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Abstract—The presence of the complex scaling behavior in network traf-
fic makes accurate forecasting of the traffic a challenging task. Some con-
ventional prediction tools such as recursive least square method do not ap-
ply to network traffic prediction. In this paper we propose a multiscale de-
composition approach to real time traffic prediction. The raw traffic data
is first decomposed into multiple timescales using thèa trous Haar wavelet
transform. The prediction of the wavelet coefficients and scaling coefficients
are performed independently at each timescale using ARIMA model. The
predicted wavelet coefficients and scaling coefficient are then combined to
give the predicted traffic value. This multiscale decomposition approach
can better capture the correlation structure of traffic caused by different
network mechanisms, which may not be obvious when examining the raw
data directly. The proposed prediction algorithm is applied to real network
traffic. It is shown that the proposed algorithm generally outperforms traf-
fic prediction using neural network approach and gives more accurate re-
sult. The complexity of the prediction algorithm is also significantly lower
than that using neural network.

I. I NTRODUCTION

It is well known that some characteristics of Internet traffic
fall beyond the conventional framework of Markov traffic mod-
elling. Leland et al. demonstrated self-similarity in a LAN envi-
ronment (Ethernet) [1]. Paxson et al. showed self-similar bursti-
ness manifesting itself in pre-World Wide Web WAN IP traffic
[2]. Beran et al. demonstrated the self-similairty in variable-
bit-rate (VBR) video traffic [3] and Crovella et al. showed self-
similarity for WWW traffic [4]. Recent measurements and sim-
ulation studies further revealed that wide area network traffic has
complex multifractal characteristics on small timescales, and is
self-similar on large timescales [5], [6], [7]. The presence of
the scaling behavior in network traffic is striking not only in its
ubiquity, appearing in almost every kind of traffic, but also in the
wide range of timescales over which the scaling holds. As net-
work bandwidth increases over time, this scaling behavior may
progressively extends over larger timescales [8].

Accurate forecasting of the traffic is important in the plan-
ning, design, control and management of networks. Traffic pre-
diction at different timescales has been used in various fields of
networks, such as long-term traffic prediction for network plan-
ning, design and routing; and short-term traffic prediction for
dynamic bandwidth allocation, and predictive and reactive traf-
fic and congestion control. The presence of the complex scal-
ing behavior makes the accurate forecasting of Internet traffic a
challenging task. An implication of the self-similarity (or equiv-
alently long range dependence) in network traffic is that the au-
tocorrelation functionr(k) of the traffic decays hyperbolically
rather than exponentially fast:

r(k) ∼ Crk
−β , 0 < β < 1 (1)

whereCr is a positive constant andβ is related to the Hurst
parameter byH = 1 − β/2. Hurst parameter is a measure of
the self-similarity. As a result the autocorrelation function is
non-summable, i.e.

∑
k r(k) = ∞. This implies that the traffic

process has an infinite variance. Therefore some conventional
prediction tools such as recursive least square method do not
apply to network traffic prediction.

Some algorithms have been proposed in the literature for real-
time traffic prediction, which include FARIMA (fractional au-
toregressive integrated moving average) models [9], neural net-
work approach [10], [11] and method based onα-stable models
[12], [13], etc. Traffic prediction using FARIMA models re-
lies on accurate estimation of the Hurst parameter. Despite a
number of estimators reported in the literature, accurate estima-
tion of the Hurst parameter remains a difficult problem even in
off-line conditions. The presence of non-stationarity and com-
plex scaling behavior in network traffic makes the situation even
worse. Therefore the real applications of traffic prediction based
on FARIMA models are not optimistic. Neural network ap-
proach can be quite complicated to implement in reality. The
accuracy and applicability of neural network approach to traffic
prediction is limited [11]. Finally,α-stable model is based on a
generalized central limit theorem and its application is limited
by that. It might achieve a good performance in heavy traffic
or when there is a high level of traffic aggregations. However
when traffic conditions deviate from that, the performance may
be poor. Moreover,α-stable model is a parsimonious model,
which may not be able to capture the complex scaling behavior
of the traffic. In this paper we propose a traffic prediction al-
gorithm based on a multiscale decomposition approach. Using
theà− trous Haar wavelet transform, the traffic is decomposed
into components at multiple timescales. Traffic component at
each timescale is predicted independently with an ARIMA (au-
toregressive integrated moving average) model. Then they are
combined to form the predicted traffic.

