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Abstract—Wireless multihop networks are being increasingly
used in military and civilian applications. Advanced applications
of wireless multihop networks demand better understanding
on their properties. Existing research on wireless multihop
networks has largely focused on static networks, where the
network topology is time-invariant; and there is comparatively
a lack of understanding on the properties of dynamic networks
with dynamically changing topology. In this paper, we use and
extend a recently proposed graph theoretic model, i.e. evolving
graphs, to capture the characteristics of such networks. We
extend and develop the concepts of route matrix, connectivity
matrix and probabilistic connectivity matrix as convenient tools
to characterize and investigate the properties of evolving graphs
and the associated dynamic networks. The properties of these
matrices are established and their relevance to the properties of
dynamic wireless multihop networks are introduced.

Index Terms—evolving graphs, connectivity, throughput

I. INTRODUCTION

Wireless multihop networks, in various forms e.g. wireless
mesh networks, opportunistic networks, delay tolerant net-
works, mobile ad-hoc networks, vehicular ad-hoc networks
and wireless sensor networks, are being increasingly used in
military and civilian applications. Wireless multihop networks
can be broadly classified into static networks, where the
network topology is time-invariant, and dynamic networks
with dynamically changing topology. Advanced applications
of wireless multihop networks demand better understanding
on the fundamental properties of these networks.

Despite significant research into the properties of static
wireless multihop networks, there is much less understanding
on the properties of dynamic multihop networks. “Most results
found in the literature either deal with networks that are static
or are hardly reproducible” [7]. This lack of understanding on
the properties of dynamic multihop networks is attributable to
a lack of a set of formal tools to carry out formal theoretical
analysis [11].

In wireless multihop networks a change in topology can
be caused by node mobility, by node/link failure or by nodes
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being switched on/off for energy saving purposes 1. There are
two major differences between a static network and a dynamic
network:
• In dynamic networks, it is possible that two nodes may

never be part of the same connected component but they
are still able to communicate with each other within a
finite time. This is illustrated in Fig. 1.

• In dynamic networks, while any one wireless link may be
(or may be assumed to be) undirectional, the path con-
necting any two nodes must be regarded as directional,
i.e. the fact that there is a path from node vi to node
vj within a designated time period does not necessarily
mean there is a path from vj to vi within the same period.
For example, in Fig. 1 a message from v6 can reach v1

at t2 but a message from v1 can only reach v6 at t4.
Therefore many established concepts in static networks must
be revisited for dynamic networks. For example, a static
wireless multi-hop network is said to be connected if there
is a path between any pair of nodes in the network. A static
wireless multi-hop network is k-connected if there are k
mutually independent paths, i.e. paths not having any nodes
in common except the starting and ending nodes, between
any pair of nodes in the network. However a more mean-
ingful definition of connectivity in dynamic networks is to
say that a dynamic network is connected in time period
[0, T ] if there is a path from any node to any other node
within [0, T ] 2. The above definition implies that the tradeoff
between connectivity, mobility (or active period in networks
with stationary nodes but nodes may be switched on/off)
and delay must be properly considered in the analysis of
dynamic networks. Indeed, it was shown in [8] that in a mobile
network with no delay requirement, mobility of nodes can
be exploited to significantly increase network capacity [8],
[11]. Similarly it can also be expected that mobility can be
exploited to improve connectivity. It remains an open problem
to investigate the connectivity and other properties, e.g. end-to-
end delay, throughput, of dynamic multihop wireless networks.

1Topology change caused by temporal changes in wireless links is not
included because this effect can usually be addressed by a modification of
the models and analysis for static wireless multihop networks.

2A rigorous definition of connectivity in dynamic networks is given in
Section III.



Figure 1. An illustration of connectivity in mobile ad-hoc networks with
six nodes. A solid line represents a direct connection between two nodes.
The network is disconnected at any time instant but there is a path from any
node to any other node in the network. For example, nodes v1 and v6 are
never part of the same connected component but a message from v1 can still
reach v6 through the following path: [0, t1) : v1 → v2, [t1, t2) : v2 → v3,
[t2, t3) : v3 → v4, [t3, t4) : v4 → v6.

