
1

Towards a Better Understanding of Large Scale
Network Models

Guoqiang Mao, Senior Member, IEEE, and Brian D.O. Anderson, Life Fellow, IEEE

Abstract— Connectivity and capacity are two fundamental
properties of wireless multi-hop networks. The scalability of these
properties has been a primary concern for which asymptotic
analysis is a useful tool. Three related but logically distinct
network models are often considered in asymptotic analyses, viz.
the dense network model, the extended network model and the
infinite network model, which consider respectively a network
deployed in a fixed finite area with a sufficiently large node den-
sity, a network deployed in a sufficiently large area with a fixed
node density, and a network deployed in <2 with a sufficiently
large node density. The infinite network model originated from
continuum percolation theory and asymptotic results obtained
from the infinite network model have often been applied to the
dense and extended networks. In this paper, through two case
studies related to network connectivity on the expected number of
isolated nodes and on the vanishing of components of finite order
k > 1 respectively, we demonstrate some subtle but important
differences between the infinite network model and the dense
and extended network models. Therefore extra scrutiny has to
be used in order for the results obtained from the infinite network
model to be applicable to the dense and extended network models.
Asymptotic results are also obtained on the expected number of
isolated nodes, the vanishingly small impact of the boundary
effect on the number of isolated nodes and the vanishing of
components of finite order k > 1 in the dense and extended
network models using a generic random connection model.

Index Terms— Dense network model, extended network model,
infinite network model, continuum percolation, connectivity,
random connection model

I. INTRODUCTION

Wireless multi-hop networks in various forms, e.g. wireless
ad hoc networks, sensor networks, mesh networks and vehic-
ular networks, have been the subject of intense research in the
recent decades (see [1] and references therein). Connectivity
and capacity are two fundamental properties of these networks.
The scalability of these properties as the number of nodes in
the network becomes sufficiently large has been a primary
concern. Asymptotic analysis, valid when the number of
nodes in the network is large enough, has been useful for
understanding the characteristics of these networks.

Three related but logically distinct network models have
been widely used in the asymptotic analysis of large scale
multi-hop networks. The first model, often referred to as the
dense network model, considers that the network is deployed
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in a finite area with a sufficiently large node density. The
second model, often referred to as the extended network model,
considers that the node density is fixed and the network area
is sufficiently large. The third model, referred to as the infinite
network model, has its origin in continuum percolation theory
[2]. It considers a network deployed in an infinite area, i.e.
<2 in 2D, and analyzes the properties of the network as the
node density becomes sufficiently large. Due to the relatively
longer history of research into continuum percolation theory
and relatively abundant results in that area, and the close
connections between the infinite network model and the dense
and extended network models, results obtained in the infinite
network model are often applied straightforwardly to the first
and second models [3]–[8].

In this paper, through two case studies on key events
related to the network connectivity, i.e. the expected number
of isolated nodes and the vanishing of components of fixed
and finite order k > 1 (the order of a component refers
to the number of nodes in the component), using a random
connection model, we demonstrate some subtle but important
differences between the infinite network model and the dense
and extended network models due to the truncation effect, to
be explained in the following paragraphs. Therefore results
obtained from an infinite network model cannot be directly
applied to the dense and extended networks. Instead some
careful analysis of the impact of the truncation effect is
required.

Here we give a detailed explanation of the above comments
using a unit disk connection model as an example1. Under the
unit disk connection model, two nodes are directly connected
if and only if (iff) their Euclidean distance is smaller than or
equal to a given threshold r (ρ), a parameter which is often
taken as a function of a further parameter ρ, to be defined
shortly, under the dense and extended network models; the
parameter r (ρ) is termed the transmission range. The dense
and extended network models that are often considered assume
respectively a) nodes are Poissonly distributed in a unit area,
say a square, with density ρ and r (ρ) =

√
log ρ+c
πρ (the

dense network model); b) nodes are Poissonly distributed on
a square

√
ρ×√ρ with density 1 and r (ρ) =

√
log ρ+c
π (the

extended network model). The parameter c may be either a
constant; or it can depend on ρ, in which case c = o (log ρ).
The corresponding infinite network model considers nodes
Poissonly distributed in <2 with density ρ and a pair of nodes

1In the paper, we have omitted some trivial discussions on the difference
between Poisson and uniform distributions and consider Poisson node distri-
bution only.
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are directly connected iff their Euclidean distance is smaller
than or equal to r, which does not depend on ρ. The dense
network model can be converted into the extended network
model by scaling the Euclidean distances between all pairs of
nodes by a factor of

√
ρ while maintaining their connections,

and conversely. Therefore the dense network model and the
extended network model are equivalent in the analysis of
connectivity. In the extended network model, as ρ → ∞,
the network area approaches <2 and the average node degree
approaches infinity following Θ (log ρ), i.e. a node has more
and more connections as ρ→∞. This resembles the situation
that occurs in the infinite network model as ρ → ∞. This
close connection between the infinite network model and the
dense and extended network models creates the illusion that
as ρ→∞ results obtained in the infinite network model can
also be applied directly to the dense and extended models,
e.g. those dealing with the vanishing of isolated nodes, the
uniqueness of the component of infinite order, the vanishing
of components of finite order k > 1 [3]–[8].

Starting from the dense network model however, if we
scale the Euclidean distances between all pairs of nodes by
a factor 1/

√
log ρ+c
πρ , there results a network on a square

1/
√

log ρ+c
πρ × 1/

√
log ρ+c
πρ with node density log ρ+c

π , where
log ρ+c
π → ∞ as ρ → ∞, and a pair of nodes are directly

connected iff their Euclidean distance is equal to or smaller
than r = 1, independently of the node density. This latter
network model is also equivalent to the dense and extended
network models in connectivity. On the other hand, this latter
network can also be obtained from an infinite network on
<2 with node density log ρ+c

π and r = 1 by removing all
nodes and the associated connections outside a square of
1/
√

log ρ+c
πρ ×1/

√
log ρ+c
πρ in <2. We term the effect associated

with the above removal procedure as the truncation effect.
From the above discussion, it is clear that a prerequisite for the
results obtained in the infinite network model to be applicable
to the dense or extended network models is that the impact
of the truncation effect on the property concerned must be
vanishingly small as ρ→∞.

The main contributions of this paper are:

• Through two case studies, one on the expected number
of isolated nodes and the other on the vanishing of
components of fixed and finite order k > 1, using a ran-
dom connection model, we show however that ensuring
the impact of the truncation effect is vanishingly small
either requires imposing a stronger requirement on the
connection function or needs some non-trivial analysis
to rule out the possibility of occurrence of some events
associated with the truncation effect. Therefore results
obtained assuming an infinite network model cannot
be applied directly to the dense and extended network
models.

• In particular, we show that in order for the impact of the
truncation effect on the number of isolated nodes to be
vanishingly small, a stronger requirement on the connec-
tion function (than the usual requirements of rotational in-
variance, integral boundedness and non-increasing mono-

tonicity) needs to be imposed.
• We show that some non-trivial analysis is required to

rule out the possibility of occurrence of some events
associated with the truncation effect in order to establish
the result on the vanishing of components of components
of fixed and finite order k > 1 in the dense and extended
network models. For example, an infinite component in
<2 may, after truncation, yield multiple components of
extremely large order2, finite components of fixed order
k > 1 and isolated nodes in 1/

√
log ρ+c
πρ × 1/

√
log ρ+c
πρ ,

where these components are only connected via nodes
and associated connections in the infinite component
but outside 1/

√
log ρ+c
πρ × 1/

√
log ρ+c
πρ . Thus the dense

and extended networks may still possibly have finite
components of order k > 1 even though the infinite
network can be shown to asymptotically almost surely
have no such finite components as ρ→∞.

• Asymptotic results are established on the expected num-
ber of isolated nodes, the vanishingly small impact of
the boundary effect on the number of isolated nodes and
the vanishing of components of finite order k > 1 in
the dense and extended network models using a generic
random connection model. These results form key steps
in extending asymptotic results on network connectivity
from the unit disk model to the more generic random
connection model.

To our knowledge, this is the first paper that has provided
solid theoretical analysis to explain the difference between the
infinite network model and the dense and extended network
models and the cause of this difference, i.e. it is attributable
to the truncation effect, which is different from the boundary
effect that has been widely studied.

