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Abstract

Unmanned aerial vehicles (UAVs) are increasingly used in
military and scientific research. Some miniaturized UAVs rely
entirely on the global positioning system (GPS) for navigation.
GPS is vulnerable to accidental or deliberate interference
that can cause it to fail. It is not unusual, even in a benign
environment, for a GPS outage to occur for periods of seconds
to minutes. For UAVs relying solely on GPS for navigation
such an event can be catastrophic. This paper proposes an
extended Kalman filter approach to estimate the location of a
UAV when its GPS connection is lost, using inter-UAV distance
measurements. The results from a recent trial conducted by
DSTO in Australia with three UAVs are presented. It is shown
that the location of a manoeuvering UAV that has lost the
GPS signal can be determined to an accuracy of within 40m
of its true location simply by measuring the range to two other
UAVs at known location, where the range measurement error
has a zero mean and a standard deviation of 10m.

1. INTRODUCTION

Unmanned aerial vehicles (UAVs) are increasingly used in
military and scientific research. UAVs rely on accurate location
information for a variety of purposes including navigation,
motion planning and control, and mission completion. Most
UAVs obtain their location from the global positioning system
(GPS), inertial navigation system, or a combination of both
[1]. Because of constraints on cost and payload size, there is
a significant number of UAVs equipped with GPS equipment
only 1. The GPS signal is easily affected by external inter-
ference, noise or receiving equipment failure/malfunction. For
those UAVs equipped with GPS only, it has been observed in
the real experiments that some of them may temporarily lose
their GPS connection for a quite long time. In such a case,
those UAVs losing their GPS connection have to be brought
down and their mission will be aborted due to safety concerns.
Consequently, to avoid this outcome it is desirable to design

1National ICT Australia is funded by the Australian Governments De-
partment of Communications, Information Technology and the Arts and the
Australian Research Council through the Backing Australias Ability initiative
and the ICT Centre of Excellence Program.

1For example the mini-UAVs used by DSTO are the Aerosonode UAVs
which navigate with a GPS receiver and altimator.

an approach which can estimate the location of those UAVs
which temporarily lose their GPS connection.

In this paper, we propose using range measurements in
conjunction with an extended Kalman filter (EKF) to estimate
the location of those UAVs temporarily losing their GPS
connection. Specifically, we consider a group of UAVs with
possibly different functionalities cooperating with each other
to complete a mission, e.g., reconnaissance, video imaging,
etc. These UAVs are able to measure distance between each
other. During the flight, some UAVs may temporarily lose their
GPS connection. However at any time, there are at least two
UAVs, which are able to maintain their GPS connection. A
UAV without GPS connection uses the proposed EKF, whose
observations are the distance measurements to UAV with GPS
navigation, to estimate its own location.

The rest of the paper is organized as follows. In Section 2
we discuss the general principle of localizing UAVs with range
measurements. Section 3 introduces the design of the EKF.
Section 4 introduces the UAV trajectories obtained from a
recent trial conducted by DSTO in Australia with three UAVs.
These data are used in the later simulation. Section 5 presents
the simulation results. Finally, conclusions are given in Section
6.

2. LOCALIZING WITH RANGE MEASUREMENTS

Generally speaking, in 2D scenarios range measurements to
three non-collinear nodes with known location (i.e., UAVs
with known location) are required to uniquely determine the
location of a node. When range measurements to only two
nodes with known location are available, a situation referred
to as flip ambiguity may occur. This is illustrated in Fig. 1.

For the specific problem considered in this paper, i.e.,
estimating the location of a UAV temporarily losing its GPS
connection, the location of the UAV before it loses its GPS
connection may be usable to resolve the flip ambiguity shown
in Fig. 1. That is, the UAV location before GPS outage may
help to determine on which side of the two known nodes (i.e.,
two UAVs with known location) the UAV is located. Therefore
range measurements to two UAVs with known location may
be sufficient to uniquely determine the location of a UAV
temporarily losing its GPS connection. However it should
be noted that using range measurements to only two UAVs



Fig. 1: An illustration of the flip ambiguity in 2D. Using range measurements
to nodes A and B at known location only, node C is unable to determine
whether its true location is at C or C’.

with known location, the flip ambiguity problem may still
occur in some special cases. This is shown in Fig. 2. When
this happens, additional information such as the maximum
angular velocity of the UAV has to be considered to resolve
the ambiguity.

