used for long-term network plan-
ning and design. Monitored information includes delay, packet delay variation,
packet loss, traffic load and throughput, etc.

Measurements in a monitoring system can be classified into two categories: ac-
tive and passive measurements. Active measurements inject synthetic traffic
into the network based on scheduled sampling (by sending probing packets)
to observe network performance. Passive measurements are used to observe
actual traffic without injecting extra traffic into the network. The capabil-
ity of active measurements is often limited by constraints on network capacity
consumed by synthetic traffic. Practically, the rule used by some network oper-
ators is that synthetic traffic should not exceed approximately 1% of the total
network capacity [1]. Moreover, due to the statistical and dynamic (There are
always connections in and out in a large-scale network.) nature of the network
traffic and long time delay involved in observing the probing packets, it is
difficult for active measurements to obtain real-time monitoring information
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and accurate estimates of QoS parameters. Passive measurements observe the
network in a non-intrusive manner and do not constitute a burden on network
capacity. However, on high-speed links, the large amount of user traffic that
needs to be observed constitutes challenges on the design of passive measure-
ment schemes.

In this paper, we investigate a real-time loss performance monitoring and es-
timation scheme based on virtual buffer techniques. The proposed scheme is
used to perform measurements at lower level, i.e. network node level, and
small timescales in ATM networks. It is used to provide real-time QoS infor-
mation for network traffic and congestion control to allow them to respond
dynamically to changing traffic pattern and improve QoS and network re-
sources utilization (i.e. bandwidth, buffer). The proposed scheme is efficient
and only requires modest computation resources. Virtual buffer techniques
enable the scheme to obtain QoS information in a much reduced monitoring
period, which is important for real-time network traffic and congestion control
actions.

The rest of the paper is organized as follows: in section 2, the principle of
the monitoring scheme will be introduced; in section 3, we shall establish the
relationship between buffer size and traffic loss; in section 4, the design of the
monitoring scheme will be explained; simulation results will be presented in
section 5; finally, some conclusions and further research will be discussed in
section 6.

2 Virtual buffer based monitoring scheme

Currently, a large amount of work has gone into developing mechanisms and
protocols for performance and traffic measurements [1]. The best known is
the work of Internet Engineering Task Force (IETF) working group IP Per-
formance Metrics (IPPM) 1 , which develops a set of standard metrics that
can be applied to the quality, performance, and reliability of Internet services.
Other activities include the RIPE Network Coordination Center 2 that has
implemented a number of the measurement metrics developed by IPPM; the
CAIDA 3 (Cooperative Association for Internet Data Analysis) that develops
tools, such as cflowd, CoralReef and skitter, for traffic analysis and moni-
toring; the NLANR 4 (National Laboratory for Applied Network Research)
measurement and network analysis group that develops the Network Analy-

1 See http://www.ietf.org.
2 See http://www.ripe.net.
3 See http://www.caida.org.
4 See http://www.nlanr.net.
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sis Infrastructure (NAI); and NIMI 5 (National Internet Measurement Infras-
tructure) that combines active and passive measurements for network path
monitoring. The main goals of these measurement efforts are to understand
the complexity of high-speed large scale networks, traffic trends and load pat-
terns. Their common practice on delay analysis is to obtain daily or hourly
minimum, maximum, standard deviation and percentiles of end-to-end paths.
These statistics certainly can reflect the traffic trends and load patterns on
large timescales, therefore, are very useful for network long-term planning.
However, small timescale monitoring may also be desirable for both users and
network operations. In comparison, little work has been done to use mea-
surement information at small timescales for tackling network performance
degradation and managing congestion in operational networks in real time.

Garcá-Hernández et al. propose an active monitoring method using Operation,
Administration and Management (OAM) cells [2]. Siler et al. propose a passive
monitoring method by fitting a distribution function to observed packet delays
[3]. However one potential problem for real-time monitoring scheme is that
some QoS indicators are specified in terms of the probability of occurrence
of certain rare events. For example, in ATM networks, cell loss ratio (CLR),
which is the ratio of lost cells to the total transmitted cells, is often specified to
be as small as 10−9. Monitoring using direct statistical methods is impractical
for such small CLR. As an example, in an OC3 link with a link utilization of
0.5 and a cell loss ratio of 10−9, at least 10 billion cells have to be observed
before any statistically meaningful information can be collected 6 . This will
take 15 hours. The statistical information obtained after such long monitoring
period may be obsolete and the network management system’s reaction may
be too late. Even in a network with moderate traffic loss, a monitoring scheme
with a much reduced monitoring period than the direct monitoring method is
still desirable to provide faster system response.

