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Abstract— The path loss exponent (PLE) is a parameter
indicating the rate at which the received signal strength (RSS)
decreases with distance, and its value depends on the specific
propagation environment. Path loss exponent estimation plays
an important role in distance-based wireless sensor network
localization, where distance is estimated from the RSS measure-
ments. Path loss exponent estimation is also useful for other
purposes like sensor network dimensioning. Existing techniques
on PLE estimation rely on both RSS measurements and distance
measurements in the same environment to calibrate the PLE.
However distance measurements can be difficult and expensive
to obtain in some environments. In this paper we propose a
technique for online calibration of the path loss exponent in
wireless sensor networks without using distance measurements.
The major contribution of this paper is to demonstrate that it is
possible to estimate the PLE using only power measurements and
the geometric constraints associated with planarity in a sensor
network. This may have a significant impact on wireless sensor
network localization.

I. INTRODUCTION

The wireless received signal strength (RSS) has been pop-
ularly modeled by a log-normal model [1], [2], [3]:

Pij [dBm] ∼ N(Pij [dBm], σ2
dB), (1)

Pij [dBm] = P0(d0)[dBm]− 10× α× log10(dij/d0), (2)

where Pij [dBm] is the received power at a receiving node
j from a transmitting node i in dB milliwatts, Pij [dBm] is
the mean power in dB milliwatts, σ2

dB is the variance of
the shadowing, P0(d0)[dBm] is the received power in dB
milliwatts at a reference distance d0 and dij is the distance
between nodes i and j. In this paper, we use the notation
[dBm] to denote that power is measured in dB milliwatts.
Otherwise, it is measured in milliwatts. The reference power
P0(d0)[dBm] is calculated using the free space Friis equation
or obtained through field measurements at distance d0 [2]. It
is important to notice that the reference distance d0 should
always be in the far field of the transmitter antenna so that
the near-field effect does not alter the reference power. In
large coverage cellular systems, a 1 km reference distance is
commonly used, whereas in microcellular systems, a much
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smaller distance such as 100 m or 1 m is used [2]. In this
paper, it is assumed that d0 and P0(d0)[dBm] can be obtained
from a priori calibration of the wireless device and they are
known constants. In many cases, Pij [dBm] 6= Pji[dBm] due
to the asymmetric wireless signal propagation path from node
i to node j and from node j to node i. However in this paper,
it is assumed that Pij [dBm] = Pji[dBm] for simplicity. In the
case of an asymmetric path, the average value of Pij [dBm]
and Pji[dBm] is used. It is also assumed that all distances
are normalized with respect to d0. Therefore Eq. 2 can be
simplified as:

Pij [dBm] = P0(d0)[dBm]− 10αlog10dij . (3)

The parameter α is called the path loss exponent (PLE),
which indicates the rate at which the received signal strength
decreases with distance. The value of α depends on the specific
propagation environment. In this paper, it is assumed that
α is an unknown constant, which is to be determined. For
a large wireless sensor network spanning a wide area with
different environmental conditions, the area can be divided into
smaller regions and α can be considered as a constant in each
region. Path loss exponent estimation plays an important role
in distance-based wireless sensor network localization, where
distance is estimated from the received signal strength mea-
surements [4]. Path loss exponent estimation is also useful for
other purposes like sensor network dimensioning. As the value
of the path loss exponent depends on the environment in which
a sensor network is deployed, existing techniques on path
loss exponent estimation rely on both RSS measurements and
distance measurements in the same environment to calibrate
the path loss exponent [1], [3]. RSS measurements are readily
available. However distance measurements can be difficult
and expensive to obtain in some environments. Moreover,
the reliance on distance measurements impedes deployment
in unknown environments.

In this paper we propose a technique for online calibration
of the path loss exponent in wireless sensor networks using
the Cayley-Menger determinant [5], [6], which does not rely
on distance measurements. The proposed technique also does
not assume knowledge of the quantity σ2

dB in Eq. 1. The major
contribution of this paper is to demonstrate that it is possible
to estimate the PLE using only power measurements and the
geometric constraints associated with planarity in a sensor
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Fig. 1. A fully-connected planar quadrilateral in sensor network.

network. This may have a significant impact on distance-based
wireless sensor network localization. For ease of explanation,
the paper focuses on path loss exponent estimation in 2D.
However the proposed technique may also be extended to 3D.