The rest of the paper is organized as follows: in section II, we
shall introduce the use of thèa trous Haar wavelet transform
in decomposing the traffic into different timescales; in section
III the prediction algorithm will be introduced; some simulation
results using real traffic trace are given in IV and finally some
conclusions and further work are summarized in section V.

II. M ULTISCALE TRAFFIC DECOMPOSITION

Wavelet tools have been widely used in the area of traffic anal-
ysis and they have many advantages when used for traffic anal-
ysis. Fundamentally, this is due to the non-trivial fact that the



analyzing wavelet family itself possesses a scale invariant fea-
ture, a property not shared by other analysis methods. Quite
different kinds of scaling features can be analyzed by the same
technique.

Wavelet analysis is based on the decomposition of a signal us-
ing orthogonal bases1. Discrete wavelet transform (DWT) con-
sists of the collection of coefficients

cJ(k) =< X, ϕJk(t) >, dj(k) =< X, ψjk(t) >, j, k ∈ Z,
(2)

where< ∗, ∗ > denotes inner product,{dj(k)} are the wavelet
coefficients and{cJ (k)} are the scaling coefficients. Equation
(2) compares the signalX to be analyzed with a set of analysis
functions

ψjk(t) = 2−j/2ψ(2−jt− k). (3)

This set of analysis functions is constructed from a reference
patternψ(t) called the mother-wavelet by a time-shift operation
and a dilation operation. The mother wavelet is required to sat-
isfy the admissibility condition, whose weak form is

∫
ψ(t)dt = 0, (4)

which shows it is a band-pass or oscillating function, hence the
name “wavelet”. FunctionϕJk(t) is a time shifted function of
the scaling functionϕJ(t): ϕJk(t) = ϕJ(t − k). ϕJ(t) is a
low-pass function which can separate large timescale (low fre-
quency) component of the signal. Thus wavelet transform de-
composes a signal into a large timescale approximation (coarse
approximation) and a collection of details at different smaller
timescales (finer details). The original signal can be recovered
from the wavelet coefficients and the scaling coefficients using

X(t) =
∑

k

cJ(k)ϕJk(t) +
J∑

j=1

∑

k

dj(k)ψjk(t). (5)

Theoretically the scalej can span from−∞ to ∞. For prac-
tical signals, i.e. network traffic, we limit the scale to0 ∼ J ,
where scaleJ is the largest timescale and scale0 is the smallest
timescale.

Define a dilated and shifted functionϕjk(t) of ϕ(t) as

ϕjk(t) = 2−j/2ϕ(2−jt− k). (6)

Denote the subspace spanned by the basis functions{ϕjk, k ∈
Z} as Vj and the subspace spanned by the basis functions
{ψjk, k ∈ Z} asWj . Multiresolution analysis (MRA) requires
the subspaces satisfy

VJ ⊂ VJ−1 ⊂ · · · ⊂ V0 and Vj+1

⊕
Wj+1 = Vj . (7)

Equation (7) means a signal can also be expressed as the com-
bination of a small timescale (smaller than the timescale cor-
responding to scale J) approximation (finer approximation) and
the details at even smaller timescales. In fact, we can zoom into
any timescale that we are interested in and use the coefficients of

1Some other wavelet bases exist, such as semi-orthogonal or bi-orthogonal
wavelet bases. However in this research, we only consider orthogonal bases.

a wavelet transform to directly study the scale dependent prop-
erties of the data. For example, if we fix a scalej and investi-
gate certain statistics about the wavelet coefficients at that scale
across time we can obtain information about the scaling behav-
ior of the signal as a function ofj (the global-scaling behavior).
Alternatively, if we fix a point in timet and examine how the
wavelet coefficients within the cone of influence oft change
across scales as we examine finer and finer scales, we can de-
termine the local irregularity (the local scaling behavior) of the
signal about the pointt. Moreover the analysis of each scale is
largely decoupled from that at other scales [8]. Refer to [14],
[15] for details of wavelet theory.