The rest of the paper is organized as follows. Section II
reviews related work. Section III gives a formal definition
of the network models, symbols and notations considered
in the paper. Section IV comparatively studies the expected
number of isolated nodes in a dense (or extended) network
and in its counterpart infinite network model. Through the
study, it shows that under certain conditions the impact of the
truncation effect on the expected number of isolated nodes is
non-negligible or may even be the dominant factor. Section
V first gives an example to show that asymptotic vanishing
of components of fixed and finite order k > 1 in an infinite
network does not carry straightforwardly the conclusion that
components of fixed and finite order k > 1 also vanish
asymptotically in the dense and extended networks. Then to
fill this theoretical gap and with a supplementary condition
holding, a result is presented on the asymptotic vanishing of
components of fixed and finite order k > 1 in the dense and
extended network models under a random connection model.
Finally Section VI summarizes conclusions and future work.

2It is trivial to show that for any finite ρ, almost surely there is no infinite
component in a network whose nodes are Poissonly distributed with density
log ρ+c
π

on a square of 1/
√

log ρ+c
πρ

× 1/
√

log ρ+c
πρ

. Therefore we use the
term components of extremely large order to refer to those components whose
order may become asymptotically infinite as ρ→∞.
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II. RELATED WORK

Extensive research has been done on connectivity problems
using the well-known random geometric graph and the unit
disk connection model, which is usually obtained by randomly
and uniformly distributing n vertices in a given area and
connecting any two vertices iff their distance is smaller than or
equal to a given threshold r(n) [9], [10]. Significant outcomes
have been obtained [3], [10]–[16].

Penrose [17], [18] and Gupta et al. [3] proved using different
techniques that if the transmission range is set to r (n) =√

logn+c(n)
πn , a random network formed by uniformly placing

n nodes in a unit-area disk in <2 is asymptotically almost
surely connected as n → ∞ iff c (n) → ∞. Specifically,
Penrose’s result is based on the fact that in the above random
network as ρ→∞ the longest edge of the minimum spanning
tree converges in probability to the minimum transmission
range required for the above random network to have no
isolated nodes (or equivalently the longest edge of the nearest
neighbor graph of the above network) [10], [17], [18]. Gupta
and Kumar’s result is based on a key finding in continuum
percolation theory [2, Chapter 6]: Consider an infinite network
with nodes distributed on <2 following a Poisson distribution
with density ρ; and suppose that a pair of nodes separated by
a Euclidean distance x are directly connected with probability
g (x), independent of the event that another distinct pair
of nodes are directly connected. Here, g : <+ → [0, 1]
satisfies the conditions of rotational invariance, non-increasing
monotonicity and integral boundedness [2, pp. 151-152]. As
ρ → ∞ asymptotically almost surely the above network on
<2 has only a unique infinite component and isolated nodes.

In [12], Philips et al. proved that the average node degree,
i.e. the expected number of neighbors of an arbitrary node,
must grow logarithmically with the area of the network to
ensure that the network is connected, where nodes are placed
randomly on a square according to a Poisson point process
with a known density in <2. This result by Philips et al.
actually provides a necessary condition on the average node
degree required for connectivity. In [11], Xue et al. showed that
in a network with a total of n nodes randomly and uniformly
distributed in a unit square in <2, if each node is connected
to c log n nearest neighbors with c ≤ 0.074 then the resulting
random network is asymptotically almost surely disconnected
as n → ∞; and if each node is connected to c log n nearest
neighbors with c ≥ 5.1774 then the network is asymptotically
almost surely connected as n → ∞. In [14], Balister et al.
advanced the results in [11] and improved the lower and upper
bounds to 0.3043 log n and 0.5139 log n respectively. In a
more recent paper [16], Balister et al. achieved much improved
results by showing that there exists a constant ccrit such that
if each node is connected to bc log nc nearest neighbors with
c < ccrit then the network is asymptotically almost surely
disconnected as n → ∞, and if each node is connected to
bc log nc nearest neighbors with c > ccrit then the network
is asymptotically almost surely connected as n → ∞. In
both [14] and [16], the authors considered nodes randomly
distributed following a Poisson process of intensity one in a
square of area n in <2. In [13], Ravelomanana investigated the

critical transmission range for connectivity in 3-dimensional
wireless sensor networks and derived similar results to the 2-
dimensional results in [3].

All the above work is based on the unit disk connection
model. The unit disk connection model may simplify analysis
but no real antenna has an antenna pattern similar to it. The
log-normal shadowing connection model, which is more real-
istic than the unit disk connection model, has accordingly been
considered for investigating network connectivity in [19]–[24].
Under the log-normal shadowing connection model, two nodes
are directly connected if the received power at one node
from the other node, whose attenuation follows the log-normal
model [25], is greater than a given threshold. In [19]–[24], the
authors investigated from different perspectives the necessary
condition for a network with nodes uniformly or Poissonly
distributed in a bounded area in <2 and a pair of nodes are
directly connected following the log-normal connection model
to be connected. Most of the above work is based on the
observation that a necessary condition for a connected network
is that the network has no isolated nodes. Their analysis [19]–
[24] also relies on the assumption that under the log-normal
connection model, the node isolation events are independent,
an assumption yet to be validated analytically.

Other work in the area include [5], [6], [8], [26], which
studies from the percolation perspective, the impact of mutual
interference caused by simultaneous transmissions, the impact
of physical layer cooperative transmissions, the impact of
directional antennas and the impact of unreliable links on
connectivity respectively.

In this paper we discuss the relation between three widely
used network models in the above studies, i.e. the dense
network model, the extended network model and the infinite
network model which originated from continuum percolation
theory. We examine mainly from the connectivity perspective
the similarities and differences between these models and
demonstrate that results obtained from continuum percolation
theory assuming an infinite network model cannot be directly
applied to the dense and extended network models. We also
establish some results that form key steps in extending asymp-
totic results on network connectivity from the unit disk model
to the more generic random connection model.

III. NETWORK MODELS

In this section we give a formal definition of network models
considered in the paper. Let g : <+ → [0, 1] be a function
satisfying the conditions of non-increasing monotonicity and
integral boundedness 3, 4:

g (x) ≤ g (y) whenever x ≥ y (1)

0 <

ˆ
<2

g (‖x‖) dx <∞ (2)

where ‖x‖ denotes the Euclidean norm of x. The function g
is the connection function that has been widely considered in

3Throughout this paper, we use the non-bold symbol, e.g. x, to denote a
scalar and the bold symbol, e.g. x, to denote a vector.

4We refer readers to [2], [27, Chapter 6] for detailed discussions on the
random connection model.
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the random connection model [2], [27, Chapter 6]. Further the
requirement of rotational invariance on the connection function
in the random connection model [2], [27, Chapter 6] has been
met implicitly by letting g be a function of a scalar, typically
representing the Euclidean distance between two nodes being
considered.

The following notations and definitions are used throughout
the paper:
• f (z) = oz (h (z)) iff limz→∞

f(z)
h(z) = 0;

• f (z) = ωz (h (z)) iff h (z) = oz (f (z));
• f (z) = Θz (h (z)) iff there exist a sufficiently large z0

and two positive constants c1 and c2 such that for any
z > z0, c1h (z) ≥ f (z) ≥ c2h (z);

• f (z) ∼z h (z) iff limz→∞
f(z)
h(z) = 1;

• An event ξ is said to occur almost surely if its probability
equals to one;

• An event ξz depending on z is said to occur asymptoti-
cally almost surely (a.a.s.) if its probability tends to one
as z →∞.

The above definition applies whether the argument z is con-
tinuous or discrete, e.g. assuming integer values.

Using the integral boundedness condition on g and the non-
increasing property of g, it can be shown thatˆ

<2

g (‖x‖) dx = lim
z→∞

ˆ z

0

2πxg (x) dx

and

lim
z→∞

ˆ ∞
z

2πxg (x) dx = 0

The above equation, together with the following derivations

lim
z→∞

ˆ ∞
z

2πxg (x) dx

≥ lim
z→∞

ˆ 2z

z

2πxg (x) dx

≥ lim
z→∞

ˆ 2z

z

2πxg (2z) dx

= lim
z→∞

3πz2g (2z)

allow us to conclude that

g (x) = ox

(
1

x2

)
(3)

From time to time, we may require g to satisfy the more
restrictive requirement that

g (x) = ox

(
1

x2 log2 x

)
(4)

and (1). When we do impose such additional constraint, we
will specify it clearly. It is obvious that conditions (1) and (2)
imply (3) while condition (4) implies (2) and (3).

