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Abstract— In this paper, the maximum end-to-end throughput
that can be achieved on a wireless multi-hop path is investigated
analytically. The problem is modeled using the conflict graph,
where each link in the multi-hop path is represented uniquely by
a vertex in the conflict graph and two vertices are adjacent if and
only if the associated links mutually interfere. Using the conflict
graph and the linear programming formulations of the problem,
we analyzed the maximum end-to-end throughput of a wireless
multi-hop path a) in a simple scenario where nodes are optimally
placed and each node can only interfere with the transmission of
its adjacent nodes along the path, and b) in a more complicated
scenario where nodes are randomly placed and each node can
interfere with the transmission of any number of nearby nodes
along the path in both a) an error free radio environment and
b) an erroneous radio environment. The maximum end-to-end
throughputs for each of the above four scenarios are obtained
analytically. We show that the maximum achievable end-to-end
throughput is determined by the throughput of its bottleneck
clique, where a clique is a maximal set of mutually adjacent
vertices in the associated conflict graph. Further our analysis
suggests the optimum scheduling algorithm that can be used
to achieve the maximum end-to-end throughput and that it is
convenient to use the (maximal) independent sets as the basic
blocks for the design of scheduling algorithms. The findings in
this paper lay guidelines for the design of optimum scheduling
algorithms. They can be used to design computationally efficient
algorithms to determine the maximum throughput of a wireless
multi-hop path and to design a scheduling algorithm to achieve
that throughput.

Index Terms— capacity; wireless path; conflict graph; chro-
matic number

I. INTRODUCTION

Generally, a wireless multi-hop network, e.g. vehicular
network, mobile ad-hoc network and wireless sensor network,
consists of a group of decentralized and self-organized nodes
that communicate with each other over wireless channels,
and packets are forwarded hop-by-hop by the wireless nodes
collaboratively from the source to the destination without
the need for base stations or any fixed infrastructure. The
increasing use of wireless multi-hop networks in military and
civilian applications demand better understanding on their
fundamental properties.

The capacity of wireless multi-hop networks is one of the
most fundamental research issues in this area. The most well-
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known research in this area is by Gupta et al. In [1], they
analyse the capacity of a random network with a total of
n nodes identically, independently, randomly and uniformly
distributed on a disk of unit area in <2, where any two nodes
in the network are directly connected (or adjacent) if and only
if their Euclidean distance is smaller than or equal to a given
threshold, known as the transmission range, and show that the
throughput obtainable by each node for a randomly chosen
destination is Ä

(
W√

nlogn

)
and is Ä

(
W√

n

)
for optimally

placed nodes, where W is the link capacity. Grossglauser et
al. [2] further demonstrate that in mobile random networks
with unbounded delay requirement the per-source-destination
throughput decreases approximately like 1√

n
. Compared with

the earlier results by Gupta et al. [1] for static networks, the
results by Grossglauser et al. imply that a higher throughput
can be achieved in mobile networks, i.e. “mobility increases
the capacity of wireless networks”.

Different from the work of Gupta et al. [1] and Grossglauser
et al. [2] on analyzing the asymptotic capacity of 2D random
wireless network. In this paper, we focus on obtaining an
accurate end-to-end capacity for a finite number of wireless
nodes, viz. the maximum throughput of a wireless multi-hop
path. A wireless multi-hop path constitutes a basic element
of wireless multi-hop networks. Investigating the capacity or
the maximum throughput of a wireless multi-hop path has
both theoretical and practical significance. First, it provides
results on the capacity of 1D wireless multi-hop networks.
Second, its sheds insight into the analysis of the capacity
of higher dimensional networks with multiple sources and
destinations. Finally, analysis on the capacity of a wireless
multi-hop path are useful for many real world applications
which can be modeled by one-dimensional networks. For
example, a vehicular network built along a highway can be
considered as a 1D network. Other examples of 1D networks
include a network deployed along an attack route in battlefield,
and a sensor network built for monitoring roads, rivers, coasts
and boundaries of restricted areas [3]–[5].

In this paper, we analyze the maximum end-to-end through-
put of a wireless multi-hop path, where the source and the
destination are placed at both ends of the path, in both an
error free and an erroneous radio environment. Compared with
previous work in the area, whose results are either validated
using simulations or established numerically, e.g. based on



linear programming (LP) formulations [6]–[11], this paper
features a thorough analytical study of the problem. Therefore,
this paper offers better insight into the understanding on the
maximum throughput of wireless multi-hop networks and the
relationship among parameters determining the throughput,
which is difficult to obtain by examining simulation results
or the outcomes of computing software. For example, for
a k-hop (k ≥ 3) path in an error free radio environment
where nodes are optimally placed, our analysis not only gives
the maximum throughput, but also demonstrates that this
maximum throughput can only be achieved by separating the
links into three maximal independent sets, a concept which
will be defined later, and scheduling each set of links to be
active alternatively for the same amount of time. Further, our
analysis shows that in an erroneous radio environment the
maximum throughput of the above k-hop path is determined
by its bottleneck consecutive three-hop segment. These results
are not obvious by examining simulation results or outcomes
of computing software.