The rest of the paper is organized as follows. In Section
II we present the fundamental principle underpinning the
proposed technique as well as an introduction to the proposed
algorithm. The presence of noise in the log-normal model
means that considerable adjustment is required of an algorithm
initially developed for the noiseless case, to correct for the
presence of bias. In Section III, the proposed algorithm is
validated using both simulations and real measurement data.
Conclusions and suggestions to further work are given in
Section IV.

II. PATH LOSS EXPONENT ESTIMATION BASED ON THE
CAYLEY-MENGER DETERMINANT

Consider a sensor with three neighbors where the neighbors
of that sensor are also neighbors of each other. Two sensors
i and j are neighbors if Pij is nonzero. The sensor and
its neighbors can be represented by a full-connected planar
quadrilateral shown in Fig. 1. The tuple (Pij , dij) represents
the measured power and the true distance between node i
and node j respectively. Pij and dij are related through
Eq. 1 and Eq. 3. The path loss exponent estimation prob-
lem can be formulated as the simultaneous estimation of
the true distances d12, d13, d14, d23, d24, d34 and α given the
power measurements P12, P13, P14, P23, P24, P34. Using the
maximum likelihood estimator, the likelihood function can be
obtained as:

L(d12, d13, d14, d23, d24, d34, α) =
1

(
√

2πσdB)6
×

∏

1≤i<j≤4

exp(− (Pij [dBm]− P0(d0)[dBm] + 10αlog10dij)2

σ2
dB

)

As the number of power measurements is smaller than the
number of parameters to be estimated, this leads to a set of
simple equations. In these equations Pij and P0(d0) are in

decimal units, not in dB units, so that Pij = 10Pij [dBm]/10.

P12 = P0(d0)× d−α
12 (4)

P13 = P0(d0)× d−α
13 (5)

P14 = P0(d0)× d−α
14 (6)

P23 = P0(d0)× d−α
23 (7)

P24 = P0(d0)× d−α
24 (8)

P34 = P0(d0)× d−α
34 (9)

Another constraint that is required to solve the above
equations can be found from the geometric constraint on a
fully-connected planar quadrilateral using the Cayley-Menger
determinant [5], [6]. The Cayley-Menger determinant of a
quadrilateral is given by:

D(p1, p2, p3, p4) =

∣∣∣∣∣∣∣∣∣∣

0 d2
12 d2

13 d2
14 1

d2
12 0 d2

23 d2
24 1

d2
13 d2

23 0 d2
34 1

d2
14 d2

24 d2
34 0 1

1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣

(10)

A classical result on the Cayley-Menger determinant is
given by the following theorem:

Theorem 1: (Theorem 112.1 in [6]) Consider an n-tuple of
points p1, ..., pn in m-dimensional space with n ≥ m + 1.
The rank of the Cayley-Menger matrix M(p1, ..., pn) (defined
analogously to the right side of Eq. 10 but without the
determinant operation) is at most m + 1.

A direct application of the theorem leads to:

D(p1, p2, p3, p4) = 0. (11)

Combining Eq. 11 and Eq. 4 to Eq. 9, a nonlinear equation
for α can be obtained:

h(α) =

∣∣∣∣∣∣∣∣∣∣∣

0 C
−2/α
12 C

−2/α
13 C

−2/α
14 1

C
−2/α
12 0 C

−2/α
23 C

−2/α
24 1

C
−2/α
13 C

−2/α
23 0 C

−2/α
34 1

C
−2/α
14 C

−2/α
24 C

−2/α
34 0 1

1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣

= 0,

(12)
where Cij = Pij/P0(d0), 1 ≤ i < j ≤ 4, and the Cij are
all known. An analytical solution to Eq. 12 is difficult to
find. However Eq. 12 can be conveniently solved using the
bracketing and bisection numerical technique [7, section 9.1].