Zhu et al. propose an in-service QoS monitoring and estimation method, which
is used to obtain a real-time estimation of CLR [4]. Their method is based on
the asymptotic relationship between CLR and buffer size. The observed cell
loss ratios of several small virtual buffers are used to estimate the CLR of the
actual system. However, their method still requires a long monitoring period
and the accuracy of their method is not good.

In this paper, we shall present a real-time loss performance monitoring and
estimation scheme that employs simple measurements and computations. The
proposed scheme is based on the virtual buffer techniques. The basic idea
of virtual buffer techniques is to use the traffic loss observed from several

5 See http://ncne.nlanr.net/nimi/.
6 It is assumed that at least 10 cell loss samples have to be observed to obtain any
statistically meaningful information
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virtual buffers with much smaller buffer sizes than that of the real buffer
to estimate the traffic loss of the real system. Virtual buffers have the same
input and output as the real buffer. Since virtual buffers have much smaller
buffer sizes, the traffic loss in the virtual buffers is much larger than that of
the real buffer. In order to obtain statistical meaningful observations of the
traffic loss of these virtual buffers, fewer packets need to be observed compared
to those required for a large real buffer. Hence the observation of the traffic
loss of the virtual buffers requires much less monitoring period. Then based
on the asymptotic relationship between traffic loss and buffer size, the traffic
loss observed in these virtual buffers are used to obtain an estimate of traffic
loss in the real buffer. Therefore much less monitoring period is required in
our algorithm to obtain an estimate of traffic loss in the real buffer than that
using direct monitoring method. Arguably the virtual buffer based monitoring
scheme may also have better accuracy than direct monitoring method when
non-stationarity of network traffic is considered. In a real network, there are
always connections in and out. Thus network traffic is always changing. For
direct monitoring methods requiring a large monitoring period, the obtained
loss information may not make any sense for real time traffic and congestion
control because the traffic may have changed dramatically during the period.
Fig. 1 shows the system model of the virtual buffer based monitoring scheme.
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Fig. 1. System model of the monitoring scheme
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3 Asymptotic Relationship Between Traffic Loss and Buffer Size

In this section we shall establish the validity of using a generalized relation-
ship between buffer size and the logarithm of traffic loss, denoted by log(clr).
Analytical results in the literature will be reviewed and summarized to demon-
strate this relationship for both Markovian traffic and long-range dependent
traffic.

3.1 Markovian Traffic Process

For Markovian traffic, log(clr) is known to decrease proportionally with in-
creasing buffer size. This linear relationship is a natural outgrowth of the fluid
flow analysis of network traffic [5]. This relationship is also widely used in con-
nection admission control schemes based on the effective bandwidth approach
for bandwidth allocation.

Based on fluid flow model, Anick et al. show that for an infinite queue fed
by N homogeneous exponential on-off sources, and drained at a rate c, where
c is normalized by the peak rate of the on-off source, when the buffer size x
becomes large, the buffer overflow probability is approximately given by [5]:

G(x) ∼ ρN





N−bcc−1∏

i=1

zi

zi − z0



 ez0x. (1)

where z0 is given by: z0 = − (1−ρ)(1+λ)
1−c/N

, ρ is link utilization and λ is the ratio
of the average on period to the average off period of the on-off source. zi are
negative roots of the following quadratics by setting k = i:

A(k)z2 + B(k)z + C(k) = 0, k = 0, 1, . . . , N

where
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(

N

2− k

)2
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(

N

2− c

)2

B(k) = 2(1− λ)
(

N

2− k

)2

−N(1 + λ)
(

N

2− c

)

C(k) =−(1 + λ)2

{(
N

2

)2

−
(

N

2− k

)2
}

.

Buffer overflow probability is often used as an approximation of CLR. Thus,
Eq. 1 indicates an asymptotic linear relationship between buffer size and
log(clr).
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This linear relationship is shown to hold within a much more general context
by Elwalid et al [6], [7]. Based on theoretical analysis using large deviations
theory and simulation validation, Elwalid et al. propose the following asymp-
totic relationship between buffer size B and log(clr) for general Markovian
traffic:

log(clr) ∼ −α− δB (2)
where α and δ are both positive constants determined by the traffic process
and the link capacity. This generalized result has been used in many situations
to develop algorithms for connection admission control and routing in ATM
networks [7], [8].

3.2 Long-Range Dependent Traffic Model

A lot of research shows convincingly that long-range dependence exists exten-
sively in network traffic, especially in video traffic [9], [10], [11]. For long-range
dependent traffic process, traffic loss decays more slowly with increasing buffer
size, and the linear relationship between buffer size and log(clr) no longer ex-
ists.