Fig. 2: Using range measurements to only two UAVs with known location,
the flip ambiguity problem may still occur in some special cases. Specifically,
when UAV 3 crosses the line of UAV 1 and UAV 2 (with known location)
after t1, UAV 3 is unable to uniquely determine its location using range
measurements to UAV 1 and 2 only.

In summary, depending on the movement pattern of the
UAV and the geometric relationship between the UAV tem-
porarily losing its GPS connection and the UAVs with GPS
connection, in 2D range measurements to two UAVs with GPS
connection may be sufficient to estimate the location of the
UAV temporarily losing its GPS connection.

3. DESIGN OF THE EXTENDED KALMAN FILTER

It is assumed that the movement of the UAV in the vertical
plane and in the horizontal plane can be decoupled [2].
This paper considers the movement of UAV in the horizontal
plane only, i.e., it considers a 2D localization problem. This
assumption is widely used to simplify the modeling of aircraft
dynamics [2]. It is further justified by the fact that for the
considered applications, the UAVs stay at approximately the
same altitude.

The dynamic model of a UAV is given by the following

continuous-time equations:

ẋ(t) = v(t) cos η(t) (1)
ẏ(t) = v(t) sin η(t) (2)
η̇(t) = ω(t) (3)
ω̇(t) = εω(t) (4)
v̇(t) = εv(t) (5)

where at time t the state variables {x(t), y(t)} are the coordi-
nates of the UAV in the horizontal plane, η(t) is the heading
of the UAV, ω(t) is the angular speed of the UAV (i.e., the
rate of change of the UAV heading measured in radians per
second) and v(t) is the ground speed of the UAV, i.e., a
scalar. εω(·) and εv(·) are assumed to be stationary, Gaussian,
zero mean white noise processes, mutually independent, with
known covariances E[εω(t)εω(s)] and E[εv(t)εv(s)] given by
Qωδ(t − s) and Qvδ(t − s) respectively. δ is the Kronecker
delta function. They are used to model the acceleration of the
UAV speed caused by wind and control maneuver, etc. The
values of Qω and Qv are derived from the maximum angular
speed of the UAV and an empirical observation of the typical
variations in the linear speed of the UAV respectively.

A discrete-time equation set corresponding to Eq. 1 through
Eq. 5 will be an approximation because of the nonlinearities
in the continuous-time model, and because of the treatment
of noise terms. The easiest approximation is that based on an
Euler approximation of the equations. This is a well known
procedure for deterministic equations, but is also the basis
for approximating stochastic equations, and is grounded in Itô
calculus [4]. The discrete-time UAV dynamic model is shown
in the following.

xk+1 = xk + vk∆tk cos ηk (6)
yk+1 = yk + vk∆tk sin ηk (7)
ηk+1 = ηk + ωk∆tk (8)
ωk+1 = ωk + εω,k (9)
vk+1 = vk + εv,k (10)

The discrete-time state vector is θk = [xk yk ηk ωk vk]′.
It should approximate the value of the continuous time state
vector at the kth distance measurement time, call it tk. ∆tk
is the time interval between the k + 1th and kth distance
measurement updates. The sequences {εω,k} and {εv,k} are
stationary zero mean white Gaussian sequences of random
variables, mutually independent. The covariance of the first
of these discrete-time sequence is [6]:

E[εω,kεω,j ] = Qω∆tkδkj . (11)

Similarly the covariance for the {εv,k} process is:

E[εv,kεv,j ] = Qv∆tkδkj . (12)

This means that one can replace Eq. 9 and Eq. 10 by:

ωk+1 = ωk + γω,k

√
∆tk (13)

vk+1 = vk + γv,k

√
∆tk. (14)



The sequences {γω,k} and {γv,k} are mutually independent,
stationary zero mean white Gaussian sequences of random
variables, with covariances Qω and Qv respectively. The
advantage of this form is that it displays dependence of
discrete-time noise on the interval between successive updates.

In summary, the discrete-time dynamic model of the UAV
is taken as in Eq. 15.

θk+1 =




1 0 0 0 ∆tk cos ηk

0 1 0 0 ∆tk sin ηk

0 0 1 ∆tk 0
0 0 0 1 0
0 0 0 0 1




θk

︸ ︷︷ ︸
f [θk]

+




0 0
0 0
0 0√
∆tk 0
0

√
∆tk




︸ ︷︷ ︸

(
γω,k

γv,k

)
(15)

Uk

The measurement equation is:

dk =
√

(xk − x0)
2 + (yk − y0)

2

︸ ︷︷ ︸
+εd,k (16)

h[θk]

where {x0 y0} are the coordinates of the UAV from which
the kth distance measurement is received and {εd,k} is a
stationary zero mean white Gaussian sequence of random
variables, which is used to model the distance measurement
error. This sequence is assumed to be independent of {εω,k}
and {εv,k}. Note that in real-world application, it is possible
that more than one distance measurements is received from
multiple UAVs at approximately the same time. In that case
the measurement equation can be expanded to include multiple
equations like Eq. 16. In this paper, we only consider the
more generic situation that at any time, only one distance
measurement is received.