Unfortunately, the estimate of α obtained using this method
shows a strong bias, i.e.,

Bα̂ = E(α̂)− α. (13)

Fig. 2 shows a histogram of the estimated path loss exponent,
which is obtained from simulation using 10, 000 different
quadrilaterals whose vertices are uniformly distributed in a
square region of 15×15. Other parameters used in the simula-
tion are: the true value of α is 2.3; σdB=3.92; P0(d0)[dBm] =
−37.4603dBm; d0 = 1m. These parameters are drawn from
real measurement data reported in [1]. It should be noted
that in the presence of noise in power measurements, Eq. 12
may have non-unique solutions even in the typical range of α
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Fig. 2. Histogram of the estimated path loss exponent using Cayley-Menger
determinant. The figure is obtained using 10, 000 quadrilaterals whose vertices
are uniformly distributed in a square region of 15× 15.
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Fig. 3. Relationship between the bias of α̂, the standard deviation of noise
in power measurement σdB and α. Bα̂ depends to a small degree on α as
well as on σ2

dB .

for some quadrilaterals. In that case, we simply discard that
quadrilateral and do not use it in the calculation to avoid any
ambiguity. As shown in the figure, the true value of α is 2.3
and the estimated value of α has a bias of 2.08. The simulation
shows that α̂ obtained using the aforementioned technique has
a strong bias which cannot be ignored.

Bias removal requires an analysis on E(α̂). However a
direct analysis of E(α̂) is difficult because of the difficulty
in obtaining an explicit analytical expression of α from Eq.
12. Therefore we resort to numerical experiments to evaluate
E(α̂). Our numerical evaluation shows that the bias of α̂, Bα̂,
has an approximate linear relationship with σdB for a fixed
α. This is shown in Fig. 3. Fig. 3 is obtained using 3, 000
quadrilaterals whose vertices are uniformly distributed in a
square of 15 × 15. The corresponding power measurements
are obtained using Eq. 1 and Eq. 3.

Moreover further simulations show that the relationship be-

tween Bα̂, σdB and α is almost independent of the distribution
of the vertices of the quadrilaterals and is also independent of
the shape of the area in which the vertices of the quadrilaterals
are located. As an example, Fig. 4 shows the relationship
between Bα̂ and σdB for quadrilaterals whose vertices are
located in areas of a variety of different shapes and distributed
in the area following different distributions. Fig. 5 shows
the relationship between Bα̂ and σdB at a specific value of
α = 2.3.

Based on the observation shown in Fig. 4 and Fig. 5 that
the relationship between Bα̂ and σdB is independent of the
distribution of the vertices of various quadrilaterals and the
shape of the area in which vertices of the quadrilaterals are
located, a pattern matching technique can be used to estimate
the path loss exponent which uses the power measurements
only.

Specifically, via a priori simulation, a data base can be
established where each entry in the data base is arranged in
the form

(
αi, σ

2
dB,j , E(α̂)αi,σ2

dB,j

)
. The symbol E(α̂)αi,σ2

dB,j

is used to emphasize dependence of E(α̂) on the path loss
exponent αi and the variance of noise in power measurements
σ2

dB,j . This data base can be obtained using a large number of
quadrilterals whose vertices, say, are uniformly distributed in
an area. The corresponding power measurements are obtained
using Eq. 1 and Eq. 3. The distance between adjacent σ2

dB is
the same, i.e.,

σ2
dB,j+1 − σ2

dB,j = ∆σ2
dB . (14)

The distance between adjacent α is also the same, i.e.,

αi+1 − αi = ∆α. (15)

Given this data base, the estimation of α can be obtained
using the following procedure for pattern matching:

1) Identify a set of fully connected quadrilaterals in the
wireless sensor network for further computation;

2) Add a random Gaussian noise with variance ∆σ2
dB into

each power measurement. The power is measured in dB
milliwatts unit;