Taqqu et al. show that the superposition of many on-off sources with strictly
alternating on and off periods, and whose on or off periods exhibit the Noah
effect (i.e. high variability or infinite variance) produces an aggregate traffic
that exhibits the Joseph effect (i.e. self-similarity or long-range dependence)
[12]. They also present extensive statistical analysis of high time-resolution
Ethernet LAN traffic traces, which confirms that data at the level of individual
sources or source-destination pairs are consistent with the Noah effect. In
another research on heavy-tailed on-off sources by Heath et al. , they show
independently that on-off sources with heavy-tailed on and/or off distributions
lead to strong long-range dependence in the aggregate traffic [13].

Likhanov et al. consider the superposition of a large number of on-off sources
with Pareto distributed (heavy-tailed) active (on) periods [14]. For M i.i.d.
on-off sources, the aggregate traffic converges to a self-similar traffic process
as M → ∞. Using queueing theory, they show that the overflow probability
of the aggregate traffic has an asymptotic relationship with buffer size B:

Pr(buffer content > B) ∼ αBβ (3)

where α and β are constants determined by the traffic process. Parulekar et
al. [15] obtain the same asymptotic relationship using large deviation theory
and the M/G/∞ model for self-similar process [16].

In addition to the above models for self-similar traffic, Fractional Brownian
Noise (FBN) model is also used for self-similar traffic modelling. The FBN
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model results in the following generalized relationship between overflow prob-
ability and buffer size [15], [17]:

Pr(buffer content > B) ∼ exp (−δBγ) (4)

where δ and γ are constants determined by the traffic process.

It can be argued that some self-similar traffic models are more appropriate
than others. However, as a quick review of the existing literature indicates,
all traffic models have provided good fit for diverse applications. Here we
choose Eq. 3 as the asymptotic relationship between overflow probability and
buffer size. That is, we consider that log(clr) has the following asymptotic
relationship with buffer size:

log(clr) ∼ log(α) + βlog(B). (5)

Eq. 3 is chosen because although Gaussian distribution provides a good fit
for the distribution of the aggregate traffic when the number of connections is
very large, the CLR estimate resulting from Gaussian distribution is usually
too optimistic, especially when the aggregate traffic distribution deviates from
Gaussian. The under-estimated CLR may compromise our efforts in providing
robust QoS guarantees.

4 Design of the monitoring scheme

In the virtual buffer based monitoring scheme, since the size of the virtual
buffer is smaller than that of the real buffer, a virtual buffer can be simply
implemented as a counter. The value of the counter varies between a threshold,
which is the size of the virtual buffer, and zero. The counter is incremented by
one with each cell arrival. When the threshold is reached, further cell arrivals
are considered as lost and the counter remains constant at the threshold. At
the same time, the counter is decremented by one with each cell departure in
the real buffer. Therefore the implementation of virtual buffers will not add
too much burden onto the real system.

Four virtual buffers are employed in the algorithm. Denote by B1, B2, B3, B4

the sizes of the four virtual buffers. B1, B2, B3, B4 are chosen such that:

B1 < B2 < B3 < B4 << B,

where B is the size of the real buffer. Denote by clr1
t , clr2

t , clr3
t and clr4

t the
cell loss ratios observed in the four virtual buffers 1, 2, 3 and 4 respectively at
discrete time t. These cell loss ratios of the virtual buffers are used to obtain
an estimate of the CLR in the real buffer, which is denoted by ĉlrt.
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For Markovian traffic, traffic loss has an asymptotic relationship with buffer
size as given in Eq. 2. Using this relationship, given the cell loss ratio obser-
vations in the virtual buffer 1 and virtual buffer 2, the logarithm of cell loss
ratio in a buffer of size x can be estimated:

log
(
ĉlrx

t M

)
= a + b× x (6)

where ĉlrx
t M denotes the CLR estimate in a buffer with buffer size x at time t,

which is estimated from the CLR-buffer size relationship for Markovian traffic,

a =
log (clr1

t )×B2 − log (clr2
t )×B1

B2 −B1

b =
log (clr2

t )− log (clr1
t )

B2 −B1

.

The logarithm of cell loss ratio in a buffer with buffer size x can also be
estimated using the CLR-buffer size relationship for self-similar traffic given
in Eq. 5:

log
(
ĉlrx

t S

)
= c + d log (x) (7)

where ĉlrx
t S denotes the CLR in a buffer with buffer size x at time t, which is

estimated from the CLR-buffer size relationship for self-similar traffic,

c =
log (clr1

t ) log (B2)− log (clr2
t ) log (B1)

log (B2)− log (B1)

d =
log (clr2

t )− log (clr1
t )

log (B2)− log (B1)
.