The main contributions of this paper are: first, we prove
that in an error free radio environment, a wireless multi-
hop path with at least three hops, in which all nodes are
optimally placed and all links have an identical normalized
capacity of 1, has a maximum end-to-end throughput of 1

3 .
This maximum throughput can only be achieved when all links
of the path are separated into three maximal independent sets
and each set of links become active alternatively for the same
amount of time; second, we extend the above analysis to an
erroneous radio environment, and prove that the maximum
throughput of a wireless k-hop (k ≥ 3) path is determined
by its bottleneck consecutive three-hop segment. That is, the
maximum throughput of the k-hop path is the minimum of
the maximum throughputs of all its consecutive three-hop
segments; third, we relax the assumption in the above analysis
that all nodes are optimally placed and consider the more
general setting that nodes are randomly placed. We show that
in an error free environment the maximum throughput of a
wireless multi-hop path, where all links have an identical
normalized capacity of 1, is equal to the reciprocal of the
clique number of the associated conflict graph of the path.
The clique number is shown to be equal to one plus the
maximum forward degree of links in the path. Finally we
investigate the maximum throughput of a wireless path with
random node placement in an erroneous environment and show
that the maximum throughput of the path is determined by
the throughput of its bottleneck clique. The findings in this
paper lay guidelines for the design of optimum scheduling
algorithms. They can be used to design computationally effi-
cient algorithms to determine the maximum throughput of a
wireless multi-hop path and to design a scheduling algorithm
to achieve that throughput.

The rest of this paper is organized as follows: in Section
II, related work is discussed; in Section III, the system model
and assumptions used in our analysis is introduced; in Section
IV, LP formulation of the problem is introduced and the
formulation is further improved using the concept of conflict
graphs [7]; the maximum throughput of a wireless k-hop path
in an error free environment where nodes are optimally placed

is analyzed in Section V; in Section VI, earlier analysis in
an error free environment is extended to an erroneous radio
environment; Section VII relaxes the assumption on optimal
node placement used in sections V and VI, and considers
the maximum throughput of a wireless k-hop path where
nodes are randomly placed in both erroneous and error-free
environments; finally, Section VIII concludes this paper.

II. RELATED WORK

Extensive work has been done in this area, In this section,
we limit our discussion only to those closely related [6]–[11].

In [6], Li et al. assert that the maximum end-to-end through-
put of a wireless multi-hop path is 1

n of the capacity of the
constituent links where each link has an identical capacity
and n is the number of consecutive links whose transmission
conflicts with each other. However, they did not prove this
assertion and their IEEE 802.11 based simulation study also
did not verify this assertion. As will be shown later in the
paper, this assertion is incomplete.

In [7], Jain et al. consider the maximum throughput that can
be supported by a network with a given specific placement of
wireless nodes and a specific traffic load. They use the conflict
graph to analyze the impact of the interference between
adjacent links and formulate a multi-commodity flow problem
with constraints derived from the conflict graph to compute the
optimal throughput that can be supported between sources and
destinations. They show that the problem of finding optimal
throughput is NP-hard and present methods for numerically
computing upper and lower bounds on the optimal throughput.

In [8], Bohacek et al. focus on reducing the computa-
tional complexity in the optimal bandwidth allocation problem
to maximize the capacity of the network. They propose a
Lagrange multiplier theory based technique to the optimal
bandwidth allocation problem, which significantly reduces the
computational complexity while producing a solution that is
indistinguishable from the optimal bandwidth allocation.

In [9], the authors consider wireless link scheduling with
power control and SINR constraints. They model the wireless
network by a hypergraph and formulate the optimal link
scheduling problem as a linear program. Further they show
that the SINR-constrained scheduling problem is NP-hard.

In [10], Tang et al. consider joint link scheduling and power
control problem to maximize the network throughput. They
argue that considering maximizing throughput only may lead
to a severe bias on bandwidth allocation among links and
propose to address the problem by including a new parameter,
termed the demand satisfaction factor, to characterize the
fairness of bandwidth allocation. The problem is formulated
and solved using mixed integer linear programming.

In [11], the authors consider joint rate control and schedul-
ing in multi-hop wireless networks. They propose a dual
approach through which the rate control problem and the
scheduling problem can be decomposed. The numerical so-
lution obtained not only better utilizes the capacity of the
network but also ensures fairness among users.

Different from the above work, which either focus on
reducing the computational complexity of the link scheduling



problem or presenting another formulation of the link schedul-
ing problem considering more constraints, and the problem
has to be solved numerically using computing software, in
this paper we aim to obtain an analytical solution to the link
scheduling problem which maximizes the network capacity.
Using computing software to solve the problem may appear
convenient, especially when dealing with complex formula-
tions. However, it is quite difficult to obtain any insight by
examining the outcomes of computing software and/or the
simulation results. This motivates us to study the throughput
of the wireless multi-hop path using an analytic approach.

Finally, we want to point out that the scenario considered
in this paper is distinctly different from some other previous
work (see [1], [12] and references therein) on analyzing the
asymptotic capacity of a 2D wireless network in which a
large number of wireless nodes are distributed randomly or
arbitrarily in a bounded region. Our focus is on obtaining an
accurate end-to-end capacity for a finite number of wireless
nodes.