In this paper, we use and extend a recently proposed graph
theoretic model, i.e. evolving graphs, to capture the charac-
teristics, in particular the connectivity, of dynamic wireless
multihop networks. We extend and develop a set of tools, i.e.
route matrix, connectivity matrix and probabilistic connectivity
matrix, to investigate the properties of dynamic multihop
wireless networks. The properties of these matrices related
to dynamic multihop networks are established. The rest of the
paper is organized as follows. In Section II we briefly review
related work in the area. In Section III we introduce and extend
the concept of evolving graphs as a formal abstraction of
dynamic networks. In Section IV we develop the route matrix,
connectivity matrix and probabilistic connectivity matrix as
convenient algebraic tools to investigate evolving graphs. The
properties of these matrices are established. Finally conclu-
sions and further work are given in Section V.

II. RELATED WORK

A graphic model of a wireless multihop network can be
established by representing a node in the network uniquely
by a vertex in the graph and by representing a wireless
link uniquely by an edge in the graph, and vice versa.
For simplicity, it is often assumed that the wireless link is
symmetric and can be represented by an undirected edge
[14], [11]. The obtained undirected graph G(V, E) where
V is the vertex set and E is the edge set is called the
underlying graph of the wireless multihop network. A widely
used model for static wireless multihop networks is random
geometric graphs (RGG) [14]. In random geometric graphs,
vertices are i.i.d. distributed in a given area following either

a uniform distribution or Poisson distribution. An edge exists
between two vertices iff their Euclidean distance is less than
or equal to a given threshold, known as the transmission
range. This communication model is known as the unit disk
communication model.

In the late 1990s and early 2000s, Penrose [14], Gupta
and Kumar [10], and Appel and Russo [1] investigated the
connectivity of static wireless multihop networks using RGG
and showed that in a network consisting of n nodes identically,
independently, randomly and uniformly distributed on a disk
of unit area in <2 and following the unit disk communication
model, the critical transmission range rc(n) for the network

to be connected is
√

logn
πn in the sense that the network

with r(n) =
√

logn+c(n)
πn is asymptotically connected with

probability one iff c(n) → +∞ as n → ∞; the network is
asymptotically disconnected with probability one iff c(n) →
−∞ as n →∞. Penrose further demonstrated [14] that in such
a network, the critical transmission range rk(n) required for
the network to be k-connected and the critical transmission
range τk(n) required for the network to have a minimum
node degree k converge to the same value as n → ∞, i.e.
lim

n→∞
Pr {rk(n) = τk(n)} = 1. These fundamental results on

network connectivity form the basis of the work by hun-
dreds of researchers on designing energy efficient routing and
scheduling algorithms, topology control and coverage control,
localization, and radio resource management, see [12], [18]
and references therein for example. There are many other
results on the connectivity of static multihop networks. These
results [14], [10], [1] on network connectivity however only
apply to static networks, and it remains an open problem
to investigate the connectivity of dynamic multihop wireless
networks along similar lines.

The most related work to ours includes the use of adjacency
matrix to study the connectivity of networks by Cvetkovic et
al. [4] and Brooks et al. [3]. In [4], the adjacency matrix of
a static network of n nodes is defined to be an n× n square
matrix M whose (i, j)-th entry mij = 1 if there is a direct
connection between distinct nodes i and j, otherwise mij = 0.
Further mii is defined to be 0, i.e. no self-loop is allowed.
It is shown that the number of walks of length z between
nodes i and j (with j = i permitted) is mz

ij , where mz
ij is

the (i, j)-th entry of Mz . A walk of length z between nodes
i and j is a sequence of z + 1 nodes i, v1, v2, . . . , vz−1, j
which starts at i and ends at j and there is a direct connection
between adjacent nodes. A path of length z between nodes i
and j is a walk of length z between nodes i and j in which
the vertices i, v1, v2, . . . , vz−1 are distinct, save that i = j is
permitted. If i = j, the path is called a cycle. In [3] Brooks et
al. considered a probabilistic version of the adjacency matrix
for multihop networks and define a probabilistic adjacency
matrix 3 as an n × n square matrix M whose (i, j)-th entry
mij represents the probability of having a direct connection

3It is called connectivity matrix in [3] but is more widely referred to as
adjacency matrix in the literature. In this paper, we call it adjacency matrix
to differentiate it from the connectivity matrix defined later in the paper.