In our algorithm, the CLR of the real buffer is estimated using Eq. 8:

log
(
ĉlrt

)
= α× log

(
ĉlrB

t M

)
+ β × log

(
ĉlrB

t S

)
, (8)

where α and β are non-negative constants estimated using the cell loss ratio
observations in the virtual buffer 3 and 4. Here a simple multivariate linear
model [18] is used. Together with the least square algorithm for estimating α
and β, it allows the CLR estimation algorithm to adjust parameters α and
β dynamically to select the best equation to use. Values of α (β) close to
1 indicate Eq. 2 (Eq. 5) for Markovian traffic (self-similar traffic) is a better
choice for estimating CLR in the real buffer. Values of α (β) close to 0 indicate
no relationship. See Fig. 10 for an example. An advantage of using the linear
combination of Eq. 2 and Eq. 5 rather than selecting one of them is both Eq.
2 and Eq. 5 are asymptotic results only. Moreover real traffic conditions are
usually more complex than the ideal models assumed in the theoretical analysis
leading to Eq. 2 and Eq. 5. Therefore, the log(clr) - buffer size relationship
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often deviates from that given in Eq. 2 and Eq. 5. Eq. 8 allows us to have
the flexibility to adjust parameter α and β dynamically to compensate for
inaccuracy in Eq. 2 and Eq. 5 and achieve better estimation.

It should be noted that due to the bursty nature of traffic, a cell loss ratio
of zero can often be observed in these virtual buffers. A cell loss ratio of
zero becomes a problem in our CLR estimation algorithm using Eq. 8. In our
algorithm this problem is dealt with in the following way: if any of the virtual
buffers has a cell loss ratio of zero, the cell loss ratio in the real buffer is
estimated to be zero too.

4.1 Estimation of Parameters α and β

Based on the CLR-buffer size relationship for Markovian traffic, estimates of
the logarithm of cell loss ratios in virtual buffers with size B3 and B4 at time t

can be obtained using Eq. 6. Denote them by log
(
ĉlrB3

t M

)
and log

(
ĉlrB4

t M

)

respectively. Based on the CLR-buffer size relationship for self-similar traf-
fic, estimates of the logarithm of cell loss ratios in buffers with size B3 and
B4 at time t can be obtained using Eq. 7. Denote them by log

(
ĉlrB3

t S

)
and

log
(
ĉlrB4

t S

)
respectively. These estimated cell loss ratio values and the ob-

served cell loss ratio values for the virtual buffers 3 and 4 are taken as input-
output pairs to estimate the parameters α and β in Eq. 8. For ease of expres-
sion, denote log

(
ĉlrB3

t M

)
and log

(
ĉlrB4

t M

)
by x3

t and x4
t respectively, and de-

note log
(
ĉlrB3

t S

)
and log

(
ĉlrB4

t S

)
by y3

t and y4
t respectively. The logarithm of

observed cell loss ratios in the virtual buffers 3 and 4, log (clr3
t ) and log (clr4

t ),
are denoted by z3

t and z4
t respectively. ((x3

t , y3
t ) , z3

t ) and ((x4
t , y4

t ) , z4
t ) are used

as input-output pairs in Eq. 9 to obtain estimates of non-negative parameters
α and β used in Eq. 8:

z = αx + βy. (9)

In order to increase the precision of the estimation, past CLR information is
taken into account in estimating parameters α and β. Specifically, CLR in-
formation from time interval (t−K, t] is used in estimating α and β. There are
altogether 2K input-output pairs

((
x3

t−K+1, y3
t−K+1

)
, z3

t−K+1

)
,
((

x4
t−K+1, y4

t−K+1

)
,

z4
t−K+1

)
, . . ., ((x3

t , y3
t ) , z3

t ), ((x4
t , y4

t ) , z4
t ) that are used to estimate the pa-

rameters α and β according to Eq. 9. Least-square algorithm is employed to
obtain the optimum parameters α ≥ 0 and β ≥ 0 which minimize the error
term:
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f(α, β) =
K−1∑

i=0

[(z3
t−i − αx3

t−i − βy3
t−i)

2

+ (z4
t−i − αx4

t−i − βy4
t−i)

2]

Solving the equations: 



∂f(α, β)
∂α

= 0

∂f(α, β)
∂β

= 0
,

the optimum α and β which minimize the error term f (α, β) can be obtained:




α = BE−AC
DE−A2

β = CD−AB
DE−A2

, (10)

where

A =
K−1∑

i=1

(
x3

t−iy
3
t−i + x4

t−iy
4
t−i

)

B =
K−1∑

i=1

(
x3

t−iz
3
t−i + x4

t−iz
4
t−i

)

C =
K−1∑

i=1

(
y3

t−iz
3
t−i + y4

t−iz
4
t−i

)

D =
K−1∑

i=1

((
x3

t−i

)2
+

(
x4

t−i

)2
)

E =
K−1∑

i=1

((
y3

t−i

)2
+

(
y4

t−i

)2
)

.

It is often the case that Eq. 10 results in a negative α or β. Care must be
taken when this happens. If parameter α given in Eq. 10 is negative, then Eq.
11 is used to obtain the optimum non-negative parameters α and β:





α = 0

β = C
E

. (11)

Or, if parameter β given in Eq. 10 is negative, then Eq. 12 is used to obtain
the optimum non-negative parameters α and β:





α = B
D

β = 0
. (12)
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The parameter K is determined as:

K = min {J, M} ,

where J is the maximum integer such that the cell loss ratios observed in
the virtual buffers in the interval (t− J, t] are all non-zero values, and M
is an integer determined by the CLR estimation algorithm. Therefore there
are a maximum of 2M input-output pairs that are used by the least square
algorithm in estimating the parameters α and β using Eq. 9, which enables us
to obtain accurate estimates of α and β.

4.2 Low-pass FIR Filter

In our CLR estimation algorithm, CLR estimated using Eq. 8 is not used
directly as a CLR estimate of the real buffer. CLR estimated from Eq. 8 is
used as an input to a low-pass filter. It is the output of the low-pass filter that
is used as the CLR estimate for the real buffer.

Here the application of the low-pass filter does not change the asymptotic
relationship between cell loss ratio and buffer size. Cell loss ratio is a statistical
quantity. An accurate measurement of the cell loss ratio can only be obtained
when measurement is taken over a long period and large enough samples are
collected. However, in our system, measurement and estimation is taken over
a much shorter time period. As a result, the measurement is easily affected
by some temporary surge in traffic rate, which does not reflect the true value
of the cell loss ratio. The application of a low-pass filter helps to remove this
effect and obtain the moving average of the estimated cell loss ratio, which is
a better representation of the true value.

To make it clearer, let us consider the following example. In a system with
a CLR of 10−3, in order to obtain an accurate measurement of the CLR,
the number of cells observed must be at least 10, 000. However, if a short
observation period, say 1, 000 cells, is chosen, due to the statistical nature
of CLR, it may happen that in one 1, 000-cell period, no cell loss occurs; in
another 1, 000-cell period, multiple cell losses occur. Therefore the observed
CLR will fluctuate significantly. This fluctuation will become more severe with
the reduction of the observation period. In this situation, the moving average
will be a better representation of the true value.

The low-pass filter used in our algorithm is a FIR (Finite Impulse Response)
filter of the form:

y(t) =
j∑

i=0

bi × x(t− i).
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Fig. 2. Amplitude-frequency response of the FIR filter

Fig. 2 shows the amplitude-frequency response of the FIR filter. In Fig. 2, fs

denotes the inverse of the CLR monitoring period in our algorithm.

Our simulation results show that the application of the low-pass filter im-
proves the performance of the proposed algorithm significantly. Otherwise,
the estimated CLR will fluctuate dramatically around the true value.

Fig. 3 shows the architecture of the CLR estimation algorithm.

4.3 Choice of Parameters

There are several critical parameters in the CLR estimation algorithm that
need to be determined.

Parameter M determines the maximum number of past CLR information
taken into account in the least square algorithm for estimating parameters
α and β. Taking into account some past CLR information helps to improve
the precision of the estimation. However as more information is taken into
account, more memory is required to store these past information and more
computation resources is required in the least square algorithm. Moreover,
parameters α and β are to some extent indicators of the nature of network
traffic (Markovian or self-similar). They change when network traffic changes.
When too much past information is taken into account, it may restrict the
ability of the algorithm to track variations in network traffic, which in turn
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Fig. 3. Architecture of the CLR estimation algorithm

decreases the precision of the estimation. In our algorithm, M is chosen to be
10. That is, there is a maximum number of 20 input-output pairs used in the
least square algorithm for estimating α and β.