III. SYSTEM MODEL AND ASSUMPTIONS

In this paper, we analyze the maximum end-to-end through-
put of a wireless multi-hop path with k links and the source
and the destination are placed at both ends of the path. A
generic form of the wireless multi-hop path being analyzed is
shown in Fig. 1. Each node is numbered sequentially from the
source to the destination and the link between node j and node
j + 1 is denoted as Lj . The source node and the destination
node are respectively node 1 and node k + 1.

Fig. 1. A generic form of a wireless multi-hop path with k links.

We further assume that:
1) Each node is equipped with a single transceiver and is

optimally placed, so that its transmission can only be
heard by its adjacent neighbors. Consequently at any
time there can only be one link active among three
consecutive links. This assumption is only required in
Sections V and VI, and is not required in Section
VII when we consider a wireless multi-hop path with
random node placement.

2) The transmission of an ith node does not cause any
interference at the (i± 3)th node. This assumption is
only necessary when analyzing the throughput in an
error-free environment and is no longer required when
we consider the throughput in an erroneous environment.

3) The traffic load at the source node of the multi-hop path
is saturated. The queue of each node is sufficiently large
such that there is no packet loss due to traffic congestion
and queue overflow. This assumption is required to
establish the maximum end-to-end throughput.

4) All links have an identical normalized capacity of 1. In
an erroneous environment, each link has a different and
independent successful transmission probability, denoted

by Pi (0 < Pi ≤ 1). Pi can also be considered as
the effective capacity of each link. Thus our results in
erroneous case can be readily extended to links with
unequal capacities. We would like to further comment
that given accurate locations of each node, the path
loss model and the physical layer coding technique, the
impact of interference can be modeled in the value of
Pi(1 ≤ i ≤ k). The maximum throughput and the
associated scheduling algorithm considering the impact
of interference can then be computed recursively. In
this paper we focus only on the generic properties of
wireless multi-hop networks. Such detailed end-to-end
throughput evaluation considering very specific scenar-
ios is beyond the scope of the paper.

IV. LP FORMULATIONS AND CONFLICT GRAPH

In this section, we introduce the fundamental principle of
our analysis, and define the symbols and terms used in the
rest of the paper. First, a LP formulation for calculating the
maximum throughput is presented. Second, the concept of
conflict graph and its relevance to the throughput analysis are
introduced. Finally, the earlier LP formulation is enhanced by
using the conflict graph. The improved LP formulation of the
maximum end-to-end throughput is used in the later sections
to analyze the maximum throughput.

A. A LP formulation for computing the maximum throughput
In this paper, we consider the end-to-end throughput of a

wireless multi-hop path with k links from time 0 to t as t →∞
and the throughput is defined as the time average network
traffic transported during this time period. Accordingly, two
symbols are defined:

tj : the proportion of time that link Lj is active during
[0, t];

Tj : the throughput of link Lj .
In an error free environment Tj = tj and in an erroneous

environment Tj = tjPj .
To analyze the maximum throughput of a k-hop path, a LP

formulation can be used, given by

Maximize: Tk (1)
subject to: 0 ≤ tj ≤ 1, j = 1, . . . , k (2)

Tj ≥ Tj+1, j = 1, ..., k − 1 (3)
tj + tj+1 + tj+2 ≤ 1, j = 1, ..., k − 2. (4)

This maximization problem maximizes the end-to-end
throughput of the wireless multi-hop path, which is equal to
the throughput of the last hop. The first constraint represents
that the proportion of time in which a link is active must
be between 0 and 1. The second constraint indicates that the
throughput of a link cannot exceed that of its previous link.
The third constraint indicates that the proportion of the time
in which any three consecutive links are active cannot exceed
1 because, as mentioned earlier, at any time only one of the
three consecutive links can be active. This constraint is due to
assumption 1 in Section III and will be revised in Section VII
when we consider the more generic scenario where nodes are
randomly placed.



B. Conflict graph

In this section we introduce the concept of conflict graph. A
conflict graph consists of a number of vertices and edges. Each
vertex represents a link. If two links in a multi-hop path can
not be active at the same time due to excessive interference,
the two links are called conflicting links and an edge will be
drawn between the corresponding two vertices in the conflict
graph. Two links are called neighbors (or adjacent) if there
is an edge between the corresponding vertices in the conflict
graph. The degree of a link is the number of its neighbors
in the conflict graph. In the paper, we use the terms link Li

(in a wireless multi-hop network) and vertex Li (in a conflict
graph) exchangeably; use the term node to refer to a physical
node in a wireless network; and use the term edge to refer
to a connection between two vertices in a conflict graph. We
denote the conflict graph by G(V, E) where V is the vertex
set and E is the edge set.

Two examples of the conflict graph are drawn for a three-
hop path and a four-hop path respectively, as shown in Fig. 2.

1 2 3
L1 L2

4
L3

(a) Three-hop path

1 2 3
L1 L2

4
L3

5
L4

(b) Four-hop path

L1 L2

L3

(c) Conflict graph of
the three-hop path

L1 L2

L3L4

(d) Conflict graph of
the four-hop path

Fig. 2. Examples of conflict graph.