In the following analysis, we will only use (1) and (4)
(instead of (1) and (2)) when necessary. This helps to identify
which part of the analysis relies on the more restrictive
requirement on g. In our analysis, we assume that g has infinite
support when necessary. Our results however apply to the

situation when g has bounded support, which forms a special
case and only makes the analysis easier.

Further, define

rρ ,
√

log ρ+ b

Cρ
(5)

for some non-negative value ρ, where

0 < C =

ˆ
<2

g (‖x‖) dx <∞ (6)

and b is a constant (+∞ is allowed).
In the following, we give the formal definitions of four

network models discussed in the paper. The motivation for
defining a new model in Definition 3 appears later after all
models are defined.

Definition 1: (dense network model) Let G
(
Xρ, grρ , A

)
be

a network with nodes Poissonly distributed on a unit square
A ,

[
− 1

2 ,
1
2

]2
with density ρ and a pair of nodes separated by

a Euclidean distance x are directly connected with probability
grρ (x) , g

(
x
rρ

)
, independent of the event that another

distinct pair of nodes are directly connected. Xρ denotes the
vertex set in G

(
Xρ, grρ , A

)
.

Definition 2: (extended network model) Let
G
(
X1, g√ log ρ+b

C

, A√ρ
)

be a network with nodes Poissonly

distributed on a square A√ρ ,
[
−
√
ρ

2 ,
√
ρ

2

]2
with

density 1 and a pair of nodes separated by a Euclidean
distance x are directly connected with probability

g√ log ρ+b
C

(x) , g

(
x√

log ρ+b
C

)
, independent of the event

that another distinct pair of nodes are directly connected. X1

denotes the vertex set in G
(
X1, g√ log ρ+b

C

, A√ρ
)

.

Definition 3: Let G
(
X log ρ+b

C
, g, A 1

rρ

)
be a network with

nodes Poissonly distributed on a square A 1
rρ

,
[
− 1

2rρ
, 1
2rρ

]2

with density log ρ+b
C and a pair of nodes separated by a

Euclidean distance x are directly connected with probability
g (x), independent of the event that another distinct pair of
nodes are directly connected. X log ρ+b

C
denotes the vertex set

in G
(
X log ρ+b

C
, g, A 1

rρ

)
.

Definition 4: (infinite network model) Let G
(
Xρ, g,<2

)
be

a network with nodes Poissonly distributed on <2 with density
ρ and a pair of nodes separated by a Euclidean distance x are
directly connected with probability g (x), independent of the
event that another distinct pair of nodes are directly connected.
Xρ denotes the vertex set in G

(
Xρ, g,<2

)
.

With minor abuse of the terminology, we use A (respectively
A√ρ, A 1

rρ
) to denote both the square itself and the area of the

square, and in the latter case, A = 1 (respectively A√ρ = ρ,
A 1
rρ

= 1
r2ρ

).
The reason for choosing this particular form of rρ and the

above network models is to avoid triviality in the analysis and
to make the analysis compatible with existing results obtained
under a unit disk connection model. Particularly when g takes
the form that g(x) = 1 for x ≤ 1 and g(x) = 0 for x > 1, it
can be shown that G

(
Xρ, grρ , A

)
reduces to the dense network

model under a unit disk connection model discussed in [3],
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[10], [27] where C = π and rρ corresponds to the critical
transmission range for connectivity; G

(
X1, g√ log ρ+b

C

, A√ρ
)

reduces to the extended network model under a unit disk
connection model considered in [27], [28, Chapter 3.3.2]. Thus
the above model easily incorporates the unit disk connection
model as a special case. A similar conclusion can also be
drawn for the log-normal connection model.

Now we establish the relationship between the three network
models in Definitions 1, 2, 3 on finite and then asymptotically
infinite regions respectively using the scaling and coupling
technique [2]. Given an instance of G

(
Xρ, grρ , A

)
, if we scale

the Euclidean distances between all pairs of nodes by a factor
of
√
ρ while maintaining their connections, there results a

random network where nodes are Poissonly distributed on a
square A√ρ with density 1 and a pair of nodes separated by
a Euclidean distance x are directly connected with probability
g√ log ρ+b

ρ

(x), i.e. an instance of G
(
X1, g√ log ρ+b

C

, A√ρ
)

. All

connectivity properties, e.g. connectivity, number of isolated
nodes, number of components of a specified order, that hold in
the instance of G

(
Xρ, grρ , A

)
are also valid for the associated

instance in G
(
X1, g√ log ρ+b

C

, A√ρ
)

(To be more precise, the
underlying graphs of these two network instances are isomor-
phic [29], [30]). Similarly if we shrink the Euclidean distances
between all pairs of nodes in a network, which is an instance
of G

(
X1, g√ log ρ+b

C

, A√ρ
)

, by a factor of 1√
ρ , there results an

instance of G
(
Xρ, grρ , A

)
and the two networks again have

the same connectivity property. Therefore G
(
Xρ, grρ , A

)
and

G
(
X1, g√ log ρ+b

C

, A√ρ
)

are equivalent in that any connectivity
property that holds in one model will necessarily hold in
the other. Similarly, it can also be shown that G

(
Xρ, grρ , A

)

and G
(
X log ρ+b

C
, g, A 1

rρ

)
are equivalent in their connectivity

properties. Thus in this paper we only chose one model, i.e.
G
(
X log ρ+b

C
, g, A 1

rρ

)
, to discuss the connectivity properties of

finite and asymptotically infinite networks. The reason for
choosing this network model is that under the model, a pair of
nodes are directly connected following g, in the same way as
nodes in the infinite network model G

(
Xρ, g,<2

)
are directly

connected. This facilitates the discussion and comparison
between the finite (asymptotically infinite) network model and
the infinite network model, which is a key focus of the paper.

Further, we point out that the above discussion on
the equivalence of network models G

(
Xρ, grρ , A

)
,

G
(
X1, g√ log ρ+b

C

, A√ρ
)

and G
(
X log ρ+b

C
, g, A 1

rρ

)
is only

valid for the random connection model. For the other
widely used model, i.e. the SINR model, under some special
circumstances, e.g. the background noise is negligible [1] and
the attenuation function is a power law function, the three
network models are equivalent; otherwise under more general
conditions, the three models are not equivalent (see e.g. [26],
[31]). However the key observation revealed in our analysis,
i.e. results obtained from an infinite network model do not
necessarily apply to the dense and extended network models,
also holds for the SINR model.

IV. A COMPARATIVE STUDY OF THE EXPECTED NUMBER
OF ISOLATED NODES

In this section we comparatively study the expected number
of isolated nodes in G

(
X log ρ+b

C
, g, A 1

rρ

)
and the expected

number of isolated nodes in its counterpart in an infinite
network, i.e. a region with the same area as A 1

rρ
in an

infinite network on <2 with the same node density log ρ+b
C

and connection function g. The number of isolated nodes is
a key parameter in the analysis of network connectivity. A
necessary condition for a network to be connected is that the
network has no isolated node. Such a necessary condition has
been shown to be also a sufficient condition for a connected
network as ρ → ∞ under a unit disk connection model [10]
and this may also be possibly true for a random connection
model.