Given the non-linear dynamic equation shown in Eq. 15
and the non-linear measurement equation shown in Eq. 16,
an estimate of the UAV location {xk yk} as k varies can
be obtained using the extended Kalman filter [5]. Both the
dynamic equation and the measurement equation are linearized
by keeping the first order term in the Taylor series expansion
and ignoring the higher order terms. The procedure of the EKF
is shown in the following for completeness.
• State prediction:

θ̂k+1|k = f [θ̂k|k], (17)

where the function f is defined in Eq. 15.
• Computes the state prediction covariance matrix:

Pk+1|k = fx[θ̂k|k]Pk|kf ′x[θ̂k|k] + UkQU ′
k (18)

where Uk is defined in Eq. 15 and fx[θ̂k|k] is the Jacobian
of f evaluated at θ̂k|k. Q = diag{Qω Qv} is the

covariance matrix of the error terms γω,k and γv,k, and
is assumed to be known.

• Computes the predicted measurement:

d̂k+1|k = h[θ̂k+1|k], (19)

where the function h is defined in Eq. 16.
• Computes the measurement prediction covariance:

Sk+1 = hx[θ̂k+1|k]Pk+1|kh′x[θ̂k+1|k] + R, (20)

where hx[θ̂k+1|k] is the Jacobian of h evaluated at θ̂k+1|k.
R is the variance of εd,k and is assumed to be a known
value.

• Computes the filter gain:

Wk+1 = Pk+1|khθ̂k+1|k
S−1

k+1 (21)

• Updates the state estimate:

θ̂k+1|k+1 = θ̂k+1|k + Wk+1λk+1 (22)

where λk+1 is called the innovation and defined as:

λk+1 = dk+1 − d̂k+1|k (23)

• Updates the state covariance matrix:

Pk+1|k+1 = Pk+1|k −Wk+1Sk+1W
′
k+1 (24)

The initial values θ̂0|0, P0|0 can be chosen empirically or can
be computed from the state of the UAV before GPS outage.
The impact of the initial values on the state estimate normally
vanishes exponentially fast [5].

4. THE UAV TRAJECTORIES

The proposed approach is validated by simulation using real
UAV trajectories. In this section, we give an introduction to
the experimental data used in the simulation.

Three UAVs are considered, which are named UAV 1, UAV
2 and UAV 3 respectively. During the flight, the following
GPS data were collected: time, geocentric latitude, geocen-
tric longitude, altitude, time of arrival, pulse width, signal
frequency and amplitude. The longitude, latitude and height
(LLH) coordinates recorded by the UAV are not well suited
for navigation and tracking problems because linear motion
becomes non-linear in these coordinates. In comparison, a
local coordinate system whose X and Y axes are in the local
horizon and Z axis points to the local Zenith is much better
suited and is the industry standard. Therefore, the geocentric
latitude and longitude location information is first converted
into a local coordinate system, which is shown in Fig. 3.
X’Y’Z’ is the local coordinate system. The origin of the
local coordinate system is randomly chosen to be the starting
location of UAV 1. In the figure, φ and γ are the geocentric
latitude and longitude respectively. φ′ is the geodetic latitude
[7]. Refer to [8] for a detailed description on how to convert
the LLH coordinates into local coordinates.

Figures 4 - 6 show the UAV paths in 2D during a flight
of 1 hour and 50 minutes. The location of the UAV is
estimated from GPS, hereby referred to as GPS location. In



Fig. 3: Coordinate transformation. XYZ is the geocentric coordinate system
and X’Y’Z’ is the local coordinate system.

the local coordinate system, the z coordinates of all three
UAVs vary within a range of [−4m, 6m] during the flight.
This small variation in the z coordinate may be attributable
to the Earth’s curvature and is ignored. It is also noticed that
the GPS location of UAV 1 varies in a very small range. In
the experiment, UAV 1 is simply a receiver installed on a
stationary post. Therefore this variation in the GPS location
of UAV 1 is only an artifact reflecting the GPS measurement
error.