Using the conflict graph, all possible sets of links that can
be active simultaneously without interfering each other can
be found. These are the sets of links where there is no edge
between any two links in the same set. Such a set of links is
called an independent set. A maximal independent set is an
independent set that includes as many links as possible. Each
independent set is represented by a distinct number and the
links in the set. For example, Ci : {Lj , Lk} represents the
ith independent set and this set includes two links, Lj and
Lk. A maximum independent set is a maximal independent
set that includes the maximum number of links among all
maximal independent sets. The number of links (vertices) in a
maximum independent set is called the independence number,
denoted by α(G), of the wireless network (equivalently the
conflict graph G).

Using the concept of the conflict graph, a connection
can be established between the scheduling problem and the
graph coloring problem. Consequently many existing results
in graph theory can be applied in the analysis of the maximum

throughput and the design of the corresponding scheduling
algorithms to achieve that maximum throughput.

A vertex-coloring of a graph G = (V, E) is a function

ϕ : V → C (5)

from the set of vertices to a set C of “colors”. A coloring ϕ is
proper if no two adjacent vertices are assigned the same color.
A graph is k-colorable if it admits a proper vertex-coloring
with at most k colors. A graph is called k-chromatic if it is
k-colorable but not k − 1-colorable. The chromatic number
of a graph G, denoted by χ(G), is the smallest nonnegative
integer k such that G is k-colorable.

A connection between scheduling problem and graph col-
oring problem can be established by considering a time slot
(or frequency band in FDMA, code in CDMA) as a “color”.
Given the above association, the minimum number of time
slots required in order for all links to be active in at least
one time slot without causing any conflict in transmission is
χ(G), the chromatic number of the conflict graph G of the
path. Then it is straightforward to show that the maximum
end-to-end throughput of the wireless multi-hop path in error-
free environment is

1
χ(G)

. (6)

The chromatic number χ(G) is related to the independence
number by the following inequality [13]

χ(G) ≥ |V |
α(G)

, (7)

where |V | is the cardinality of the vertex set V . A combination
of Eq. 6 and Eq. 7 gives an upper bound on the maximum end-
to-end throughput of a wireless multi-hop path in an error-free
environment:

Maximum Throughput =
1

χ(G)
≤ α(G)

|V | . (8)

However finding the chromatic number or the independence
number of a graph is well-known to be NP-hard [14]. In [13],
Bollobás shows that the upper bound on the chromatic number
in Eq. 7 is almost tight for Erdős-Rényi random graphs [15]
but Erdős-Rényi random graphs are not proper models for
wireless multi-hop networks because in wireless networks both
interference and collision depend on the Euclidean distance
between nodes and this fact is not captured in Erdős-Rényi
random graphs.

In this paper, we show that under some reasonable assump-
tions for a wireless multi-hop path, the chromatic number
(or the independence number) of the conflict graph can be
readily determined and hence the maximum throughput in
error-free environments can be readily determined analytically.
Further, we investigate the maximum throughput in erroneous
environments.

C. An enhanced LP formulation based on independent sets

Using the concept of the conflict graph, we can obtain an
enhanced LP formulation of the problem using independent
sets as the basic blocks for scheduling.



First, all simultaneously active links constitute one indepen-
dent set. At any time, at most one independent set is allowed
to be active. Note that if two or more independent sets of links
are active at the same time, the union of them must form a
larger independent set. Thus they are considered as a single
independent set.

A new symbol, xi, is defined which represents the pro-
portion of time that an independent set Ci is active. If Ci

includes more than one link, all member links will be active
simultaneously.

The value of tj is related to xi by

tj =
∑

i

1ijxi, (9)

where 1ij is an indicator function: 1ij = 1 if Lj ∈ Ci;
otherwise 1ij = 0. Note that a link can belong to more than
one independent sets. The value of Tj is related to xi by

Tj =
∑

i

1ijxiPj . (10)

Finally, the LP formulation can be revised as

Maximize:
∑

i 1ikxiPk (11)
subject to: 0 ≤ xi ≤ 1, i = 1, ... (12)∑

i 1ijxiPj ≥
∑

i 1ij+1xiPj+1, j = 1, ..., k − 1(13)∑
i xi ≤ 1. (14)

This LP formation of the maximum throughput problem is
valid for any wireless multi-hop path and it does not rely
on assumption 1 in Section III. This LP formation of the
maximum throughput problem will be used in Section VII
when we analyze the maximum throughput of a wireless multi-
hop path with random node placement. It shows that it is
convenient to use the (maximal) independent sets as the basic
blocks for the design of scheduling algorithms.

V. THE MAXIMUM THROUGHPUT OF A k-HOP PATH WITH
OPTIMAL NODE PLACEMENT IN AN ERROR FREE

ENVIRONMENT

In this section, we consider the maximum throughput of a
wireless k-hop path (k ≥ 3) with optimal node placement in
an error free environment. The main result of this section is
summarized in Theorem 1.