3) For each individual quadrilateral, solve for α̂ using Eq.
12. An E(α̂)r,1 corresponding to ∆σ2

dB can be obtained
as the average value of α̂ obtained from each individual
quadrilateral. Here the subscript r is used to mark the
difference with the corresponding value in the database;

4) Repeat steps 2 and 3 using different noise variance
values M∆σ2

dB , where M = 0, 1, 2, ..., m. Here M = 0
corresponds to the original data set without the addition-
ally introduced noise. A series of tuples (0, E(α̂)r,0),
(∆σ2

dB , E(α̂)r,1), ..., (m∆σ2
dB , E(α̂)r,m) can then be

obtained;
5) Search the database and find the values of i and j such

that:

{i, j} = argmin
m∑

N=0

(E(α̂)r,N −E(α̂)αi,σ2
dB,j+N

)2.

(16)
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Fig. 4. Relationship between the bias of α̂ and the standard deviation of noise in power measurement σdB . The relationship between Bα̂ and σdB is almost
independent of the distribution of the vertices of the quadrilaterals and independent of the shape of the area in which the vertices of the quadrilaterals are
located. a) Generated from 3000 quadrilaterals whose vertices are uniformly distributed in a “L” shaped area. b) Generated from 3000 quadrilaterals whose
vertices are uniformly distributed in a rectangular area of 10x20. c) Generated from 3000 quadrilaterals whose vertices are distributed in a square area of
15x15 following a truncated Gaussian distribution with a zero mean and a standard variation of 5. d) Generated from 3000 quadrilaterals whose vertices
are located in a ring. The inner radius of the ring is 5 and the outer radius is 10. The coordinates of the vertices are generated by first selecting a number
uniformly distributed in [5, 10] and then selecting a number uniformly distributed in [0, 2π]. The two numbers are used as the polar coordinate of the vertex
to obtain the rectangular coordinate.

The parameter m has to be a large number, say ≥ 500,
in order to obtain a reasonably accurate estimate of α,
which is robust against the randomness in the data.

6) Finally, an improved estimate of α approximately cor-
recting for the bias can be obtained as:

α̂ = αi. (17)

Similarly, an estimate of σdB can be obtained as:

σ̂dB = σdB,j . (18)

III. SIMULATION VALIDATION

In this section, we shall validate the proposed technique
using both simulations and real measurements. The database
is established by simulations using 3, 000 quadrilaterals whose
vertices are uniformly distributed in a square region of 15×15.
The measured power is generated using Eq. 1 and Eq. 3. ∆σ2

dB

is set to be 1 and the distance between adjacent αi is set to
be 0.1, i.e., ∆α = 0.1. Another set of 3, 000 quadrilaterals
whose vertices is uniformly distributed in a rectangular area of
10×20 are used to establish the performance of the proposed
algorithm. 700 points are used in the search, i.e., m = 700

in Eq. 16. The simulation is repeated by varying the value of
α from 2 to 4 and varying the value of σdB from 5 to 10,
which are the typical ranges of the two parameters [2]. Fig. 6
shows the error in estimating α and Fig. 7 shows the error in
estimating σ.

As shown in Fig. 6, the error in estimating α is contained in
the region [−0.3, 0.1]. The mean estimation error is −0.1175
and the error variance is 0.0115. Fig. 7 shows that the error
in estimating σdB is contained in the region [0, 1]. The mean
estimation error is 0.4827 and the error variance is 0.0263.
Fig. 7 also shows that the error in estimating σdB is larger
at smaller values of σdB . This is attributable to the larger
separation between σdB,j+1 and σdB,j at smaller values of
σdB,j . The impact of the estimation error depends on the
specific application, density of sensor network and deployment
of sensors. It is beyond the scope of this paper to evaluate the
impact of the estimation error.

The estimation error is attributable to the randomness in
the data and can be reduced by using smaller values of
∆σ2

dB and ∆α at the expense of increased computational load.
For example, our simulation (not shown here due to space
limitation) shows that by using m = 2800, ∆α = 0.05 and
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Fig. 5. Relationship between the bias of α̂ and the standard deviation of noise in power measurement σdB at a specific value of α. Subfigures a), b), c), d)
are obtained under the same conditions as those in Fig. 4.