A. Expected Number of Isolated Nodes in an Asymptotically
Infinite Network

In this subsection we analyze the expected number of
isolated nodes in G

(
X log ρ+b

C
, g, A 1

rρ

)
. For an arbitrary node

in G
(
X log ρ+b

C
, g, A 1

rρ

)
at location y, it can be shown that the

probability that the node is isolated is given by [4]:

Pr (Iy = 1) = e
−
´
A 1
rρ

log ρ+b
C g(‖x−y‖)dx

(7)

where Iy is an indicator random variable: Iy = 1 if the node at
y is isolated and Iy = 0 otherwise. Denote by W the number
of isolated nodes in an instance of G

(
X log ρ+b

C
, g, A 1

rρ

)
. It

then follows that the expected number of isolated nodes in
G
(
X log ρ+b

C
, g, A 1

rρ

)
is given by

E (W ) =

ˆ
A 1
rρ

log ρ+ b

C
e
−
´
A 1
rρ

log ρ+b
C g(‖x−y‖)dx

dy (8)

On the basis of (8), the following theorem can be obtained.
Theorem 1: The expected number of

isolated nodes in G
(
X log ρ+b

C
, g, A 1

rρ

)
is

´
A 1
rρ

log ρ+b
C e

−
´
A 1
rρ

log ρ+b
C g(‖x−y‖)dx

dy. For g satisfying

both (1) and (4), the expected number of isolated nodes
in G

(
X log ρ+b

C
, g, A 1

rρ

)
converges asymptotically to e−b as

ρ→∞.
Proof: See Appendix I

1) Impact of Boundary Effect on the Number of Isolated
Nodes: Before we proceed to the comparison of the expected
number of isolated nodes in G

(
X log ρ+b

C
, g, A 1

rρ

)
and the

expected number in its counterpart in an infinite network, we
first examine the impact of boundary effect on the number of
isolated nodes in G

(
X log ρ+b

C
, g, A 1

rρ

)
. Boundary effect is a

common concern in the analysis of network connectivity. The
analysis of the impact of the boundary effect is done by com-
paring the number of isolated nodes in G

(
X log ρ+b

C
, g, A 1

rρ

)

and the number in a network with nodes Poissonly distributed
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on a torus AT1
rρ

,
[
− 1

2rρ
, 1
2rρ

]2
with node density log ρ+b

C

and where a pair of nodes separated by a toroidal distance
xT [10, p. 13] are directly connected with probability g

(
xT
)
,

independent of the event that another distinct pair of nodes
are directly connected. Denote the network on a torus by

GT
(
X log ρ+b

C
, g, AT1

rρ

)
. The following lemma can be estab-

lished.
Lemma 1: The expected number of isolated nodes in

GT
(
X log ρ+b

C
, g, AT1

rρ

)
is ρe

−
´
A 1
rρ

log ρ+b
C g(‖x‖)dx

. For g satis-

fying both (1) and (4), the expected number of isolated nodes
in GT

(
X log ρ+b

C
, g, A 1

rρ

)
converges to e−b as ρ→∞.

Proof: See Appendix II
On the basis of Theorem 1 and Lemma 1, and using the
coupling technique, the following lemma can be obtained.

Lemma 2: For g satisfying both (1) and (4), the number
of isolated nodes in G

(
X log ρ+b

C
, g, A 1

rρ

)
due to the boundary

effect is a.a.s. 0 as ρ→∞.
Proof: Comparing Theorem 1 and Lemma 1, it is noted

that the expected numbers of isolated nodes on a torus and
on a square respectively asymptotically converge to the same
non-zero finite constant e−b as ρ → ∞. Now we use the
coupling technique [2] to construct the connection between W
and WT , the number of isolated nodes in the corresponding
instance of GT

(
X log ρ+b

C
, g, A 1

rρ

)
. Consider an instance of

GT
(
X log ρ+b

C
, g, AT1

rρ

)
. The number of isolated nodes in that

network is WT , which depends on ρ. Remove each connection
of the above network with probability 1− g(x)

g(xT )
, independent

of the event that another connection is removed, where x
is the Euclidean distance between the two endpoints of the
connection and xT is the corresponding toroidal distance. Due
to xT ≤ x (see (40) in Appendix II) and the non-increasing
property of g, 0 ≤ 1 − g(x)

g(xT )
≤ 1. Further note that only

connections between nodes near the boundary with xT < x
will be affected, i.e. when x = xT the removal probability is
zero. Denote the number of newly appearing isolated nodes by
WE . WE has the meaning of being the number of isolated
nodes due to the boundary effect. It is straightforward to show
that WE is a non-negative random integer, depending on ρ.
Further, such a connection removal process results a random
network with nodes Poissonly distributed with density log ρ+b

C
where a pair of nodes separated by a Euclidean distance x
are directly connected with probability g (x), i.e. a random
network on a square with the boundary effect included. The
following equation results as a consequence of the above
discussion:

W = WE +WT

Using Theorem 1, Lemma 1 and the above equation, it can be
shown that

lim
ρ→∞

E
(
WE

)
= lim
ρ→∞

E
(
W −WT

)
= 0

Due to the non-negativity of WE :

lim
ρ→∞

Pr
(
WE = 0

)
= 1

Remark 1: Note that for g not satisfying (4), E (W ) and
E
(
WT

)
are not necessarily convergent as ρ → ∞. Par-

ticularly using the same procedure in Appendix I and II
(see also (14) in Section IV-C below), it can be shown
that when g (x) = ωx

(
1

x2 log2 x

)
, both limρ→∞E (W )

and limρ→∞E
(
WT

)
are unbounded. When g (x) =

Θx

(
1

x2 log2 x

)
, limρ→∞E (W ) and limρ→∞E

(
WT

)
start to

depend on the asymptotic behavior of g and is only convergent
when limx→∞ g (x)x2 log2 x = a, where 0 < a < ∞
is a positive constant. In that case, it can be shown that
limρ→∞E (W ) and limρ→∞E

(
WT

)
converge to e−b+

4π
C a.

For limρ→∞E
(
WT

)
the above result can be established by

first choosing a small positive constant 4ε and then letting
ρ be sufficiently large such that D

(
0, 12r

−1−4ε
ρ

)
contains

A 1
rρ

, where D (x, r) denotes a disk centered at x and with a

radius r. An upper and lower bound on E
(
WT

)
can then be

established by noting that

lim
ρ→∞

ρe
−
´
D(0, 1

2
r
−1−4ε
ρ )

log ρ+b
C g(‖x‖)dx

≤ lim
ρ→∞

E
(
WT

)
= ρe

−
´
A 1
rρ

log ρ+b
C g(‖x‖)dx

≤ lim
ρ→∞

ρe
−
´
D(0, 1

2
r
−1
ρ )

log ρ+b
C g(‖x‖)dx

Following the exactly same procedure as that in (45) and
(46) (in Appendix II) and finally letting 4ε → 0, the
result for limρ→∞E

(
WT

)
can be obtained. The result for

limρ→∞E (W ) can be obtained following a similar procedure
as that in Appendix I.

B. The Number of Isolated Nodes in a Region A 1
rρ

of an

Infinite Network with Node Density log ρ+b
C

In this subsection, we consider the number of isolated
nodes in the counterpart of G

(
X log ρ+b

C
, g, A 1

rρ

)
in an infinite

network. Specifically, for a meaningful comparison with the
number of isolated nodes in G

(
X log ρ+b

C
, g, A 1

rρ

)
, we con-

sider the number of isolated nodes, denoted by W∞ (with
superscript ∞ marking the parameter in an infinite network),
in a square A 1

rρ
of an infinite network on <2 with Poissonly

distributed node at density log ρ+b
C . Denote the infinite network

by G
(
X log ρ+b

C
, g,<2

)
. For g satisfying (2), a randomly chosen

node in G
(
X log ρ+b

C
, g,<2

)
, at location y ∈ A 1

rρ
, is isolated

with probability

Pr
(
I∞y = 1

)
= e−

´
<2

log ρ+b
C g(‖x−y‖)dx =

1

ρ
e−b (9)

where (2) is used in the above equation. Therefore

E (W∞) =

ˆ
A 1
rρ

log ρ+ b

C
× 1

ρ
e−bdy

=
log ρ+ b

C
× 1

ρ
e−b ×

(
1

rρ

)2
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= e−b (10)

The last line follows by (5).
The above result is summarized in the following lemma:
Lemma 3: For g satisfying (2), the expected number of

isolated nodes in a region A 1
rρ

of G
(
X log ρ+b

C
, g,<2

)
is e−b.

C. A Comparison of the Expected Number of Isolated Nodes
in G

(
X log ρ+b

C
, g, A 1

rρ

)
and In Its Counterpart in An Infinite

Network

Comparing Theorem 1 and Lemma 3, we note that:
1) The expected number of isolated nodes in
G
(
X log ρ+b

C
, g, A 1

rρ

)
only converges asymptotically to

e−b as ρ→∞ whereas the expected number of isolated
nodes in an area of the same size in G

(
X log ρ+b

C
, g,<2

)

is always e−b no matter which value ρ takes.
2) The expected number of isolated nodes in
G
(
X log ρ+b

C
, g, A 1

rρ

)
converges asymptotically to

e−b for g satisfying both (1) and (4) whereas the
expected number of isolated nodes in an area of the
same size in G

(
X log ρ+b

C
, g,<2

)
is e−b for g satisfying

(2) only.
In the following we examine the reason behind the differences.