−12 −10 −8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

Flight Path of UAV 1, Unit: m

Fig. 4: Nominal flight path of UAV 1 (The UAV is actually tethered).

It is noted that for UAV 2, it may lose its GPS connection
for a maximum interval of 54s. Fig. 7 shows the time interval
between adjacent GPS measurements for UAV 2. This figure
shows that the scenario, which motivates the research in this
paper, may indeed occur in real application. Even in the benign
environment of the experiment, hardware failure and satellite
obscuration due to the UAV wings when it is banking can
cause GPS outage.

5. SIMULATION

In this section, we demonstrate simulation results, which
validate the proposed approach. As we shall now explain,
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Fig. 5: Flight path of UAV 2.

−5000 −4000 −3000 −2000 −1000 0 1000
−6000

−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

Flight Path of UAV 3, Unit: m

Fig. 6: Flight path of UAV 3.

these simulation results use real world data from a recent trial
conducted by DSTO in Australia with three UAVs, for both
simulation purposes, and the data is also used for validation.

At the present time, the UAVs are not equipped to determine
inter-UAV distances; hence, as indicated in the introduction,
loss of a GPS connection is likely currently to be fatal. For
this reason, the real world data we use is entirely data obtained
when all UAVs do actually have a GPS connection (except
UAV 2 may temporarily lose its GPS connection as indicated
in Fig. 7). From this data, we are able to simulate loss
of a GPS connection and acquisition of inter-UAV distance
measurements in the following way. A certain time series of
intervals of synthetic GPS outage is postulated (as discussed
in more detail below). During these intervals, inter-UAV
distances are synthesized at discrete instants of time. This is
done by taking the actual GPS measurements, determining the
corresponding inter-UAV distance, and then adding on to the
resulting value a Gaussian random variable with zero mean and
standard deviation of 10m. This is delivered to the algorithm
as a (synthesized) inter-UAV distance, and the Kalman filter
is run with this data.

Validation occurs by comparing the estimated UAV tracks
delivered by the Kalman filter with those in the original real-
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Fig. 7: Time interval between adjacent GPS measurements for UAV 2.

world data, where GPS measurements are actually available,
so that actual UAV tracks are known.

In the simulations, we assume that UAV 3 never has a GPS
connection and it measures its distances to UAV 1 and UAV
2 (both have known location) to estimate its location using
the proposed EKF. We also assume that its initial position
is sufficiently known as to avoid flip ambiguity in Fig. 1.
Experimental data from DSTO showed that that UAV 1 always
has a GPS connection (In fact, this is because UAV 1 is
actually tethered); UAV 2 has a GPS connection most of
the time but it may temporarily lose the GPS connection for
up to 54s (see Fig. 7). Because when UAV 2 loses its GPS
connection the inter-UAV distance between UAV 3 and UAV 2
cannot be determined, so we assume no distance measurements
between UAV 2 and UAV 3 are made during the interval when
UAV 2 loses its GPS connection.

As described above, synthesized distance measurements
are constructed. The time interval between adjacent distance
measurements between UAV 1 and UAV 3 is a sequence
of independent random variables uniformly distributed in
the interval [0.875s 1.125s]; and this randomness in the
time interval is intended to model the effect of inaccurate
synchronization. The time interval between adjacent distance
measurements between UAV 2 and UAV 3 is also a sequence
of independent random variables uniformly distributed in the
interval [0.875s 1.125s] and is independent from the first time
interval sequence.

In the simulation, the first two state variables of the initial
state vector are chosen to be the initial GPS location of UAV
3 and other state variables are chosen randomly. The initial
value of P is chosen based on an empirical estimate as P0|0 =
diag{1000 1000 0.3 0.01 1}. It is found that generally
the choice of P0|0 has little impact on the filter performance;
however a very large deviation of P0|0 from its true value does
cause the divergence of the filter. The value of Q is chosen
based on an empirical estimate as Q = diag{0.0003 10}.
The choice of Q is critical for the filter performance and Q
should be chosen carefully based on an in-depth understanding
of the UAV dynamics. The value of R is chosen to be 100.

In real applications, the value of R can be obtained via a
priori calibration of the distance measurement equipment. The
distance measurement can be obtained by a simple round trip
timing mechanism.

Fig. 8 illustrates the performance of the proposed EKF. A
total of 9, 718 of distance measurements to UAV 1 and UAV
2 are made during the 6, 618s interval.