In addition to the characteristics of applications generating
the traffic, traffic variations at different timescales are caused
by different network mechanisms. Traffic variations at small
timescales (i.e. in the order of ms or smaller timescale) are
caused by buffering effect and scheduling algorithms etc. Traf-
fic variations at larger timescales (i.e. in the order of 100ms)
are caused by traffic and congestion control protocols, e.g. TCP
protocols. Traffic variations at even larger timescales are caused
by routing changes, daily and weekly cyclic shift in user pop-
ulations. Finally long-term traffic changes are caused by long-
term increases in user population as well as increases in band-
width requirement of users due to the emergence of new network
applications. This fact motivates us to decompose traffic into
different timescales and predict traffic independently at each
timescale. The proposed multiscale decomposition approach to
traffic prediction allows us to explore the correlation structure
of network traffic at different timescales caused by different net-
work mechanisms, which may not be easy to investigate when
examining the raw data directly.

The roles of the mother scaling and wavelet functionsϕ(t)
andψ(t) can also be represented by a low-pass filterh and a
high pass filterg. Consequently, the multiresolution analysis
and synthesis of a signalx(t) can be implemented efficiently as
a filter bank [14]. The approximation at scalej, cj(k) is passed
through the low-pass filterh and the high pass filterg to pro-
duce the approximationcj+1(k) and the detaildj+1(k) at scale
j + 1. At each stage, the number of coefficients at scalej is
decimated into half of that at scalej + 1, due to downsampling.
This decimation reduces the number of data points to be pro-
cessed at coarser time scales and removes the redundancy infor-
mation in the wavelet and the scaling coefficients at the coarser
time scales. Decimation allows us to represent a signalX by its
wavelet and scaling coefficients whose total length is the same
as the original signal. However decimation has the undesirable
effect that we cannot relate information at a given time point at
the different scales in a simple manner. Moreover, while it is
desirable in some applications (e.g. image compression) to re-
move the redundancy information, in time series prediction the
redundancy information can be used to improve the accuracy of
the prediction.

In this paper, we use a redundant wavelet transform, i.e. the
à − trous wavelet transform, to decompose the signal [16].
Using the redundant information from the original signal, the
à−trous wavelet transform produces smoother approximations
by filling the “gap” caused by decimation. Using theà− trous
wavelet transform, the scaling coefficients and the wavelet coef-



ficients ofx(t) at different scales can be obtained as:

c0(t) = x(t) (8)

cj(t) =
∞∑

l=−∞
h(l)cj−1(t + 2j−1l). (9)

where1 ≤ j ≤ J , andh is a low-pass filter with compact
support. The detail ofx(t) at scalej is given by

dj(t) = cj−1(t)− cj(t). (10)

The setd1, d2, ..., dJ , cJ represents the wavelet transform of the
signal up to the scaleJ , and the signal can be expressed as a
sum of the wavelet coefficients and the scaling coefficients:

x(t) = cJ(t) +
J∑

j=1

dj(t) (11)

Many wavelet filters are available, such as Daubechies’ fam-
ily of wavelet filters,B3 spline filter, etc. Here we choose Haar
wavelet filter to implement thèa− trous wavelet transform. A
major reason for choosing the Haar wavelet filter is the calcula-
tion of the scaling coefficients and wavelet coefficients at timet
uses information before timet only. This is a very desirable fea-
ture in time series prediction. The Haar wavelet uses a simple fil-
ter h = (1/2, 1/2). The scaling coefficients at higher scale can
be easily obtained from the scaling coefficients at lower scale:

cj+1,t =
1
2
(cj,t−2j + cj,t). (12)

The wavelet coefficients can then be obtained from Equation
(10).

III. T HE PREDICTION ALGORITHM

In this section, we use the aforementionedà − trous Haar
wavelet decomposition for traffic prediction. Instead of predict-
ing the original signalX(k), X(k − 1), ...., X(k −N) directly,
we predict the wavelet coefficients and the scaling coefficients
independently at each scale and use the wavelet coefficients and
the scaling coefficients to construct the prediction of the original
signal.

Fig. 1 shows the architecture of the prediction algorithm. Co-
efficient prediction can be represented mathematically as

ĉJ(k + p) = F̂J(cJ (k), cJ(k − 1), ..., cJ (k −m)), (13)

d̂j(k + p) = f̂j(dj(k), dj(k − 1), ..., dj(k − nj)), (14)

wherem andnj is the number of coefficients taken for predic-
tion andp is the prediction depth. In this paper, we only use one-
step prediction, i.e.p=1. Multistep prediction can be achieved
by using the predicted value as the real value or by aggregating
the traffic into larger time interval.