Using (7), (8), (9) and (10), it can be shown that

E (W )

E (W∞)

=eb
ˆ
A 1
rρ

log ρ+ b

C
e
−
´
A 1
rρ

log ρ+b
C g(‖x−y‖)dx

dy

=eb
ˆ
A 1
rρ

log ρ+ b

C
exp

(
−
ˆ
<2

log ρ+ b

C
g (‖x− y‖) dx

×
ˆ
<2\A 1

rρ

log ρ+ b

C
g (‖x− y‖) dx


 dy

=

ˆ
A 1
rρ

log ρ+ b

Cρ
e

´
<2\A 1

rρ

log ρ+b
C g(‖x−y‖)dx

dy (11)

It is trivial to show that the value in (11) is always greater
than 1 for g with infinite support. That is, for any g with
infinite support, the expected number of isolated nodes in
G
(
X log ρ+b

C
, g, A 1

rρ

)
is strictly larger than the expected num-

ber of isolated nodes in an area A 1
rρ

of G
(
X log ρ+b

C
, g,<2

)
.

Further, it can be shown that the value in (11) accounts for the
cumulative effect of nodes outside A 1

rρ
in G

(
X log ρ+b

C
, g,<2

)

and the associated connections between these nodes and nodes
inside A 1

rρ
on decreasing the expected number of isolated

nodes in A 1
rρ

respectively. Because G
(
X log ρ+b

C
, g, A 1

rρ

)
can

be obtained from G
(
X log ρ+b

C
, g,<2

)
by removing all these

nodes and associated connections outside an area of A 1
rρ

in

G
(
X log ρ+b

C
, g,<2

)
, we term the this distinction the truncation

effect. Theorem 1 and Lemma 3 shows that when g satisfies
both (1) and (4) (i.e. g has to decrease fast enough), the impact
of the truncation effect on isolated nodes becomes vanishingly
small as ρ→∞.

Based on the above discussion, the following theorem can
be established:

Theorem 2: For g satisfying (2), the expected number of
isolated nodes in an area of A 1

rρ
in G

(
X log ρ+b

C
, g,<2

)

is e−b. Removing all nodes of G
(
X log ρ+b

C
, g,<2

)
out-

side A 1
rρ

and the associated connections, there results

G
(
X log ρ+b

C
, g, A 1

rρ

)
. The expected number of isolated nodes

in G
(
X log ρ+b

C
, g, A 1

rρ

)
converges to e−b if g satisfies both (1)

and (4). The more restrictive requirement on g is a sufficient
condition for the impact of the truncation effect associated
with the above removal operations on the number of isolated
nodes in G

(
X log ρ+b

C
, g, A 1

rρ

)
to be vanishingly small as ρ→

∞.
In the following, we show that the more restrictive requirement
on g in (4) (compared with (1) and (2)) is also necessary for
the impact of the truncation effect to become vanishingly small
as ρ → ∞. Specifically, consider the case when (4) is not
satisfied. Let

f (x) , g (x)x2 log2 x (12)

Condition (4) not being satisfied means

lim
x→∞

f (x) 6= 0 (13)

i.e. limx→∞ f (x) may equal to a positive constant,∞, or does
not exist (e.g. f (x) is a periodic function of x).

It can be shown that (following the equation, detailed
explanations are given and see also (42) in Appendix II)

lim
ρ→∞

E (W )

≥ lim
ρ→∞

E
(
WT

)

= lim
ρ→∞

ρe
−
´
A 1
rρ

log ρ+b
C g(‖x‖)dx

≥ lim
ρ→∞

ρe
−
´
D(0, 1

2
r
−1
ρ )

log ρ+b
C g(‖x‖)dx

= e−b lim
ρ→∞

e

´
<2\D(0, 1

2
r
−1
ρ )

log ρ+b
C g(‖x‖)dx

= e−b+
4π
C limx→∞ f(x) (14)

where the last step results because of the following equation:ˆ
<2\D(0, 12 r

−1
ρ )

log ρ+ b

C
g (‖x‖) dx

= lim
ρ→∞

ˆ ∞
1
2 r
−1
ρ

log ρ+ b

C
2πxg (x) dx

= lim
ρ→∞

π
2 r
−4
ρ g

(
1
2r
−1
ρ

)
log ρ+b−1

Cρ2

C
ρ(log ρ+b)2
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= lim
ρ→∞

π

2C
(log ρ+ b)

2
r−2ρ g

(
1

2
r−1ρ

)

= lim
ρ→∞

π

2C
(log ρ+ b)

2
r−2ρ

f
(
1
2r
−1
ρ

)

1
4r
−2
ρ log2

(
1
2r
−1
ρ

)

= lim
ρ→∞

2π (log ρ+ b)
2
f
(
1
2r
−1
ρ

)

C
(
log 1

2 − 1
2 log (log ρ+ b) + 1

2 log ρ+ 1
2 logC

)2

=
4π

C
lim
ρ→∞

f

(
1

2
r−1ρ

)

=
4π

C
lim
x→∞

f (x)

where in the second step, L’Hï¿œpital’s rule with C
log ρ+b being

the denominator and
´∞

1
2 r
−1
ρ

2πxg (x) dx being the numerator
is used; in the third step, (12) is used.

Remark 2: Equation (14) shows also that
limρ→∞E

(
WT

)
≥ e−b+

4π
C limx→∞ f(x) where E

(
WT

)

is the expected number of isolated nodes on a torus, which
does not include the contribution of the boundary effect on the
number of isolated nodes. Note also that the expected number
of isolated nodes in an area of A 1

rρ
in G

(
X log ρ+b

C
, g,<2

)
is

e−b. Therefore the term e
4π
C limx→∞ f(x) is entirely attributable

to the truncation effect.
Note that f (x) is a non-negative function for x > 1. It
is obvious from (14) that unless limx→∞ f (x) = 0, i.e.
(4) is satisfied, the expected number of isolated node in
G
(
X log ρ+b

C
, g, A 1

rρ

)
will be larger than the expected number

of isolated nodes in an area of A 1
rρ

in G
(
X log ρ+b

C
, g,<2

)
.

That is, the impact of the truncation effect on the number of
isolated nodes in G

(
X log ρ+b

C
, g, A 1

rρ

)
will not be vanishingly

small as ρ → ∞. In particular, it can be shown that for
g (x) = Θx

(
1

x2 log2 x

)
, the impact of the truncation effect

is non-negligible or even dominant in determining the number
of isolated nodes in G

(
X log ρ+b

C
, g, A 1

rρ

)
. Using (14), it can

also be shown that for g (x) = ωx

(
1

x2 log2 x

)
, limρ→∞E (W )

is unbounded, i.e. connectivity cannot be achieved for g (x) =

ωx

(
1

x2 log2 x

)
even if (1) and (2) are satisfied.

The above discussion leads to the following conclusion:
Theorem 3: The more restrictive requirement on g that

it satisfies (4) is a necessary condition for the impact of
the truncation effect on the number of isolated nodes in
G
(
X log ρ+b

C
, g, A 1

rρ

)
to be vanishingly small as ρ→∞. Fur-

ther for g (x) = Θx

(
1

x2 log2 x

)
, the impact of the truncation

effect is non-negligible or even dominant in determining the
number of isolated nodes in G

(
X log ρ+b

C
, g, A 1

rρ

)
; and for

g (x) = ωx

(
1

x2 log2 x

)
, the truncation effect is the domi-

nant factor in determining the number of isolated nodes in
G
(
X log ρ+b

C
, g, A 1

rρ

)
.

Noting that the number of isolated nodes in a network is a
non-negative integer, the following result can be obtained as
an easy consequence of Theorem 2 (see also [32]). Notice
that in formulating this result, we drop the assumption that b,
originally introduced in (5), is a constant, and allow it instead

to be ρ-dependent.
Corollary 1: For g satisfying both (1) and (4), a necessary

condition for G
(
X log ρ+b

C
, g, A 1

rρ

)
to be a.a.s. (as ρ → ∞)

connected is b→∞.
Remark 3: As pointed out in [2, p. 151], the three re-

quirements on g in the random connection model, i.e. ro-
tational invariance, non-increasing monotonicity and integral
boundedness, are not equally important. Particularly, rotational
invariance and non-increasing monotonicity are required only
to simply the analysis such that “the notation and formulae
will be somewhat simpler”. Similarly, we expect the results
obtained in this section and in the next section requiring
non-increasing monotonicity in (1) are also valid when the
condition in (1) is removed. These however require more com-
plicated handling of g (x), particularly when x is sufficiently
large.