The flip ambiguity problem shown in Fig. 2 did not occur
in the simulation. It is considered that in addition to distance
measurements, knowledge of the UAV dynamic model is also
employed in the EFK. This knowledge of UAV dynamics may
help to alleviate the effect of the flip ambiguity problem.

The UAV location obtained from GPS is used as the “true
location” of the UAV. The path of UAV 3 starts from the
rectangular on the right side of the figure. Apparently, the
estimated location has larger error on this part of the figure.
As time evolves, the estimated location gradually converges to
the true location, which is evidenced by much less deviation
from the true location on the left side of the figure. Fig. 9
and 10 shows the variation of error in x̂ (i.e., x̂− x) and the
variation of error in ŷ (i.e., ŷ − y) respectively.
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Fig. 8: An illustration of the performance of the proposed EKF.
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The performance of the proposed EKF is measured by six
metrics, i.e., the mean error of the estimated x, E(x̂−x), and



TABLE 1: PERFORMANCE OF THE EXTENDED KALMAN FILTER. UNIT: M.

Simulation E(x̂− x) σ(x̂− x) E(ŷ − y) σ(ŷ − y) E(d̃) σ(d̃)
1 10.5836 46.3087 -10.9167 38.1720 38.8275 48.2183
2 8.7661 45.6333 -11.7453 37.2149 37.2011 47.9382
3 10.9220 47.6161 -11.8613 38.5942 39.2297 49.7761
4 10.1834 62.1998 -12.3481 40.1211 39.0115 64.9048
5 8.7462 50.1151 -12.1389 39.2946 39.4348 52.1936
6 9.2793 45.4631 -10.8837 37.9597 38.9082 46.8867
7 9.8450 55.4412 -12.0954 39.5770 40.1785 57.1734
8 7.2842 46.6786 -12.2274 36.2379 38.4231 47.0972
9 9.2419 45.9712 -12.3221 37.8227 39.2994 47.2921
10 8.6380 52.5742 -12.3697 39.9224 40.1153 54.5532

Average 9.3490 49.8001 -11.8909 38.4917 39.0629 51.6034
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Fig. 10: Variation of error in ŷ with Time.

the corresponding standard deviation of this error, σ(x̂−x), the
mean error of the estimated y, E(ŷ−y), and the corresponding
standard deviation of the error, σ(ŷ−y), the mean value of the
distance between the estimated location and the true location,
E(d̃), where

d̃ =
√

(x̂− x)2 + (ŷ − y), (25)

and the corresponding standard deviation σ(d̃).
Table 1 shows the results from ten simulations repeated with

different random seed. The last row shows the average result
of the ten simulations. 9, 718 location estimates are obtained
in each simulation and the first 2, 000 location estimates have
been removed when calculating the performance metrics.

As shown in the Table, both the estimate of x and the
estimate of y have a bias. As a reference, the value of x varies
within the range of [−5, 000, 1, 000] and the value of y varies
within the range of [−6, 000, 3, 000]. These have been shown
in Fig. 6. Therefore, the value of the bias is comparatively
small. However, both biases have a fairly consistent trend in all
ten simulations, E(x̂−x) is always around 9m and E(ŷ− y)
is always around −11m. Further study may be required to
investigate the cause of the biases and their implications on
the design of the EKF. All three values σ(x̂−x), σ(ŷ−y) and
σ(d̃) are around 40 − 50m. There are four possible sources
that may contribute to the error:
• Distance measurement error. The standard deviation of

the distance measurement error is 10m.

• Location error of GPS. This error has been shown in Fig.
4, which is around 10m.

• The effect of an inaccurate dynamic model.
• Inaccurate knowledge of the error covariance matrix Q

in Eq. 18.

6. CONCLUSION

In this paper, we proposed an EKF to estimate the location
of the UAV using inter-UAV distance measurements. The
proposed method may solve the practical problem that during
a flight, a UAV may temporarily lose its GPS connection for
a rather long time period.

We have shown that if a simple round trip timing mechanism
is added to the UAVs, so that they can measure the range to
other UAVs, they will be able to navigate in a GPS-denied
environment as long as they are within the communication
range of at least two other UAVs which have reliable GPS
coordinates. The accuracy of the location estimate of the GPS-
denied UAV depends on the relative position of the other UAVs
but we have found that in a typical scenario in which the
UAVs are separated approximately 5km apart and the standard
deviation of the range measurement error is 10m, the GPS-
denied UAV can be localized to within 40m of its true location.

In our future work, we shall consider evaluating the opti-
mality and robustness of the proposed EKF using extensive
experimental data.
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