Figure 2. An illustration of the connectivity of a dynamic network in
different time intervals. Each subfigure represents the connectivity of a four-
node network in a corresponding time interval. A solid line represents a direct
connection between two nodes.

between distinct nodes i and j, and mii = 0. They established
that the probability that there exists at least one walk of length
z between nodes i and j is mz

ij , where mz
ij is the (i, j)-th

entry of M ⊗M ⊗ · · · ⊗M (z times). C
.= A⊗B iff Cij =

1− ∏
l 6=i,j

(1−AilBlj) where Aij , Bij and Cij are the (i, j)-th

entries of the n×n square matrix A, B and C respectively. We
remark that the product defined this way has the associativity
property, allowing the computation of a product of three or
more matrices with an arbitrary sequence of single product
operations.

The above adjacency matrix and probabilistic adjacency
matrix, however, is not suitable for investigating dynamic
networks. This is illustrated through the example dynamic
network of four nodes shown in Fig. 2. Denote the adjacency
matrix of the network during [(i − 1)τ, iτ) by Mi. If one
were to follow the above definition of adjacency matrix, it
would be concluded that there is no connection from v1 to
v4 in the network within [0, 4τ) because the (1, 4)-th entries
in M1, M1M2, M1M2M3 and M1M2M3M4 are all zero.
This is obviously incorrect because a message from v1 can
reach v4 using the following journey 4: [0, τ) : v1 → v3,
[τ, 2τ) : v2 → v3, [3τ, 4τ) : v3 → v4. If the 1s in
Mi, 1 ≤ i ≤ 4 are replaced by values between 0 and 1
representing the probabilities that there are direct connections
between the corresponding pairs of vertices, Mi, 1 ≤ i ≤ 4
becomes the probabilistic adjacency matrix of the network
during [(i− 1)τ, iτ) as defined in [3]. It can be obtained that
the probability that there exists a connection from v1 to v4 in
the network within [0, 4τ) is zero because the (1, 4)-th entries
in M1, M1⊗M2, M1⊗M2⊗M3 and M1⊗M2⊗M3⊗M4

are all zero. Apparently this is not true. Therefore neither
the adjacency matrix defined in [4] and the probabilistic
adjacency matrix defined in [3] is suitable for investigating
the connectivity of dynamic networks. The problem with the
definition of Brooks et al. [3] is that it fails to capture the
notion that in a wireless hop network, it is legitimate for a
message to remain at a node over one or more time intervals.

Other related work includes [15] and [5]. In [15] Santi and
Blough empirically investigated the connectivity of mobile ad-
hoc networks for different combinations of number of nodes
n and transmission range r using the random walk mobility
model [9]. In [5] Díaz et al. analyzed the connectivity of a
mobile ad-hoc network in which a total of m nodes move
randomly along the edges of a n× n grid.

4We will give a formal definition of the term journey in Section III.

III. EVOLVING GRAPH THEORY

A major challenge in the analysis of dynamic networks
is choosing a proper graphic model that can both capture
the dynamics of the network and be tractable for analytical
studies. We use and extend a class of graphs, evolving graphs
[2], [7], [17], as a formal abstraction of dynamic networks
for our analysis. There has been research in the literature on
the evaluation of computational complexity of algorithms in
evolving graphs [17], [2] and on simulation based studies on
the performance of routing algorithms in dynamic networks
using evolving graphs [13].

An evolving graph G = (G,SG) consists of a given graph
G(V, E), along with an ordered sequence of its subgraphs,
SG = G1(V1, E1), G2(V2, E2), . . . , Gτ (Vτ , Eτ ), τ ∈ N. Let
the vertex set and the edge set of G be VG = ∪Vi and
EG = ∪Ei respectively. If we assign a physical meaning
to subgraphs such that the subgraph Gi(Vi, Ei) at a given
index i is the underlying graph of the network during the
time interval [ti−1, ti) and t0 < t1 < · · · < tτ , the time
domain is then incorporated into the model. Let Pi be a
path in Gi. Let F (Pi) and L(Pi) be the first vertex and
the last vertex of Pi respectively and |Pi| be its length. We
define a journey in G = (G,SG) from vertex u to vertex
v of VG as a sequence J (u, v) = Pλ1, Pλ2, . . . , Pλl, with
1 ≤ λ1 < λ2 < · · · < λl ≤ τ , such that (a) Pλi is a path in
Gλi with F (Pλ1) = u, L(Pλl) = v; (b) for all 1 ≤ i ≤ l,
it holds that F (Pλi) 6= L (Pλi) and (c) for all i < l, it
holds that L (Pλi) = F (Pλi+1). The length of the journey
is