∆σ2
dB = 0.25, the maximum error in estimating α reduces to

0.2. The mean error reduces to −0.0603 and the error variance
reduces to 0.0056. Another possible approach to reducing
estimation error is by applying a noise reduction technique
[8] to data before the pattern matching.

Simulations using quadrilaterals whose vertices are dis-
tributed in an area of a different shape and/or following a
different distribution show similar performance. Fig. 8 and
Fig. 9 show the simulation results using a set of 3, 000
quadrilaterals whose vertices are distributed in a square region
of 15 × 15 following a truncated two-dimensional Gaussian
distribution. The mean of the Gaussian distribution is at the
center of the square region and the standard deviation of
the Gaussian distribution is 5. Both figures show similar
performance as those in Fig. 6 and Fig. 7 except that the
estimation error of α has a value of −0.4 at a couple of points
in Fig. 8. However the estimation error of σdB is better than
that in Fig. 7.

To further evaluate the performance of the proposed tech-
nique, we apply it to real measurement data reported in [1].
The measurement data and the deployment of sensors can also
be found at http://www.eecs.umich.edu/∼hero/localize/. The
wireless sensor network in [1] consists of 44 fully connected
nodes, which make up 135, 751 quadrilaterals. It is both
computationally intensive and unnecessary to compute α̂ for
each quadrilateral. Here we randomly choose 10, 000 quadri-
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Fig. 6. Error in estimating α using the pattern matching. The vertices of the
quadrilaterals are uniformly distributed in a rectangular area of 10× 20.

laterals for computation. The reference power P0(d0)[dBm]
is calculated using the free space Friis equation at a reference
distance d0 = 1m and P0(d0)[dBm] = −37.4663dBm
[1]. The path loss exponent estimated using both the power
measurements and the measured distances is 2.3022. The path
loss exponent estimated using the proposed technique is 2.2,
which represents an error of −0.1022. The true value σdB
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Fig. 8. Error in estimating α using the pattern matching. The vertices of
the quadrilaterals are distributed in a square region of 15 × 15 following a
truncated two-dimensional Gaussian distribution.

(i.e., the value obtained using real power measurements and
measured distances) is 3.92 and the estimation error is −1.50.
The slightly larger error in estimating σdB when using real
measurement data may be attributable to the density of the
noise in the power measurements deviating from a Gaussian
distribution.

IV. CONCLUSION AND FURTHER WORK

In this paper, we proposed an algorithm which can estimate
the path loss exponent using only power measurements and the
underlying planar geometric constraints on the sensors only.
The algorithm is based on the Cayley-Menger determinant and
it does not use any distance measurements. The algorithm is
validated using both simulations and real measurement data.

The proposed algorithm may have significant impact on
distance-based wireless sensor network localization. In this
paper, we observed the empirical law that the relationship
between Bα̂, σdB and α is independent of the distribution
of the vertices of the quadrilaterals and is also independent of
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Fig. 9. Error in estimating σdB using the pattern matching. The vertices of
the quadrilaterals are distributed in a square region of 15 × 15 following a
truncated two-dimensional Gaussian distribution.

the shape of the area in which the vertices of the quadrilaterals
are located. It is desirable to obtain an analytical expression
of the relationship between Bα̂, σdB and α. This is also the
direction of our future research.

Furthermore, the proposed algorithm relies on the log-
normal propagation model in Eq. 1 and Eq. 2 in the sense that
the maximum likelihood estimator shown in Eq. 4 to Eq. 9 may
have a different form when the received signal strength has a
different model. Although the log-normal propagation model is
a popular model for wireless network, there are environments
in which the log-normal propagation model is not the best
model [2]. In that case, a technique needs to be developed
to select the best model and choose the best estimator for
distance to replace Eq. 4 to Eq. 9 accordingly. Therefore how
to develop an algorithm for environments in which the log-
normal propagation model does not apply is also a future
research topic.
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