Theorem 1: In an error free environment (Pi = 1), a
wireless k-hop (k ≥ 3) path where all links have an identical
capacity 1 and all nodes are optimally placed, can achieve
a maximum throughput of 1

3 . The only way to achieve this
maximum throughput is by dividing the links into three
maximal independent sets and schedule each set of links to
be active alternatively for the same amount of time.

Proof: A mathematical induction approach is used to
prove the theorem. First, we prove that Theorem 1 is valid
for a three-hop path; second, based on the assumption that the
theorem is valid for a k− 1-hop path, we show that it is also
valid for a k-hop path. It is trivial to consider the maximum
throughput of a k-hop path with k < 3.

1) The conflict graph of a three-hop path is a complete
graph. Each independent set of the three-hop path con-
tains a single link only and they are also the maximal
independent sets. Therefore, we have T1 = t1 = x1,
T2 = t2 = x2, and T3 = t3 = x3, respectively. The
maximization of the throughput of the three-hop path
can be formulated as the following:

Maximize: x3 (15)
subject to: 0 ≤ xi ≤ 1, i = 1, 2, 3, (16)

xi ≥ xi+1, i = 1, 2, (17)∑
xi ≤ 1, i = 1, 2, 3. (18)

Rearranging the constraints in the above equations, we
can readily obtain three new constraints:

0 ≤ x2 + x3 ≤ 1, (19)

x3 ≤ 1
2
(x1 + x2), (20)

x3 ≤ 1− (x1 + x2). (21)

These three new constraints, together with the constraint
in (16), can be used to draw a figure to illustrate the
relationship between x3 and x1+x2, as shown in Fig. 3.

Fig. 3. The relationship between x3 and x1 + x2.

In Fig. 3, the vertical axis represents the value of x3,
and the horizontal axis represents the value of x1 + x2.
Two straight lines are drawn from two functions, x3 =
0.5(x1+x2) and x3 = 1−(x1+x2), respectively. Based
on the aforementioned constraints, the possible values of
x3 and x1 +x2 are limited in the shaded triangular area.
The only possible values of x1, x2 and x3 which both
yield the maximum x3 and satisfy the constraints are
x1 = x2 = x3 = 1

3 . Thus Theorem 1 is proved for the
three-hop path.

2) Given that Theorem 1 is valid for a k − 1-hop path,
we shall now show that it is also valid for a k-hop
path. Denote the three maximal independent sets of
the k − 1-hop path by C1, C2 and C3. Without losing
generality, we consider that the final link Lk−1 is within
C3. Therefore, when a new node (link), i.e. the k + 1th

node (kth link), is added to the k− 1-hop path, the new
link Lk together with C1 forms a maximal independent
set of the k-hop path. It is trivial to show that the



three maximal independent sets of the k-hop path are:
{C1, Lk}, C2 and C3.
Obviously, the maximum throughput of the k-hop path
is less than or equal to the maximum throughput of the
k− 1-hop path, which is equal to 1/3. Therefore, if we
can show that a throughput of 1

3 is achievable for the
k-hop path, the maximum achievable throughput of the
k-hop path is also 1

3 . For the k-hop path, an end-to-end
throughput of 1

3 can be achieved by scheduling Lk to be
active at the same time of C1; and scheduling the three
maximal independent sets of the k-hop path: {C1, Lk},
C2 and C3 to be active alternatively for 1/3 of the total
time.
Next we will show this is also the only way for the
k-hop path to achieve a throughput of 1/3. Given our
assumption for the k − 1-hop path, for the consecutive
three-hop segment, Lk−3−Lk−2−Lk−1 (note Lk−1 ∈
C3, Lk−2 ∈ C2 and Lk−3 ∈ C1), the proportion of
time these three links are active must be chosen such
that tk−3 = tk−2 = tk−1 = 1

3 in order to achieve the
maximum throughput of 1

3 for the k− 1-hop path. Note
that that their sum is 1 and tk must satisfy tk + tk−1 +
tk−2 ≤ 1, therefore link Lk has to be simultaneously
active with link Lk−3 as well as all other links in C1

in order to achieve the maximum throughput of 1/3 for
the k-hop path and tk = 1/3. These finally lead to the
conclusion that Theorem 1 is also valid for the k-hop
path.
This part of the proof can also be done by contradiction.

Here we would like to further comment that in the beginning
of a packet transmission session, it may happen that although
a link in the later hops of the multi-hop path is scheduled to be
active, that link may remain silent because there is no packet
queued in the corresponding node. We have ignored this effect
in our analysis of the maximum throughput of the multi-hop
path. As t → ∞, it is expected that the contribution of this
effect to the maximum throughput becomes negligibly small.

VI. THE MAXIMUM THROUGHPUT OF A k-HOP PATH WITH
OPTIMAL NODE PLACEMENT IN AN ERRONEOUS

ENVIRONMENT

In this section, we extend our analysis in the last section to
an erroneous radio environment (0 < Pi < 1). First, we obtain
the maximum throughput of a generic consecutive three-hop
segment. We then extend our analysis to a generic k-hop path.