∑l
i=1 |Pλi|. The restriction F (Pλi) 6= L (Pλi) has limited

the journey to consist of non-cycle paths only. Nevertheless a
vertex may still appear more than once inside a journey, viz
a vertex might appear both in a path Pλi ∈ J (u, v) and in
a path Pλj ∈ J (u, v), where λi 6= λj. The starting and the
ending vertices of a journey may also be the same. We define
an evolving path in G = (G, SG) from vertex u to vertex v
of VG as a journey J (u, v) in which all vertices are distinct
except that the ending vertex of the journey may be the same
as the starting vertex. The term evolving path is intended to
differentiate a path in an evolving graph from a path in one
of the subgraphs Gλi. A vertex v is said to be k-hops away
from another vertex u if the length of the shortest journey
(or equivalently the shortest evolving path) from vertex u to
vertex v is k. The evolving graph G = (G,SG) is said to be a
connected graph if there exists a journey (or equivalently an
evolving path) from any vertex to any other vertex of VG .

IV. CONNECTIVITY MATRIX AND PROBABILISTIC
CONNECTIVITY MATRIX FOR DYNAMIC NETWORKS

To facilitate later discussions, we call a dynamic network
deterministic if all entries of its adjacency matrix, as defined in
[4], during each time interval are either 1 or 0, representing the
fact that there are or there are no direct connections between
the corresponding pairs of vertices respectively. We call a
dynamic network probabilistic if during some time intervals
only statistical information on the probabilities that there are
direct connections between certain pairs of nodes is known.



A. Connectivity Matrix of Deterministic Dynamic Networks

Let 0, τ1, τ2, . . . , τk, . . ., 0 < τ1 < τ2 < · · · < τk · · · be the
embedding points of the network such that network topology,
defined by a collection of all direct connections between nodes
in the network, only changes at these discrete time instants. We
define the route matrix Hk of a deterministic dynamic network
of n nodes during time interval [τk−1, τk) whose underlying
graph is Gk as an n × n square matrix such that its (i, j)-
th entry is the number of distinct paths in Gk from vertex i
to another distinct vertex j. If there is no path from i to j,
(Hk)ij = 0 where (Hk)ij is the (i, j)-th entry of Hk. Further
the diagonal entries of Hk is 1 by definition. As will be shown
later, this definition of the diagonal entries properly reflects
the fact that in dynamic networks routes and connections are
constantly changing, when a node either becomes isolated or
cannot find a (better) route to the destination, it has to store the
message until a (better) route is available. For convenience,
we assume that V1 = V2 = · · · = Vk = · · · such that
the route matrices during different time intervals have the
same dimension. If a node disappears and then reappears in
the network, the situation can be readily accommodated by
considering that node as an isolated node during some time
intervals.

Based on the above definition of the route matrix, we
can establish some properties of the route matrix and their
relevance to the properties of the dynamic network.

Lemma 1: There are a total of Hk
ij journeys from node

i to node j in the evolving graph G = (G, SG), SG =
G1(V1, E1), G2(V2, E2), . . . , Gk(Vk, Ek), k ∈ N within
[0, τk), where Hk

ij is the (i, j)-th entry of H1H2 · · ·Hk − I .
Proof: We prove Lemma 1 by iteration. When k = 1,

the lemma is obviously correct. Note that the diagonal entries
of H1 − I is 0, i.e. there is no journey from a node to itself
within [0, τ1). When k = 2,

H2
ii = h1

iih
2
ii +

∑

l 6=i

h1
ilh

2
li − 1 =

∑

l 6=i

h1
ilh

2
li

is the total number of journeys from node i to itself within
[0, τ1)

⋃
[τ1, τ2) (each journey is made of two non-cycle path,

one from i to l 6= i in G1 and the other from l to i in G2),
where hp

ij is the (i, j)-th entry of Hp. For distinct i and j,

H2
ij =

∑

l

h1
ilh

2
lj = h1

ij + h2
ij +

∑

l 6=i,j

h1
ilh

2
lj .

The first term in the above equation is the number of journeys
from node i to node j made of paths in G1 only; the second
term is the number of journeys from i to j made of paths in
G2 only; and the third term is the number of journeys from
node i to node j, where each journey is made of a non-cycle
path in G1 and a non-cycle path in G2. Therefore the lemma
is true for k = 2.