The sizes of the virtual buffers are also critical parameters which determine
the performance of the CLR estimation algorithm. The smaller the sizes of the
virtual buffers are, the larger the cell loss ratios in these virtual buffers. Hence
less monitoring period is required to make a CLR estimation when virtual
buffer sizes are small. It is therefore desirable that the sizes of the virtual
buffers are chosen to be as small as possible. On the other hand, the CLR
estimation algorithm is based on the asymptotic relationships between CLR
and buffer size. These asymptotic relationships only apply for large buffers,
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therefore the sizes of virtual buffers can not be chosen to be too small.

Hui suggests that congestion should be evaluated at different levels, namely,
the cell level, the burst level and the call level [19]. Accordingly the CLR-buffer
size relationship can be approximately divided into three regions, namely cell
level region, burst level region and call level region. This has been verified by
a lot of experimental studies [20], [21], [22], [23]. Fig. 4 illustrates the three
regions.

When buffer size falls into the cell level region, cell loss occurs because of the
simultaneous arrivals of cells from independent sources. However the aggregate
traffic rate of these independent sources may be below the link capacity. When
network buffer size falls into the burst level region, cell loss occurs when the
aggregate traffic rate is momentarily greater than the link capacity. Buffer
content grows to the limit that cell loss occurs, as long as the aggregate rate
excess exists. When network buffer size falls into the call level region, cell loss
occurs because excessive number of connections are admitted into the network.
Therefore aggregate traffic rate exceeds link capacity for a large timescale
(comparable to the connection duration time). This different nature of cell loss
determines that CLR-buffer size relationship is different in different regions.

The boundary of cell level region is a non-decreasing function of the number
of connections on the link. Our empirical observations show that the bound-
ary of cell level region usually varies between a buffer size of several ATM
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cells and a size of up to 20 cells, depending on the number of connections on
the link. This conforms to the observation reported in [22]. Burst level region
spans from several ATM cells to several thousands of cells, depending on the
system size (e.g. number of connections, link rate, etc.). The size of the real
buffer usually lies in this region. Moreover, when analyzing the asymptotic
relationship between CLR and buffer size, a lot of researchers adopt the fluid
flow model [7], [15], [17], and their loss performance analysis naturally rests
on the burst level. At last, no call level dynamics are considered in the afore-
mentioned analysis of the asymptotic relationship between CLR and buffer
size. Therefore, the asymptotic relationship between CLR and buffer size ac-
tually applies for a buffer size in the burst level region. Accordingly the sizes
of virtual buffers should be chosen in the burst level region.

In our CLR estimation algorithm, for a small system where the number of
connections is small (e.g. <10), the minimum virtual buffer size B1 is chosen
to be 10 cells. For a large system where there are a lot of connections on
the link, the minimum virtual buffer size B1 is chosen to be 20 cells. Sizes of
virtual buffers are chosen to be 5 cells apart.

Another important parameter in our CLR estimation algorithm is the CLR
monitoring period, which is the minimum time required to make valid CLR
observations in the virtual buffers. There are a lot of factors that affect the
CLR monitoring period, including the maximum size of the virtual buffers, the
size of the real buffer, link capacity, link utilization, the resolution of the CLR
estimation algorithm (the minimum cell loss ratio that can be estimated by the
algorithm), etc. This makes it difficult to formulate the process of determining
the CLR monitoring period. The CLR monitoring period is determined em-
pirically. Here we try to illustrate the process through the following example.
Consider a case where the CLR estimation algorithm is designed to estimate a
cell loss ratio as small as 10−9 in a system with a buffer size of 1, 000 cells. The
link capacity is 150Mbps. The maximum virtual buffer size B4 is chosen to
be 35 cells in our CLR estimation algorithm. Our empirical observations show
that when the CLR in the real buffer is around 10−9, the cell loss ratio in the
virtual buffer B4 usually varies in the range from 10−3 to 10−5. Assume that
when the cell loss ratio in the real buffer is 10−9, the lowest link utilization
is 0.5 (when the link utilization is too low, no cell loss will occur in the real
buffer). Then, if a CLR monitoring period of 50s is chosen, it implies that a
minimum number of 88 cell losses can be observed in the monitoring period,
which is enough to generate a valid observation of CLR in the virtual buffers.
Therefore for this specific example, the CLR monitoring period can be chosen
to be approximately 50s. The CLR monitoring period is significantly reduced
compared with the CLR monitoring period of 15 hours required using direct
monitoring method.
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Fig. 5. Simulation model for the CLR estimation algorithm

5 Simulation Study

In this section, we investigate the performance of the CLR estimation algo-
rithm using simulation. Both on-off traffic source model and real variable bit
rate (vbr) video traces are used in the simulation. The objectives of the sim-
ulation are to:

• validate the effectiveness of the CLR estimation algorithm for a variety of
traffic sources, and

• evaluate the accuracy of the CLR estimation algorithm compared to other
algorithms in the literature.