A. The maximum throughput of a consecutive three-hop seg-
ment

Consider the consecutive three-hop segment of the k-hop
path, Li−Li+1−Li+2 (1 ≤ i ≤ k−2). Denote the proportion
of time that the three links are active by ti, ti+1 and ti+2

respectively. The throughputs of these links then become Ti =
Piti, Ti+1 = Pi+1ti+1, and Ti+2 = Pi+2ti+2, respectively.
Here Ti+2 is also the throughput of this consecutive three-hop

segment. Accordingly, the LP formulation is given by

Maximize: Pi+2ti+2 (22)
subject to: 0 ≤ tj ≤ 1, j = i, i + 1, i + 2 (23)

tjPj ≥ tj+1Pj+1, j = i, i + 1 (24)
ti + ti+1 + ti+2 ≤ 1 (25)

Since Pi+2 is a known constant, the maximization problem in
(22) can be simplified to

Maximize: ti+2. (26)

Rearranging the constraints in the above equations (23)-
(25), three new constraints on the relationship between ti+2

and ti + ti+1 can be obtained, given by

0 ≤ ti + ti+1 ≤ 1, (27)

ti+2 ≤ ti + ti+1

Pi+2( 1
Pi

+ 1
Pi+1

)
, (28)

ti+2 ≤ 1− (ti + ti+1). (29)

A figure is drawn to illustrate the relationship between ti+2

and ti + ti+1, as shown in Fig. 4.

Fig. 4. The relationship between ti+2 and ti + ti+1.

Based on Fig. 4, it can be obtained that the maximum value
of ti+2 while satisfying the constraints is 1

Pi+2(
1

Pi
+ 1

Pi+1
+ 1

Pi+2
)

and the maximum throughput of the three-hop segment is
1

1
Pi

+ 1
Pi+1

+ 1
Pi+2

. This maximum throughput is achieved when

ti and ti+1 assume the following values

tj =
1

Pj( 1
Pi

+ 1
Pi+1

+ 1
Pi+2

)
, j = i, i + 1. (30)

Note that the values of ti, ti+1 and ti+2 corresponding to the
maximum throughput satisfy: ti + ti+1 + ti+2 = 1.

B. The maximum throughput of a k-hop path

Let us now consider the throughput of the generic k-hop
path in an erroneous environment and we shall prove the
following theorem.

Theorem 2: In an erroneous radio environment, the max-
imum throughput of a k-hop path (k ≥ 3) where nodes are
optimally placed is the minimum of the maximum throughputs



of all consecutive three-hop segment within the k-hop path,
that is,

min
1≤i≤k−2

1
1
Pi

+ 1
Pi+1

+ 1
Pi+2

. (31)

Proof: Let us consider that a consecutive three-hop
segment within the k-hop path, Lj − Lj+1 − Lj+2, is the
segment whose maximum throughput is smallest, i.e.

1
1

Pj
+ 1

Pj+1
+ 1

Pj+2

= min
1≤i≤k−2

1
1
Pi

+ 1
Pi+1

+ 1
Pi+2

. (32)

Let us add an adjacent link to the above three-hop segment.
Without loss of generality, let us assume the fourth link is
Lj+1. Obviously the maximum throughput of the four-hop
segment Lj − Lj+1 − Lj+2 − Lj+3 cannot exceed that of
the three-hop segment Lj − Lj+1 − Lj+2. Therefore, if we
can show there exists a scheduling algorithm allowing the
four-hop segment to achieve a throughput equal the maximum
throughput of the three-hop segment, the maximum throughput
of the four-hop segment must be the same as the throughput
of the three-hop segment. It is trivial to show that a scheduling
algorithm with

tl =
1

Pl( 1
Pj

+ 1
Pj+1

+ 1
Pj+2

)
, l = j, j + 1, j + 2, j + 3 (33)

satisfies our requirements. We will also show that such
scheduling algorithm satisfies the constraints in (2)-(4). Let
us start with constraint (4). It has been shown earlier that
tj + tj+1 + tj+2 = 1. Given (32), it can also be shown that

tj+1 + tj+2 + tj+3 =

1
1

Pj+1
+ 1

Pj+2
+ 1

Pj+3

1
Pj

+ 1
Pj+1

+ 1
Pj+2

(34)

≤ 1 (35)

Thus constraint (4) is satisfied. It naturally follows that con-
straint (2) is also satisfied. Constraint (3) is also satisfied
because the scheduling algorithm readily leads to Tj =
Tj+1 = Tj+2 = Tj+3. Therefore the maximum throughput
of the four-hop segment is also 1

1
Pj

+ 1
Pj+1

+ 1
Pj+2

.

Repeat the above process and add adjacent links one by
one to the consecutive three-hop segment with the minimum
maximum throughput, it can be shown that the maximum
throughput of a generic k-hop path is equal to the minimum
of the maximum throughputs of all consecutive three-hop
segments. There exists a scheduling algorithm with

tj =
1
Pj

min
1≤i≤k−2

1
1
Pi

+ 1
Pi+1

+ 1
Pi+2

, 1 ≤ j ≤ k (36)

that allows the k-hop path to achieve its maximum throughput
while satisfying the constraints in (2)-(4).