Assume the lemma is correct for k = T , let us consider
k = T + 1 and i 6= j.

HT+1
ij =

∑

l

HT
il h

T+1
lj = HT

ij + HT
ii h

T+1
ij +

∑

l 6=i,j

HT
il h

T+1
lj .

In the above equation, the first term is the number of journeys
from i to j within [0, τT ). The sum of the second and the
third terms is the number of newly added journeys from i to
j where each journey consists of a non-cycle path in GT+1.
The second term is the sum of

(
HT

ii − 1
)
hT+1

ij , representing
the number of journeys that (a) start at i before τT ; (b) end
at i at τT ; and (c) reach j at τT+1, and hT+1

ij , representing
the number of journeys from i to j made of non-cycle paths
in GT+1 only; and the third term is the number of journeys
that end at an intermediate node at τT and reach j at τT+1.
The sum of the three terms gives the total number of journeys
from node i to node j within [0, τT+1). It is trivial to show
that HT+1

ii − 1 is the total number of journeys that start and
end at i within [0, τT+1).

Remark 1: Denote by H ′
k the route matrix of Gk except

that the diagonal entries of H ′
k are zeros, i.e. H ′

k = Hk − I .
It can be shown that

H1H2 · · ·Hk− I =
∑

i

H ′
i +

∑

i<j

H ′
iH

′
j + · · ·+H ′

1H
′
2 · · ·H ′

k.

The r-th sum on the right-hand side of the above equation
represents the number of journeys with exactly r non-cycle
paths in r distinct subgraphs of G respectively. Therefore the
above definition of the route matrix and Lemma 1 allows the
computation of the total number of journeys ever occurred in
the evolving graph G.

Lemma 2: A dynamic network is connected in [0, τk) iff
H1H2 · · ·Hk > J element wise, where J is an n× n matrix
with all entries equal to 1.
The proof of Lemma 2 is omitted.

Lemma 3: Hk
ij is a non-decreasing function of k.

This lemma is an easy consequence of Lemma 1 and the
fact that Hk is the sum of I and a nonnegative matrix. An
implication of Lemma 3 is that in dynamic networks the
number of journeys from any node to any other node will
only increase over time.

We define the connectivity matrix Qk of a deterministic
dynamic network of n nodes whose underlying graph is Gk

during time interval [τk−1, τk) as an n×n square matrix such
that its (i, j)-th entry is 1 if there exists a path in Gk from
vertex i to another distinct vertex j. If there is no path from i to
j, (Qk)ij = 0. We also set (Qk)ii

.= 1. Alternatively Qk can
be considered as the sign matrix of Hk. Using the properties
of non-negative matrices [16] and the above lemmas, we can
establish the following properties of the connectivity matrix.

Lemma 4: A dynamic network is connected in [0, τk) iff
Q1Q2 · · ·Qk ≥ J element wise. There is a journey from
vertex i to j iff (Q1Q2 · · ·Qk)ij ≥ 1 .
It can also be established that (Q1Q2 · · ·Qk)ij is a non-
decreasing function of k. This, together with Lemma 4,
suggests for a mobile network in which mobile nodes travel
according to a random mobility model, e.g. random walk
model [9], the network will become connected eventually.
The interesting question is thus the rate at which the network
becomes connected or equivalently the rate at which all entries



of Q1Q2 · · ·Qk (or equivalently H1H2 · · ·Hk) become greater
than or equal to 1.

The connectivity matrix and the route matrix defined earlier,
although are convenient tools to investigate connectivity, do
not capture the fact that in a communications network a mes-
sage can only travel a limited distance within a limited amount
of time. In view of this, we extend the earlier definitions to
account for message propagation delays. We call a path Pi

in Gi feasible if a message of a unit length transmitted by
the starting point of Pi at τi−1 can reach the end point of
Pi before τi in ideal conditions, i.e. no traffic congestion. We
call a journey feasible if it is made entirely of feasible paths.
We can also define the concept of feasible connectivity matrix
and feasible route matrix analogously. Obviously the above
lemmas on the properties of connectivity matrix and route
matrix still hold if the relevant terms are replaced by their
“feasible” counterparts. By a direct application of Lemma
1, we obtain the following Lemma that relates the feasible
connectivity matrix to end-to-end throughput (or latency).