ARIMA(p, d, q) model is used for prediction. An
ARMA(p,q) (autoregressive moving average) model can be rep-
resented as:

Xt−φ1Xt−1−···−φpXt−p = Zt+θ1Zt−1+···+θqZt−q, (15)

whereZt is a Gaussian distributed random variable with zero
mean and varianceσ2, , i.e. Zt ∼ WN(0, σ2) and the polyno-
mials (1 − φ1z − · · · − φpz

p) and(1 + θ1z + · · · + θqzt−q)
have no common factors [17]. Ifp = 0, then the model reduces
to a pure MA process and ifq = 0, then the process reduces to
a pure AR process. Equation (15) can also be written in a more
concise form as:

φ(B)Xt = θ(B)Zt, (16)

whereφ andθ are polynomials of degreep andq respectively
andB is the backward shift operator:

Bjxt = Xt−j , j = 0, 1, ... (17)

ARMA model assumes the time series are stationary. If the time
series exhibits variations that violate the stationarity assumption,
differencing operation can be used to remove the non-stationary
trend in the time series. We define the lag-1 difference operator
∇ by

∇Xt = Xt −Xt−1 = (1−B)Xt. (18)

An ARIMA(p,d,q) model is an ARMA(p,q) model that has been
differencedd times. Therefore it can be represented as:

φ(B)(1−B)dXt = θ(B)Zt (19)

If the time series has a non-zero average value through time,
then Equation (19) also features a constant termδ on its right
hand side.

Fig. 2 and Fig. 3 shows the wavelet coefficients and the scal-
ing coefficients of an hour-long LAN traffic trace. The time
series being analyzed is the data rate of the LAN trace mea-
sured in terms of byte/s during 1s measurement interval. The
details of the traffic trace will be introduced later. A visual in-
spection of the scaling coefficients and wavelet coefficients in-
dicates that the wavelet coefficients can be reasonably treated as
a stationary time series with zero mean. Therefore wavelet co-
efficients can be modelled using ARMA(p,q) model, or equiva-
lently ARIMA(p,0,q) model. However there is significant non-
stationarity in the scaling coefficients. This non-stationarity be-
comes more obvious when examining the scaling coefficients
over longer time period as shown in Fig. 4. Therefore for scaling
coefficients it is more appropriate to use ARIMA(p,d,q) model.

Box-Jenkins forecasting methodology is used to establish the
ARIMA(p,d,q) model for prediction at each scale. Box-Jenkins
methodology involves four steps [17]:
• The first step is the tentative identification of the model pa-
rameters. This is done by examining the sample autocorrelation
function:

rk =
1

n−k

∑n−k
t=1 (Xt − X̄)(Xt+k − X̄)
1
n

∑n
t=1(Xt − X̄)2

, (20)

where

X̄ =
∑n

t=1 Xt

n
(21)

and the sample partial autocorrelation function:

rkk =

{
r1 if k = 1
rk−

∑k−1
j=1 rk−1,jrk−j

1−∑k−1
j=1 rk−1,jrj

if k = 2, 3, ...
, (22)
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Fig. 1. Architecture of the prediction algorithm
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Fig. 2. Wavelet coefficients from scale 1 to 3

where

rkj = rk−1,j − rkkrk−1,k−j , for j = 1, 2, ..., k − 1 (23)

of the time seriesX.
• Estimation step. Once the model is established, the model pa-
rameters can be estimated using either a maximum likelihood
approach or a least mean square approach. In this paper both
the maximum likelihood approach and the least mean square ap-
proach were tried and their results are almost exactly the same.
Thus we stick to the least mean square approach to estimate the
model parameters for its simplicity.
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Fig. 3. Wavelet coefficients at scales 4 & 5 and Scaling coefficients at scale 5

• Diagnostic check step. Diagnostic checks can be used to see
whether or not the model that has been tentatively identified and
estimated is adequate. This can be done by examining the sam-
ple autocorrelation function of the error signal, i.e. the differ-
ence between the predicted value and the real value. If the model
is inadequate, it must be modified and improved.
• When a final model is determined, it can be used to forecast
future time series values.
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IV. SIMULATION

In this section, we apply the proposed model to the real net-
work traffic for prediction. The traffic traces used were col-
lected by WAND research group at the University of Waikato
Computer Science Department. It is the LAN traffic at the
University of Auckland on campus level. The traffic traces
were collected between 6am and 12pm from on June 9, 2001
to June 13, 2001 on a 100Mbps Ethernet link. IP headers
in the traffic trace are GPS synchronized and have an accu-
racy of 1µs. More information on the traffic trace and the
measurement infrastructure can be found on their webpage:
http://atm.cs.waikato.ac.nz/wand/wits/auck/6/. Fig.5 shows the
traffic rate of the traffic trace measured between 6am and 12am
on June 12, 2001. The traffic rate is measured on 1 second in-
tervals.
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Fig. 5. Traffic rate of the LAN trace measured between 6am and 12am on June
12, 2001

Five traffic traces are available. Table II shows information of
the traffic traces.