V. VANISHING OF COMPONENTS OF FINITE ORDER

In this section we consider the events of the asymptotic van-
ishing of components of fixed and finite order k > 1 in the in-
finite network G

(
X log ρ+b

C
, g,<2

)
and in G

(
X log ρ+b

C
, g, A 1

rρ

)

respectively as ρ→∞.
In [2, Theorem 6.4] it was shown that as ρ → ∞ (and

log ρ+b
C → ∞) the probability for a node to be isolated given

that its component is finite converges to 1. In other words,
as ρ → ∞ a.a.s. G

(
X log ρ+b

C
, g,<2

)
has only isolated nodes

and components of infinite order, and components of fixed
and finite order k > 1 asymptotically vanish. In the following
we show that due to the truncation effect, the above result
obtained in G

(
X log ρ+b

C
, g,<2

)
does not carry over to the

conclusion that as ρ→∞ a.a.s. G
(
X log ρ+b

C
, g, A 1

rρ

)
has only

isolated nodes and infinite components too, without further
analysis on the impact of the truncation effect. Specifically, an
infinite component in G

(
X log ρ+b

C
, g,<2

)
may possibly consist

of components of extremely large order, components of fixed
and finite order k > 1 and isolated nodes involving nodes
and connections entirely contained inside A 1

rρ
, where these

components are only connected to each other via nodes and
connections outside A 1

rρ
. Note that for any finite ρ, almost

surely there is no infinite component in G
(
X log ρ+b

C
, g, A 1

rρ

)
.

Therefore we use the term component of extremely large
order to refer to a component whose order may become
asymptotically infinite as ρ→∞. As the nodes and associated
connections outside A 1

rρ
are removed, the infinite component

in <2 may possibly leave components of extremely large order,
components of finite order k > 1 and isolated nodes in A 1

rρ
.

As such, vanishing of components of finite order k > 1 in
G
(
X log ρ+b

C
, g,<2

)
as ρ → ∞ does not necessarily carry

the conclusion that components of finite order k > 1 in
G
(
X log ρ+b

C
, g, A 1

rρ

)
also vanish as ρ → ∞, even when A 1

rρ

approaches <2 as ρ → ∞. An example is illustrated in Fig.
1.

We further point out that many other topologies, particularly
under a random connection model where even a pair of nodes
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Fig. 1: An illustration that an infinite component in <2 may
leave components of extremely large order, components of
finite order k > 1 and isolated nodes in a finite (or asymp-
totically infinite) region in <2 when nodes and connections
outside the finite (asymptotically infinite) region is removed.
The figure uses the unit disk connection model as a special
case for easy illustration. Each ball has a radius of half
of the transmission range and is centered at a node. Two
adjacent balls overlap iff the associated nodes are directly
connected. The figure shows an infinite component with nodes
organized in a tree structure. The square area represents the
finite (asymptotically infinite) region. Even as the square grows
to include more and more nodes of the infinite component, it
is still possible for the square to have components of finite
order k > 1 when nodes and connections outside the square
are removed.

separated by a large distance may have a non-zero probability
to be directly connected, can be drawn for an infinite com-
ponent in <2, where after removing all nodes and associated
connections of the infinite component outside A 1

rρ
, the infinite

component leaves components of finite order k > 1 inside
A 1
rρ

, even when A 1
rρ

grows as ρ → ∞. We emphasize that
we are not hinting that the topology of the infinite component
shown in Fig. 1 is likely to occur in G

(
X log ρ+b

C
, g,<2

)
as

ρ→∞, but neither can such a possibility be precluded using
[2, Theorem 6.4]. Therefore a conclusion cannot be drawn
straightforwardly from [2, Theorem 6.4] that a.a.s. components
of finite order k > 1 in G

(
X log ρ+b

C
, g, A 1

rρ

)
vanish as ρ→∞.

Instead some non-trivial analysis is required to establish such
a conclusion in G

(
X log ρ+b

C
, g, A 1

rρ

)
.

We present such a result for the vanishing of components
of finite order k > 1 in G

(
X log ρ+b

C
, g, A 1

rρ

)
as ρ→∞ to fill

this theoretical gap:
Theorem 4: For g satisfying (1) and (4), a.a.s. there is no

component of finite order k > 1 in G
(
X log ρ+b

C
, g, A 1

rρ

)
.

Proof: See Appendix III of [33]

Remark 4: Theorem 4 gives a sufficient condition on g
required for the number of components of fixed and finite
order k > 1 in G

(
X log ρ+b

C
, g, A 1

rρ

)
to be vanishingly small

as ρ → ∞. It is also interesting to obtain a necessary
condition on g required for the number of components of
fixed and finite order k > 1 in G

(
X log ρ+b

C
, g, A 1

rρ

)
to

be vanishingly small. The technique used in the proof of
Theorem 4 however cannot answer the above question on a
necessary condition on g. More specifically, denote by ξk the
(random) number of components of order k in an instance
of G

(
Xλ, g, A 1

rρ

)
and let M be an arbitrarily large positive

integer M . The proof of Theorem 4 is based on an analysis of
E
(∑M

k=2 ξk

)
. By showing that limρ→∞E

(∑M
k=2 ξk

)
= 0,

it follows that limρ→∞ Pr
(∑M

k=2 ξk = 0
)

= 1. However

limρ→∞E
(∑M

k=2 ξk

)
= 0 is only a sufficient condition for

limρ→∞ Pr
(∑M

k=2 ξk = 0
)

= 1, not a necessary condition.
It would be interesting to develop a technique to obtain a tight
necessary condition on g required for the number of compo-
nents of fixed and finite order k > 1 in G

(
X log ρ+b

C
, g, A 1

rρ

)

to be vanishingly small.

VI. CONCLUSION

In this paper, we discussed the connectivity of
several network models including the widely used
dense network model G

(
Xρ, grρ , A

)
, extended network

model G
(
X1, g√ log ρ+b

C

, A√ρ
)

and infinite network model

G
(
Xρ, g,<2

)
. Using the scaling and coupling technique, it is

shown that the dense network model and the extended network
model are equivalent in their connectivity properties and they
are also equivalent to the network model G

(
X log ρ+b

C
, g, A 1

rρ

)
,

which can be obtained from the infinite network model
G
(
X log ρ+b

C
, g,<2

)
by removing all nodes and associated

connections outside the area A 1
rρ

of G
(
Xρ, g,<2

)
. Define

the effect associated with the above removal operation as
the truncation effect. A prerequisite for any (asymptotic)
conclusion obtained in the infinite network model to be
applicable to the dense and extended network models is
that the impact of the truncation effect must be vanishingly
small on the parameter concerned as ρ → ∞ - a conclusion
that often needs non-trivial analysis to establish. We then
conducted two case studies using a random connection
model, on the expected number of isolated nodes and on
the vanishing of components of fixed and finite order k > 1
respectively, with a focus on examining the impact of the
truncation effect and showed that the connection function g
has to decrease sufficiently fast in order for the truncation
effect to have a vanishingly small impact.

In the first case study, we showed that for g satisfying both
(1) and (4), the impact of the truncation effect on the number
of isolated nodes in G

(
X log ρ+b

C
, g, A 1

rρ

)
is vanishingly small

as ρ → ∞. However for g satisfying (1) and (2) only, the
impact of the truncation effect on the number of isolated nodes
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in G
(
X log ρ+b

C
, g, A 1

rρ

)
is non-negligible and may even be the

dominant factor in determining the number of isolated nodes.
In the second case study, we first showed using an example

that due to the truncation effect, asymptotic vanishing of com-
ponents of fixed and finite order k > 1 in an infinite network
does not carry over straightforwardly to the conclusion that
components of fixed and finite order k > 1 also vanish
asymptotically in the dense and extended networks. Then to
fill this theoretical gap, a result is presented on the asymptotic
vanishing of components of finite order k > 1 in the dense and
extended network models under a random connection model.

Some interesting results useful for the analysis of con-
nectivity under a random connection model in the dense
and extended networks were also established. These include
the expected number of isolated nodes, which resulted in a
necessary condition for a dense (or extended) network to be
connected, the vanishingly small impact of the boundary effect
on the number of isolated nodes, and the asymptotic vanishing
of components of finite order k > 1.