Lemma 5: Assuming that node i starts to transmit a mes-
sage of unit length to another distinct node j at time 0, there
are Mk

ij feasible journeys from i to j that take less than or
equal to τk time for the unit message to reach j, where Mk

ij is
the (i, j)-th entry of M1M2 · · ·Mk. Mk is the feasible route
matrix of graph Gk during [τk−1, τk).
Lemma 5 can be used to derive an upper bound on the end-
to-end throughput in a dynamic network. Further let τ be the
time required to transmit a message of unit length from a
node to its immediate neighbors. We choose the embedding
points of the network 0, τ1, τ2, . . . , τk, . . . to be τk = kτ and
assume that a node can only start transmitting a message at
τk which accords with a synchronized network. If a direct
connection between two nodes is broken during the interval
[(i−1)τ, iτ), it is considered that there is no direct connection
between the two nodes during [(i− 1)τ, iτ). Under the above
conditions, a feasible connectivity matrix becomes the sum of
the corresponding adjacency matrix and I . We can obtain the
following lemma:

Lemma 6: Assuming that node i starts to transmit a unit
message to another distinct node j at time 0, the least amount
of time for the message to arrive at node j is kτ iff Mk−1

ij = 0
and Mk

ij ≥ 1. The number of messages that can be transmitted
from i to j within [0, kτ) is less than or equal to Mk

ij .
Lemmas 5 and 6 give an easy way to study the foremost
journeys [17], [2] in an evolving graph. A slight modification
of the two lemmas can be used to investigate the shortest
journeys and the fastest journeys [17], [2] in an evolving graph
algebraically.

B. Probabilistic Connectivity Matrix of Probabilistic Dynamic
Networks

Let 0, τ1, τ2, . . . , τk, . . ., 0 < τ1 < τ2 < · · · < τk · · · be the
embedding points of the network such that network topology
only changes at these discrete time points. We define the
probabilistic connectivity matrix Qk of a probabilistic dynamic
network of n nodes during time interval [τk−1, τk), whose

underlying graph is Gk, as a n × n square matrix such that
its (i, j)-th entry is the probability that there is a path in Gk

from vertex i to another distinct vertex j and in addition for
all i, (Qk)ii

.= 1. We further assume that
1) the events whose probabilities are the entries in the same

probabilistic connectivity matrix are independent;
2) the events whose probabilities are the entries in proba-

bilistic connectivity matrices during different time inter-
vals are independent.

An example in which these assumptions hold is wireless
sensor networks with uncoordinated power saving mechanisms
[6]. We can establish the following properties of probabilistic
connectivity matrix.

Lemma 7: The probability that there exists at least
one journey from node i to another distinct node
j in the evolving graph G = (G,SG), SG =
G1(V1, E1), G2(V2, E2), . . . , Gk(Vk, Ek), k ∈ N is Qk

ij ,
where Qk

ij is the (i, j)-th entry of Q1⊗Q2 · · ·⊗Qk. C = A⊗B
means Cij = 1−∏

l (1−AilBlj) , and Aij , Bij and Cij are
the (i, j)-the entries of n × n square matrices A, B and C
respectively.

Proof: We prove this lemma by iteration and omit the
proof that the defined product operation is associative. The
lemma is obviously correct for k = 1 and the diagonal
elements Q1

ii = 1, 1 ≤ i ≤ n.
Assuming the lemma is correct for k = T , let us consider

k = T + 1. First, it can be shown that the diagonal elements
of Q1 ⊗ Q2 · · · ⊗ QT+1 are always 1. Let us now consider
QT+1

ij where i 6= j,

QT+1
ij = 1− (

1− qT+1
ij

) (
1−QT

ij

) ∏

l 6=i,j

(
1−QT

ilq
T+1
lj

)

In the above equation, qT+1
ij is the (i, j)-th entry of QT+1

and represents the probability of having a journey consisting
of a path from i to j in GT+1 only. QT

ij is the probability
of having a journey from i to j in the evolving graph
G = (G,SG), SG = G1, G2, . . . , GT . The existence of such
a journey necessarily means the existence of a journey in
G = (G,SG), SG = G1, G2, . . . , GT+1. The term QT

ilq
T+1
lj ,

l 6= i, j is the probability of having a journey in G = (G,SG),
SG = G1, G2, . . . , GT+1 that ends at an intermediate node
l at τT and reaches j at τT+1. Using the assumption on
the independence of events represented by entries in the
probabilistic connectivity matrix, we can obtain that the above
three events are independent. Therefore

∏
l

(
1−QT

ilq
T+1
lj

)
is

the probability that none of the above three events occurs.
Finally 1 − ∏

l

(
1−QT

ilq
T+1
lj

)
gives the probability that at

least one of the above three events occurs, which is the
probability of having a journey from i to j in the evolving
graph G = (G,SG), SG = G1, G2, . . . , GT+1.