We use the traffic rate measured in the previous 1s time inter-
vals to predict the traffic rate in the next second. Prediction over
longer or shorter time intervals can be achieved by reducing the
length of the time interval or by multistep prediction. To vali-
date the performance of the proposed prediction model, one of
the traffic traces (i.e. trace 4) was picked randomly to establish
the prediction model and the prediction model is then applied to
other traffic traces for prediction.

Table II shows the model parameters of the ARIMA(p,d,q)
model at each scale. Three scales are chosen. The choice on the
number of scales used for prediction is made based on the trade-
off between model complexity and accuracy. Further increase
in the number of scales significantly increases the complexity of
the algorithm but there is only a modest increase in accuracy. As
shown in the table, most noise in the model comes from wavelet
coefficients at scale 1. In comparison with wavelet coefficients
and scaling coefficients at other scales, wavelet coefficients at
scale 1 has very weak autocorrelations and a white noise like
power spectral density. It is almost like white noise. It is the
wavelet coefficients at scale 1 that limit the overall performance
that can be achieved by the prediction algorithm. Fig. 6 shows
the autocorrelation function of the wavelet coefficients at scale
1.
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Fig. 6. Autocorrelation function of wavelet coefficients at scale 1

The ARIMA models developed from trace 4 are then applied
to the other traffic traces to establish the performance of the pre-
diction algorithm. To measure the performance of the prediction
algorithm, two metrics are used. One is the normalized mean
square error (NMS):

NMSE =
1
N

∑N
n=1(X(n)− X̂(n))2

var(X(n))
(24)

whereX̂(n) is the predicted value ofX(n) andvar(X(n) de-
notes the variance ofX(n). The other is the mean absolute rel-



TABLE I

TRACE TRACE USED IN THE SIMULATION

Trace ID File name Measurement time Duration
1 20010609-060000-e0.gzSaturday June 9, 2001 6am-12pm
2 20010610-060000-e0.gzSunday June 10, 2001 6am-12pm
3 20010611-060000-e0.gzMonday June 11, 2001 6am-12pm
4 20010612-060000-e0.gzTuesday June 12, 2001 6am-12pm
5 20010613-060000-e0.gzWednesday June 13, 20016am-9am

TABLE II

MODEL PARAMETER OF THE PREDICTION MODEL

Scale Model name Model parametersφ Model parametersθ Noiseσ2

Wavelet coefficient 1 ARIMA(1,0,4) φ1 = 0.8842 θ1 = 1.311, θ2 = −0.2185, 2.147× 109

θ3 = 0, θ4 = −0.1008
Wavelet coefficient 2 ARIMA(4,0,4) φ1 = 1.443, φ2 = −0.4782, θ1 = −0.04322, θ2 = 1.768 5.847× 108

φ3 = 0.04215, φ4 = −0.02682 θ3 = 0.04953, θ4 = −0.7767
Wavelet coefficient 3 ARIMA(4,0,8) φ1 = 1.384, φ2 = −0.435 θ1 = −0.1833, θ2 = −0.1531, 1.422× 108

φ3 = 0.02306, φ4 = −0.004911 θ3 = −0.1824, θ4 = 1.751,
θ5 = 0.1789, θ6 = 0.1508,
θ7 = 0.1782, θ8 = −0.7583

Scaling coefficient 3 ARIMA(2,1,8) φ1 = 0.508, φ2 = 0.02201 θ1 = −0.07853, θ2 = −0.08036 1.348× 108

θ3 = −0.07985, θ4 = −0.08014,
θ5 = −0.07935, θ6 = −0.08083,
θ7 = −0.0796, θ8 = 0.9188

ative error (MARE), which is defined as follows:

MRE =
1
N

N∑
n=1

∣∣∣∣∣
X(n)− X̂(n)

X(n)

∣∣∣∣∣ (25)