VII. THE MAXIMUM THROUGHPUT OF A k-HOP PATH
WITH RANDOM NODE PLACEMENT

In this section, we relax the assumption in Sections V andVI
on optimal node placement and consider the more general set-
ting that nodes are randomly placed. Specifically, we consider
that the transmission of a link Li conflicts with that of links
Li−mi , Li−mi+1, . . . , Li−1, Li+1, . . . , Li+ni−1, Li+ni where

mi and ni are nonnegative integers depending on i and may
be different for different links. An implication of the above
assumption is that if the transmission of link Li conflicts
with the transmission of link Li+ni

, it will also conflict with
the transmission of link Lj , j = i + 1, . . . , i + ni − 1. This
assumption is valid for 1D wireless multi-hop networks and
is also a reasonable assumption for most higher dimensional
wireless multi-hop networks. Typically the Euclidean distance
between links Li and Li+ni

is larger than the Euclidean
distance between links Li and Lj , j = i + 1, . . . , i + ni −
1. Therefore if the transmission of link Li conflicts with
the transmission of link Li+ni , it will also conflict with
the transmission of link Lj , j = i + 1, . . . , i + ni − 1.
However there may be some special node arrangement in
which the assumption is not accurate. Such situations are
more likely to occur in low density networks 1 and rarely
occur in medium and high density networks. Refer to our
paper in [16] for more detailed discussion on the topic. In
this paper, we ignore the special situations and consider that
the transmission of a link Li conflicts with that of links
Li−mi

, Li−mi+1, . . . , Li−1, Li+1, . . . , Li+ni−1, Li+ni
. Con-

sequently the subgraph of the conflict graph G induced
on Li, Li + 1, . . . , Li+ni−1, Li+ni is a complete graph. The
induced subgraph of a graph G(V, E) on a set of vertices
W ⊂ V , denoted G(W ), has W as its vertex set and has
every edge of G whose endpoints are in W .

We introduce some definitions and concepts that will be
used later in the section. We define the forward degree of a
vertex Li in the conflict graph as the number of its neighbors
whose index is larger than i. Given the assumption in the last
paragraph, the forward degree of the vertex Li is ni. A clique
in a graph G is a maximal set of mutually adjacent vertices
of G. Obviously an induced subgraph of G on a clique is a
complete graph. The clique number, denoted by ω(G), is the
number of vertices in a largest clique of G. It can be shown
that ω(G) = α(G) for any graph G, where G denotes the
edge-complement graph of G. The edge-complement graph
G has the same vertex set as G. There is an edge between
two vertices in G if and only if there is no edge between the
corresponding vertices in G. It can be shown that the clique
number is related to the chromatic number by:

χ(G) ≥ ω(G). (37)

Given the assumption in the last paragraph, it is straightfor-
ward to show that ω(G) − 1 is also equal to the maximum
forward degree of the conflict graph, denoted by γ(G).

Under the assumption outlined earlier in the section, the
following theorem on the maximum throughput of a k-hop
path with random node placement in error-free environment
can be proved.

Theorem 3: In an error free environment (Pi = 1), a k-hop
path where all links have an identical capacity 1, can achieve a
maximum throughput of 1

ω(G) , or equivalently 1
γ(G)+1 , where

G is the conflict graph of the path. This maximum throughput
can be achieved by dividing the links into ω(G) independent

1Most likely the network will be disconnected under such low density.



sets and schedule each set of links to be active alternatively
for the same amount of time.

Proof: This theorem can be proved using the same
technique used in the proof of Theorem 1. Here we choose
to use a different technique based mainly on graph theoretic
tools.

First, using Eq. 37 it is straightforward to show that the
maximum throughput is not greater than 1

ω(G) .
Second, we show that the maximum throughput of 1

ω(G)

can be achieved by demonstrating that there exist ω(G)
independent sets whose union equals V where V is the set
of vertices in the conflict graph G.

Without loss of generality, assume Li, Li+1, . . . , Li+ω(G)−1

is a largest clique of G. Let us start with ω(G) distinct
independent sets where each set contains exactly one vertex in
Li, Li+1, . . . , Li+ω(G)−1. Now consider adding vertex Li−1

into the independence sets. Li−1 only conflicts with ni−1

vertices in the existing independent sets where ni−1 < ω(G).
If ni−1 ≥ ω(G), as explained earlier in the section the induced
subgraph of G on Li−1 and the ni−1 vertices conflicting with
Li−1 becomes a complete graph, which means the clique
number of G ω(G) must satisfy ω(G) ≥ ni−1 + 1 >
ω(G). This constitutes a contradiction. Therefore mi−1 <
ω(G), which means there exists at least one independent set
among the existing ω(G) independent sets whose elements
do not conflict with Li−1. Thus Li−1 can be added into
one of the existing ω(G) independent sets. Repeat the above
procedure one by one until all vertices on the left side of
Li, Li+1, . . . , Li+ω(G)−1 are added into the ω(G) independent
sets. Similar procedure can be applied to add vertices on
the right side of Li, Li+1, . . . , Li+ω(G) into to the ω(G)
independent sets. Eventually we obtain ω(G) independent sets
whose union is equal to V . As shown in the proof, there are
a number of ways to construct the ω(G) independent sets.
Therefore these ω(G) independent sets are not unique, i.e.
there is more than one way to schedule the links to achieve
the maximum throughput.