The simulation is performed using OPNET. Fig. 5 illustrates the simulation
model. There are N traffic sources in the simulation. The traffic generated
by the traffic source is encapsulated into ATM cells using AAL5 protocol and
then transported into a single server queue drained at a speed equal to the
link capacity C. The queue has a size of B. The link capacity C is engineered
such that an average bandwidth utilization of 0.8 is achieved in the simulation.
This high link utilization is chosen to make CLR in the real buffer easier to
observe so that the accuracy of the proposed ISME scheme can be validated.

Two typical scenarios are considered in the simulation. In the first scenario,
referred to as the Markovian scenario, exponential on-off sources are used.
In the second scenario, referred to as the Self-similar scenario, real vbr video
traffic sources, which are known to be self-similar, are used. Since Markovian
traffic and self-similar traffic are the two most typical traffic processes, these
two scenarios are used to establish the effectiveness of our CLR estimation
algorithm for a variety of traffic sources.

5.1 Markovian Scenario

30 exponential on-off sources, which are typical Markovian traffic sources,
are used in this scenario. Each on-off source has independent exponentially
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distributed on and off periods with means τ and γ respectively. The peak cell
rate of the on-off source is pcr and the mean cell rate of the on-off source is
mcr. Table 1 shows the traffic parameters of the exponential on-off source.
These parameters are typical parameters of telephone voice traffic [24].

Table 1
Traffic parameters of the exponential on-off source

pcr (kb/s) mcr (kb/s) τ (sec) γ (sec)

64 22 0.384 0.734

Seven simulations are run in the Markovian scenario with buffer size B varying
from 100 cells to 700 cells. Each simulation is run for 10, 000 seconds. When
buffer size B is increased above 700 cells, it becomes difficult to make valid cell
loss ratio observations in the real buffer within the limited simulation time.
In our simulation, the CLR of the real buffer and the estimated CLR are ob-
served and compared to investigate the performance of the CLR estimation
algorithm. As a typical example, Fig. 6 shows the CLR of the real buffer and
our estimation using a simulation where buffer size B is 300 cells. For com-
parison purpose, we also present the estimated CLR by the CLR estimation
algorithm of Li [25].

The CLR estimation algorithm of Li is briefly described here for completeness.
In the algorithm of Li, three virtual buffers are used. Whenever n ATM cells
arrive, linear least square regressions are performed separately on the CLR
samples of the virtual buffers based on Eq. 2 or Eq. 5. n is the number of cells
to be observed to get one CLR sample of the virtual buffer. Both regression
results are stored. R2 tests are performed to choose the appropriate equations
for regression. Two running counters CM and CL are kept in the algorithm.
If the R2 result associated with the Markovian model is greater than that
associated with the self-similar model, CM is incremented by one, otherwise CL

is incremented by one. The above procedure is performed until N monitoring
periods have finished. If CM is greater than CL, the Markovian regression
model is chosen, otherwise the self-similar regression model is chosen. They
then extrapolate to get the N CLR estimates of the real buffer based on the
chosen regression model.

Fig. 6 shows that significant improvements are achieved by our algorithm. The
improvements are in two respects:

• First, our algorithm requires much less monitoring period. In our algorithm
only one valid CLR observation of the virtual buffers is sufficient in order
to generate a CLR estimate. In the algorithm by Li, a number of CLR
observations of the virtual buffers have to be made in order to generate a
CLR estimate of the real buffer.

• Second, our algorithm is more accurate than the algorithm by Li. This is
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Fig. 6. CLR estimation in the Markovian scenario with a buffer size of 300 cells

clearly shown in the figure.

Estimation errors do exist. In addition to the estimation error due to the algo-
rithm itself, part of the error shown in the figure comes from CLR observation.
The estimated CLR of our algorithm in a monitoring period T gives an esti-
mate of the CLR of the real buffer in the same interval. However, it is difficult
to make a valid observation of CLR of the real buffer in the small monitoring
period. Therefore the CLR of the real buffer shown in the figure is the ratio of
lost cells to the total cells offered to the link for transmission in a much larger
time interval. This mismatch becomes an error source in Fig. 6 as well.