Since the relative error may be unduely affected by vary small
values ofX(n), to make meaningful observations, we only
count the MARE ofX(n) whose value is not small than the
average value ofX(n). Table III shows the performance of the
prediction algorithm. For comparison purpose, the performance
of traffic prediction using neural network approach is also shown
in the table. A number of neural network models with different
number of input nodes, hidden nodes and transfer functions are
evaluated, including those reported in [11], [18]. It is found that
the 32-16-4-1 network architecture used in [18] gives the best
performance. Hyperbolic tangent sigmoid transfer function is
used in the hidden layer and linear transfer function is used in
the output layer. The performance of the 32-16-4-1 neural net-
work model is shown in Table III to represent the prediction per-
formance using neural networks. To achieve a fair comparison,
the same trace used for building ARIMA(p,d,q) models is used
to train the neural network. The very large data size in the train-
ing trace ensures the convergence of the neural network, which
is also confirmed by a visual inspection of the error signal.

As shown in Table III, the ARIMA model with multiscale de-
composition (referred to as multiscale ARIMA model for sim-
plicity) gives better performance than neural network in most
cases except for trace 2, where the MARE metric of neural net-
work approach is slightly better than that achieved by multiscale

ARIMA approach. However, the NMS metric of neural network
approach is much worse than that of multiscale ARIMA ap-
proach for trace 2. Therefore the exception on trace 2 cannot be
used as an evidence that neural network performs better for trace
2. Fig. 7 and Fig. 8 show the autocorrelation function of the er-
ror signal for traffic trace 5 using multiscale ARIMA model and
using neural network respectively. The autocorrelation function
of the error signal for other traffic traces demonstrates similar
characteristics. The autocorrelation function of the error signal
using multiscale ARIMA model is much weaker than that using
neural network prediction and it dies down faster. This also in-
dicates that the performance of multiscale ARIMA model is bet-
ter than neural network prediction as the error is closer to white
noise. As such, it can be concluded that ARIMA model with
multiscale decomposition generally achieves better performance
than neural network. Moreover, only three scales are employed
in the proposed prediction algorithm, which requires a memory
length (here memory length refers to the number of past raw
data samples required for prediction) of about 8. In comparison,
neural network requires a memory length of 32. The compu-
tation using multiscale ARIMA model is also much easier than
that using neural network.

V. CONCLUSION AND FURTHER WORK

In this paper we proposed a real-time network traffic pre-
diction algorithm based on a multiscale decomposition. The
raw traffic data is first decomposed into different timescales us-
ing the à trous Haar wavelet transform. The prediction of the



TABLE III

PERFORMANCE OF THE PREDICTION MODEL

Trace ID Multiscale ARIMA Neural network
NMS MARE NMS MARE

1 0.1319 0.1633 0.1603 0.1667
2 0.2296 0.2165 0.3168 0.2053
3 0.1507 0.1403 0.1565 0.1493
4 0.1592 0.1313 0.1622 0.1386
5 0.21972 0.1731 0.2258 0.1823
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Fig. 7. Autocorrelation function of the error signal for trace 5 using multiscale
ARIMA model

wavelet coefficients and scaling coefficients are performed inde-
pendently at each timescale using ARIMA model. The predicted
wavelet coefficients and scaling coefficient are then combined
to give the predicted traffic value. As traffic variations at differ-
ent timescales are caused by different network mechanisms, the
proposed multiscale decomposition approach to traffic predic-
tion can better capture the correlation structure of traffic caused
by different network mechanisms, which may not be obvious
when examining the raw data directly.

The prediction algorithm was applied to real network traffic.
The autocorrelation of the error signal of the prediction algo-
rithm is very weak, which is an indication of the adequacy of
the model. The performance of the prediction algorithm was
compared with that using neural network. It is shown that the
proposed algorithm generally outperforms traffic prediction al-
gorithm using neural network approach and gives more accurate
prediction. The complexity of the prediction algorithm is also
significantly lower than that using neural network.

As pointed out in the paper, traffic variations at large
timescales are caused by routing changes, daily and weekly
cyclic shift in user populations. However the length of the traffic
trace (6-hour maximum) used in our analysis prohibits us to do
large timescale traffic analysis and prediction. It is excepted that
some future work can be carried out in this area, which allows
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Fig. 8. Autocorrelation function of the error signal for trace 5 using neural
network prediction

us to build prediction models for large time scale traffic varia-
tions and incorporate them into our prediction algorithm. This
will improve both the accuracy and the generalization capability
of the prediction algorithm.
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