Many results in the paper were given in the form of sufficient
conditions on the connection function g required for the impact
of the truncation effect to be vanishingly small. It will be
interesting and important to examine necessary conditions
on g required for the impact of the truncation effect to be
vanishingly small.

APPENDIX I PROOF OF THEOREM 1

In this Appendix, we give a proof of Theorem 1.
We analyze E (W ) as ρ → ∞. Denote by D

(
y, r−ερ

)
a

disk centered at y and with a radius r−ερ , where ε is a small

positive constant and ε < 1
4 . Denote by B

(
A 1
rρ

)
⊂ A 1

rρ
an

area within r−ερ of the border of A 1
rρ

; denote by `A 1
rρ
⊂ A 1

rρ

a rectangular area of size r−ερ ×
(
r−1ρ − 2r−ερ

)
within r−ερ of

one side of A 1
rρ

, away from the corners of A 1
rρ

by r−ερ , and
there are four such areas; let ∠A 1

rρ
⊂ A 1

rρ
denote a square

of size r−ερ ×r−ερ at the four corners of A 1
rρ

. Fig. 2 illustrates
these areas.

It follows from (8) that

lim
ρ→∞

E (W )

= lim
ρ→∞

ˆ
A 1
rρ

log ρ+ b

C
e
−
´
A 1
rρ

log ρ+b
C g(‖x−y‖)dx

dy

= lim
ρ→∞

ρr2ρ

ˆ
A 1
rρ

\B
(
A 1
rρ

) e−ρr
2
ρ

´
A 1
rρ

g(‖x−y‖)dx
dy

+ lim
ρ→∞

4ρr2ρ

ˆ
`A 1

rρ

e
−ρr2ρ

´
A 1
rρ

g(‖x−y‖)dx
dy

+ lim
ρ→∞

4ρr2ρ

ˆ
∠A 1

rρ

e
−ρr2ρ

´
A 1
rρ

g(‖x−y‖)dx
dy (15)

The three summands in (15) represent respectively the
expected number of isolated nodes in the central area

r−ε
ρ

r−1
ρ

ℓA 1
rρ

ℓA 1
rρ

ℓA 1
rρ

ℓA 1
rρ

∠A 1
rρ

∠A 1
rρ

∠A 1
rρ

∠A 1
rρ

A 1
rρ
\B

(
A 1

rρ

)

Fig. 2: An Illustration of the boundary areas of A 1
rρ

. The areas

∠A 1
rρ

, `A 1
rρ

are self-explanatory and B
(
A 1
rρ

)
is the shaded

area in the figure.

A 1
rρ
\B
(
A 1
rρ

)
, in the boundary area along the four sides of

A 1
rρ

and in the four corners of A 1
rρ

. In the following analysis,
we will show that for g satisfying both (1) and (4), the first
term approaches e−b as ρ→∞, and the second and the third
terms approach 0 as ρ→∞.

Consider the first summand in (15). Using the definition of
rρ in (5), first it can be shown that for any y and therefore
y ∈ A 1

rρ
\B
(
A 1
rρ

)
(see Fig. 2 for the region A 1

rρ
\B
(
A 1
rρ

)
):

lim
ρ→∞

ρe
−ρr2ρ

´
D(y,r

−ε
ρ )

g(‖x−y‖)dx

= lim
ρ→∞

ρe
−ρr2ρ

(´
<2 g(‖x−y‖)dx−

´
<2\D(y,r

−ε
ρ )

g(‖x−y‖)dx
)

= lim
ρ→∞

ρe
−ρr2ρ

(
C−
´
<2\D(y,r

−ε
ρ )

g(‖x−y‖)dx
)

= lim
ρ→∞

e−be
ρr2ρ
´
<2\D(y,r

−ε
ρ )

g(‖x−y‖)dx

= e−b lim
ρ→∞

e
log ρ+b
C

´∞
r
−ε
ρ

2πrg(r)dr
(16)

It can be shown further using (5) that (following the
equation, detailed explanations are given):

lim
ρ→∞

log ρ+ b

C

ˆ ∞
r−ερ

2πrg (r) dr

= lim
ρ→∞

´∞
r−ερ

2πrg (r) dr

C
log ρ+b

= lim
ρ→∞

−2πr−ερ g
(
r−ερ
) (
− ε2r−ε−2ρ

1−(log ρ+b)
Cρ2

)

− C
ρ(log ρ+b)2

= lim
ρ→∞

πε (log ρ+ b)
2
r−2ε−2ρ g

(
r−ερ
) log ρ+ b− 1

Cρ

= lim
ρ→∞

πε (log ρ+ b)
2
r−2ερ g

(
r−ερ
)

(17)
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= lim
ρ→∞

πε (log ρ+ b)
2
r−2ερ oρ

(
1

r−2ερ log2
(
r−2ερ

)
)

(18)

= lim
ρ→∞

(
πε (log ρ+ b)

2

oρ

(
1

2ε2 (log (log ρ+ b)− logC − log ρ)
2

))

=0 (19)

where L’Hï¿œpital’s rule is used in the second step of the
above equation, and g (x) = ox

(
1

x2 log2 x

)
is used from (17)

to (18). As a result of (16) and (19)

lim
ρ→∞

ρe
−ρr2ρ

´
D(y,r

−ε
ρ )

g(‖x−y‖)dx
= e−b (20)

It follows that (see Fig. 2 for an illustration of the region
A 1
rρ
\B
(
A 1
rρ

)
, which is unshaded in the figure.)

lim
ρ→∞

ρr2ρ

ˆ
A 1
rρ

\B
(
A 1
rρ

) e−ρr
2
ρ

´
A 1
rρ

g(‖x−y‖)dx
dy

≤ lim
ρ→∞

ρr2ρ

ˆ
A 1
rρ

\B
(
A 1
rρ

) e−ρr2ρ
´
D(y,r

−ε
ρ )

g(‖x−y‖)dx
dy

= lim
ρ→∞

(
ρe
−ρr2ρ

´
D(0,r

−ε
ρ )

g(‖x‖)dx)

r2ρ
ˆ
A 1
rρ

\B
(
A 1
rρ

) dy



=e−b

and

lim
ρ→∞

ρr2ρ

ˆ
A 1
rρ

\B
(
A 1
rρ

) e−ρr
2
ρ

´
A 1
rρ

g(‖x−y‖)dx
dy

≥ lim
ρ→∞

ρr2ρ

ˆ
A 1
rρ

\B
(
A 1
rρ

) e−ρr2ρ ´<2 g(‖x−y‖)dxdy

= e−b

Therefore

lim
ρ→∞

ρr2ρ

ˆ
A 1
rρ

/B

(
A 1
rρ

) e−ρr
2
ρ

´
A 1
rρ

g(‖x−y‖)dx
dy = e−b

(21)
For the second term in (15), an illustration of the boundary

area for y ∈ `A 1
rρ

is shown in Fig. 3.

Define Ly ,
(
A 1
rρ
∩D

(
y, r−ερ

))
\Dy (i.e. the shaded area

in Fig. 3b). The symbols Dy , Cy , ly and Ry are defined in
Fig. 3. It can be shown that

4 lim
ρ→∞

ρr2ρ

ˆ
`A 1

rρ

e
−ρr2ρ

´
A 1
rρ

g(‖x−y‖)dx
dy

≤4 lim
ρ→∞

r2ρ

ˆ
`A 1

rρ

ρe

−ρr2ρ
´
A 1
rρ

∩D(y,r
−ε
ρ )

g(‖x−y‖)dx
dy

Border of A 1
rρ

yly

r−ε
ρ

Ry

Cy

Dy

(a)

Border of A 1
rρ

yly

r−ε
ρ

DyLy

(b)

Fig. 3: An illustration of the boundary area for y ∈ `A 1
rρ

. The
figure is drawn for y located near the left border of A 1

rρ
. The

situations for y near the top, bottom and right borders of A 1
rρ

can be drawn analogously. D
(
y, r−ερ

)
is a disk centered at y

and has a radius r−ερ . ly is the distance between y and the
border of A 1

rρ
. Dy is a half disk centered at y, with a radius

r−ερ and on the right side of y. Cy is a half disk centered at
y, with a radius ly and on the left side of y. Ry ⊂ A 1

rρ
∩

D
(
y, r−ερ

)
is a rectangle of ly×2

√
r−2ερ − l2y on the left side

of y. Ly =
(
A 1
rρ
∩D

(
y, r−ερ

))
\Dy is the shaded area in

sub-figure b.