Fig. 7 shows the estimated CLR as well as the CLR of the real buffer for
different buffer sizes in the Markovian scenario. Since the Markovian scenario
is a stationary scenario in the sense that there is a fixed number of connections
on the link, for ease of comparison, averages of the CLR are shown in the figure.
For example, the CLR of the real buffer shown in the figure for a buffer size
of 400 cells is the average value of CLR observations of the real buffer in the
simulation where buffer size is set to be 400 cells. Accordingly the estimated
CLR shown in the figure is also the average value of estimated cell loss ratios.

Fig. 7 shows that the estimation error of our CLR estimation algorithm in-
creases with buffer size. When buffer size is below 300 cells, the estimation
algorithm is able to give an accurate estimate of CLR in the real buffer. When
the buffer size is increased to 700 cells, the estimation algorithm can only give
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Fig. 7. Cell loss ratio estimation in the Markovian scenario

a CLR estimate that is accurate within one order of magnitude of the actual
value. Fig. 7 also shows that the accuracy of our algorithm is much better
than that proposed by Li. In our algorithm, instead of using the theoretical
asymptotic relationship for Markovian and self-similar traffic directly, some
amendments are made by introducing the parameters α and β so that the
asymptotic relationship is captured more accurately. As an example, Fig. 8
shows the value of the two parameters in the simulation where buffer size is
300 cells. It can be seen that the parameters α and β are neither close to 0 nor
close to 1, but fluctuate around 0.5. This implies that these two parameters
do contribute to making our CLR estimation algorithm more accurate than
that of Li.

5.2 Self-Similar Scenario

In the self-similar scenario, MPEG encoded movie “Starwars” is used as vbr
video traffic source [26], [27]. This video trace is well-known to be self-similar.
Five vbr video traffic sources are used in this scenario. At the beginning of the
simulation, each traffic source starts to read from a random position in the
vbr video file and generates traffic accordingly. When the end of the video file
is reached, the traffic source continues generating traffic from the beginning
of the file. Ten simulations are run in the self-similar scenario with buffer size
varying from 100 cells to 1000 cells. Each simulation is run for 10, 000 seconds.
As a typical example, Fig. 9 shows the results of the simulation with a buffer
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Fig. 8. Parameters α and β in the Markovian scenario with a buffer size of 300 cells
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Fig. 9. CLR estimation in the Self-similar scenario with a buffer size of 500 cells

size of 500 cells. Fig. 10 shows the variations of parameter α and β in the
simulation.

Fig. 9 shows that our estimation algorithm is able to estimate the cell loss ratio
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Fig. 10. Parameters α and β in the Self-similar scenario with a buffer size of 500
cells

of self-similar traffic accurately. In comparison, the algorithm of Li can only
generate two CLR estimates during the 10, 000 seconds simulation time, i.e. a
CLR estimate of 1.217× 10−3 at 7300s and a CLR estimate of 1.942× 10−17

at 8200s.

Fig. 11 shows the estimated CLR as well as the CLR of the real buffer for
different buffer sizes in the Self-similar scenario. Since the Self-similar scenario
is a stationary scenario in the sense that there is a fixed number of connections
on the link, for ease of comparison, only averages of the CLR are shown in the
figure.

Simulation results show that the proposed algorithm generally gives a CLR
estimate that is accurate within one order of magnitude around the true value.
This estimation error must be taken into account when the proposed CLR
estimation algorithm is applied to real applications.

6 Conclusion and Further Research

In this paper, we designed a real-time loss performance monitoring and esti-
mation scheme. The proposed scheme is based on the asymptotic relationship
between the cell loss ratio and the buffer size for both Markovian and self-
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Fig. 11. Cell loss ratio estimation in the Self-similar scenario

similar traffic.

Simulation using both theoretical Markovian traffic model and real vbr video
source was performed to investigate the performance of the proposed scheme.
Simulation results indicate that the proposed scheme requires much less mon-
itoring period and achieves better accuracy than that proposed in the litera-
ture. The proposed scheme is therefore suitable for real applications.

Currently, this research is performed in the framework of ATM networks. Mo-
tivated by the ubiquitous implementation of IP network, we shall extend the
applications of the scheme to IP networks. The major challenge is that IP
network uses variable-sized packets and ATM network uses 53-byte fixed-size
packet, called ATM cells. As a result, the application of the virtual buffer
techniques to IP network is more complicated. It will possibly need a ma-
jor revision of the aforementioned theoretical framework. In addition to traffic
loss, the proposed scheme shall also be extended to incorporate the monitoring
of delay and delay variations, which can be possibly achieved by extrapolat-
ing the traffic loss - buffer size relationship obtained from virtual buffers for
different buffer sizes.
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