Lemma 8: Qk
ij is a non-decreasing function of k.

This lemma can be proved using the definition of Qk
ij . Suppose

that the probabilistic connectivity matrix is the same on every
interval, so that the network simply resets certain connections,
with the same probabilities, at each clock time. Then this



lemma can be used to show that in the limit as k tends to
infinity, either Qk

ij tends to 1, or it is zero for all k, i.e. there
is never a connection from node i to node j.

Lemma 9: A network of n nodes is connected with proba-
bility 1 in [0, τk) iff Qk

ij = 1 for all pairs of i and j.
This lemma is an easy consequence of Lemma 7.

Similarly by defining the concept of feasible probabilistic
connectivity matrix, we can use the probabilistic connectivity
matrix to investigate end-to-end delay. We define the feasible
probabilistic connectivity matrix Qk of a probabilistic dynamic
network of n nodes during time interval [τk−1, τk) as an n×n
square matrix such that its (i, j)-th entry is the probability that
there is a feasible path in Gk from vertex i to another distinct
vertex j and (Qk)ij

.= 1 . The above lemmas on the properties
of probabilistic connectivity matrix still hold if the relevant
terms are replaced by their “feasible” counterparts.

Further let τ be the time required to transmit a message of
unit length from a node to its immediate neighbors. We choose
the embedding points of the network 0, τ1, τ2, . . . , τk, . . . to
be τk = kτ and assume a node can only start transmit-
ting a message at τk . If a direct connection is between
two nodes is broken during the interval [(i − 1)τ, iτ), it
is considered that there is no connection between the two
nodes during [(i − 1)τ, iτ). Under the above conditions, a
feasible probabilistic connectivity matrix becomes the sum of
the corresponding probabilistic adjacency matrix, as defined
in [3], and I . We can establish the following lemma:

Lemma 10: Assuming that node i starts to transmit a unit
message to a distinct node j at time 0, the probability that
the message can reach j in less than τk time is Qk

ij , where
Qk

ij is the (i, j)-th entry of Q1 ⊗ Q2 · · · ⊗ Qk and the mean
end-to-end delay from i to j is given by:

∞∑

k=1

(
1−Qk−1

ij

)
Qk

ijkτ.

This lemma can be obtained from Lemma 7. It can be used to
study the mean end-to-end delay and the delay distribution.

V. CONCLUSION AND FURTHER WORK

Wireless multihop networks is a fascinating area that has
attracted growing interest. In this paper, we used and ex-
tended a recently proposed graph theoretic model, i.e. evolving
graphs, as a formal abstraction of dynamic wireless multihop
networks. We extended and developed a set of tools, i.e. route
matrix, connectivity matrix and probabilistic connectivity ma-
trix, to investigate the properties of dynamic multihop wireless
networks. The properties of these matrices were investigated
in relation to the properties of the corresponding dynamic
multihop networks. We expect them to provide a convenient
tool to formally investigate the properties of dynamic multihop
networks.

An implicit hypothesis used in the paper is that a wireless
node is able to store a message when it becomes isolated
or cannot find better route to the destination. This has been
the case in most wireless multihop networks, especially in an

age when memory unit becomes increasing cheap and small-
sized. However the tools developed in this paper can be easily
modified to account for the situation that a node loses its
message because of, e.g. limited battery power or buffer size.

Future work in the area will be carried out along two
directions. First, we shall apply the model and tools to
investigate the properties of dynamic networks, in particular
the asymptotic properties of dynamic networks either when
the number of nodes is large or when the time span of the
associated evolving graph is long. Second, we shall further
develop the tools to make them suitable for a wider cate-
gory of dynamic multihop networks. For examples, the two
independence assumptions in Section IV-B is a bit restrictive.
In a mobile multihop network, the probabilistic connectivity
matrices (adjacency matrices) during adjacent time intervals
can be highly correlated. We expect to develop the tools to
properly consider the time correlation among matrices.
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