It can be shown that Theorem 1 actually constitute a special
case of Theorem 3 where ω(G) = 3 and γ(G) = 2. The
reason for including γ(G) in Theorem 3 is that the maximum
forward degree of the conflict graph is easier to compute than
the clique number. Therefore the inclusion of γ(G) provides
an easier way to compute the maximum throughput. Not sur-
prisingly, Theorem 3 suggests that the maximum throughput
of a wireless multi-hop path is not necessarily equal to the
reciprocal of the number of conflicting links, as asserted by
some researchers.

Let us now consider the maximum throughput of the k-
hop path in an erroneous environment. We shall prove the
following theorem:

Theorem 4: In an erroneous radio environment, the max-
imum throughput of a k-hop path is the minimum of the
maximum throughputs of all cliques of its conflict graph, that
is,

min
1≤i≤N

1
1

PMi
+ 1

PMi+1
+ . . . + + 1

PMi+Ni−1

. (38)

where N is the total number of cliques, Mi is the vertex with

the smallest index in the i-th clique and Ni is the number of
vertices in the i-th clique.

Proof:
Note that under the assumption in this section, the vertices

in a clique are consecutively indexed.
We prove the above theorem in two steps. First we show

that the maximum throughput of the i-th clique is given by:

Ti =
1

1
PMi

+ 1
PMi+1

+ . . . + + 1
PMi+Ni−1

. (39)

Second, we show that the maximum throughput of the k-hop
path is given by Eq. 38.

We prove the first claim by contradiction. Note that links
in the same clique cannot be active at the same time. Assume
there exists a scheduling algorithm that allows the i-th clique
to achieve a maximum throughput greater than that given
by Eq. 39. This implies there exists a scheduling algorithm
that allows links LMi , LMi+1, . . . , LM1+Ni−1 to be active
tMi

, tMi+1, . . . , tM1+Ni−1 proportions of time such that

PMi
tMi

≥ · · · ≥ PMi+Ni−1tMi+Ni−1 > Ti. (40)

The total proportion of time these links are active is then
Mi+Ni−1∑

j=Mi

tj >

Mi+Ni−1∑

j=Mi

1
Pj
Ti = 1. (41)

This violates the constraint in 14, which implies that links
in the same clique cannot be active at the same time.
Therefore the maximum throughput of the i-th clique cannot
be greater than Ti. Further it is straightforward to show
that a scheduling algorithm that allocates a link Lj in
LMi , LMi+1, . . . , LM1+Ni−1 a proportion of time tj = Ti

Pj

is able to achieve the maximum throughput Ti (Refer to the
proof of Theorem 2 for details. Here the same technique can be
used.). Therefore the maximum throughput of the i-th clique
must be Ti.

Now we consider the end-to-end throughput of the k-
hop path with N cliques. It is obvious that the maximum
throughput of the k-hop path cannot be greater than the
maximum throughout of any of the cliques of its conflict
graph, i.e. must be smaller than or equal to the minimum of
the maximum throughputs of all cliques of its conflict graph.
Assume the i-th clique has the minimum maximum throughput
among all cliques, then

Ti = min
1≤i≤N

1
1

PMi
+ 1

PMi+1
+ . . . + + 1

PMi+Ni−1

. (42)

Using the same technique as that used in the proof of Theorem
2, it can be shown that a scheduling algorithm that allocates a
link Lj a proportion of time equal to Ti

Pj
is able to allow the

k-hop path to achieve the throughput Ti while satisfying all
constraints in 12, 13 and 14.

VIII. CONCLUSION

In this paper, we investigated the maximum throughput of
a wireless multi-hop path analytically.

We showed that in an ideal error free radio environment,
a wireless multi-hop path, in which all nodes are optimally



placed and all links has an identical normalized capacity of 1,
has a maximum throughput of 1

3 . This maximum throughput
can only be achieved when all links of the path are separated
into three maximal independent sets and each set of links
become active alternatively for the same proportion of time. In
an erroneous radio environment, we showed that the maximum
throughput of the k-hop path is determined by its bottle-
neck consecutive three-hop segment. A scheduling algorithm
achieving this maximum throughput was also presented.

For a wireless multi-hop path where nodes are randomly
placed and all links have a normalized capacity of 1, we
showed that in an error-free environment the maximum
throughput is equal to the reciprocal of the clique number of
its conflict graph; in an erroneous environment the maximum
throughput is determined by the bottleneck clique. The results
suggest that when analyzing the maximum throughput, cliques
should be used as basic units for determining the throughput.
The results in this paper will help to design guidelines for
optimum scheduling algorithms.

This paper suggests that in order to achieve the maximum
throughput, it is necessary to use independence sets as the
basic units in the design of scheduling algorithms and syn-
chronize the transmission of links in the same independent
set. As these links in the same independence set may belong
to different cliques and are located far away, it remains to be
investigated as to how these design principles can be realized
in a distributed scheduling algorithm.

Finally, the paper considers only a single channel environ-
ment. It is an interesting area to investigate the maximum
throughput in a multi-channel environment and the optimum
scheduling algorithms to achieve that maximum throughput.
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