=4 lim
ρ→∞

r2ρ

ˆ
`A 1

rρ

ρe
−ρr2ρ

(´
Dy

g(‖x−y‖)dx+
´
Ly

g(‖x−y‖)dx
)
dy

=4 lim
ρ→∞

((
ρ

1
2 e
− 1

2ρr
2
ρ

´
D(0,r

−ε
ρ )

g(‖x‖)dx)


ρ 1

2 r2ρ

ˆ
`A 1

rρ

e
−ρr2ρ

´
Ly

g(‖x−y‖)dx
dy




 (22)

For the first term ρ
1
2 e
− 1

2ρr
2
ρ

´
D(0,r

−ε
ρ )

g(‖x‖)dx
in (22), it can

be shown that

lim
ρ→∞

ρ
1
2 e
− 1

2ρr
2
ρ

´
D(0,r

−ε
ρ )

g(‖x‖)dx

= lim
ρ→∞

ρ
1
2 e
− 1

2ρr
2
ρ

(´
<2 g(‖x‖)dx−

´
<2\D(0,r

−ε
ρ )

g(‖x‖)dx
)

= lim
ρ→∞

ρ
1
2 e−

1
2ρr

2
ρCe

1
2ρr

2
ρ

´
<2\D(0,r

−ε
ρ )

g(‖x‖)dx

= e−
b
2 (23)

where (19) is used in reaching (23).
Let γ be a positive constant and 1

2 > γ > ε
2 . Let 4 be a
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positive constant such that
ˆ 4
0

2πxg (x) dx = γ2C (24)

The existence of such a positive constant 4 can be shown by
using (6) and noting that 2γ < 1. Using the non-increasing
property of g, it can also be shown that g (4) > 0; otherwise
it can be shown that

´4
0

2πxg (x) dx = C which implies γ =
1
2 . This constitutes a contradiction with the requirement that
1
2 > γ > ε

2 . Therefore g (4) > 0. In the following analysis,
it is assumed that ρ is sufficiently large such that r−ερ ≥ 24.

For the second term in (22), it can be shown that

lim
ρ→∞

ρ
1
2 r2ρ

ˆ
`A 1

rρ

e
−ρr2ρ

´
Ly

g(‖x−y‖)dx
dy

= lim
ρ→∞

(
ρ

1
2 r2ρ

(
r−1ρ − 2r−ερ

)

×
ˆ r−ερ

0

e
−ρr2ρ

´
Ly

g(‖x−y‖)dx
dy

)
(25)

≤ lim
ρ→∞

ρ
1
2 rρ

ˆ r−ερ

0

e
−ρr2ρ

´
Ly

g(‖x−y‖)dx
dy

= lim
ρ→∞

√
log ρ+ b

C

ˆ r−ερ

0

e
−ρr2ρ

´
Ly

g(‖x−y‖)dx
dy

= lim
ρ→∞

√
log ρ+ b

C

(ˆ 4
0

e
−ρr2ρ

´
Ly

g(‖x−y‖)dx
dy

+

ˆ r−ερ

4
e
−ρr2ρ

´
Ly

g(‖x−y‖)dx
dy

)
(26)

where in (25) y represents a (any) point in `Aρ at a Euclidean
distance y ∈ [0, r−ερ ] apart from the border of Aρ. Define
λ , log ρ+b

C for convenience, it can be further shown that in
(26)

lim
ρ→∞

√
λ

ˆ r−ερ

4
e
−ρr2ρ

´
Ly

g(‖x−y‖)dx
dy

≤ lim
ρ→∞

√
λ

ˆ r−ερ

4
e
−ρr2ρ

´
Cy

g(‖x−y‖)dx
dy

= lim
ρ→∞

√
λ

ˆ r−ερ

4
e−

1
2ρr

2
ρ

´ y
0

2πxg(x)dxdy

= lim
ρ→∞

√
λ

ˆ r−ερ

4
e−

1
2ρr

2
ρ(
´4
0

2πxg(x)dx+
´ y
4 2πxg(x)dx)dy

≤ lim
ρ→∞

√
λ

ˆ r−ερ

4
e−

1
2ρr

2
ρ

´4
0

2πxg(x)dxdy

= lim
ρ→∞

√
λ

ˆ r−ερ

4
e−γ(log ρ+b)dy (27)

= lim
ρ→∞

√
λ

(
e−γbρ−γ

((
log ρ+ b

Cρ

)− ε2
−4

))

= 0 (28)

where (24) is used in reaching (27), and γ > ε
2 is used in

reaching (28). It can also be shown that for the other term in
(26),

lim
ρ→∞

√
log ρ+ b

C

ˆ 4
0

e
−ρr2ρ

´
Ly

g(‖x−y‖)dx
dy

≤ lim
ρ→∞

√
λ

ˆ 4
0

e
−ρr2ρ

´
Ry

g(‖x−y‖)dx
dy (29)

= lim
ρ→∞

√
λ

ˆ 4
0

e−ρr
2
ρ2
´ y
0

´√r
−2ε
ρ −x2

0 g(
√
x2+z2)dzdxdy

≤ lim
ρ→∞

√
λ

ˆ 4
0

e−ρr
2
ρ2
´ y
0

´ r−ερ −x
0 g(

√
x2+z2)dzdxdy (30)

≤ lim
ρ→∞

√
λ

ˆ 4
0

e−ρr
2
ρ2
´ y
0

´ r−ερ −4
0 g(

√
x2+z2)dzdxdy (31)

≤ lim
ρ→∞

√
λ

ˆ 4
0

e−ρr
2
ρ2
´ y
0

´ r−ερ −4
0 g(z+4)dzdxdy (32)

= lim
ρ→∞

√
λ

ˆ 4
0

e−ρr
2
ρ2y
´ r−ερ −4
0 g(z+4)dzdy (33)

where (30) is obtained by noting that r−2ερ −x2 ≥
(
r−ερ − x

)2
for r−ερ ≥ x (note that for ρ sufficiently large, r−ερ > 4 ≥ y ≥
x); (31) is obtained by noting that x ≤ 4 and (32) is obtained
by noting that y ≤ 4 and the non-increasing property of g.

Let ρ be sufficiently large such that r−ερ ≥ 24 and also note
that g (4) > 0. Therefore β ,

´4
0
g (z +4) dz is a positive

constant and β > 0. It then follows from (33) that

lim
ρ→∞

√
log ρ+ b

C

ˆ 4
0

e
−ρr2ρ

´
Ly

g(‖x−y‖)dx
dy

≤ lim
ρ→∞

√
log ρ+ b

C

ˆ 4
0

e−ρr
2
ρ2βydy

= lim
ρ→∞

√
log ρ+ b

C
× 1− e−ρr2ρ2β4

ρr2ρ2β

= lim
ρ→∞

√
log ρ+ b

C
× 1− e−2β4 log ρ+b

C

2β log ρ+b
C

= 0 (34)

As a result of (28) and (34), both terms on the right hand
side of (26) go to zero and it follows that

lim
ρ→∞

ρ
1
2 r2ρ

ˆ
`Aρ

e
−ρr2ρ

´
Ly

g(‖x−y‖)dx
dy = 0

The above equation, together with (22) and (23), leads to the
conclusion that

4 lim
ρ→∞

ρr2ρ

ˆ
`Aρ

e
−ρr2ρ

´
Aρ

g(‖x−y‖)dx
dy = 0 (35)

i.e. the second term in (15) approaches 0 as ρ→∞.
For the third term in (15), it can be shown that

4 lim
ρ→∞

ρr2ρ

ˆ
∠A 1

rρ

e
−ρr2ρ

´
A 1
rρ

g(‖x−y‖)dx
dy

≤ 4 lim
ρ→∞

ρr2ρ

ˆ
∠A 1

rρ

e

−ρr2ρ
´
A 1
rρ

∩D(y,r
−ε
ρ )

g(‖x−y‖)dx
dy
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≤ 4 lim
ρ→∞

ρr2ρ

ˆ
∠A 1

rρ

e
− 1

4ρr
2
ρ

´
D(y,r

−ε
ρ )

g(‖x−y‖)dx
dy

= 4 lim
ρ→∞

(
r−ερ
)2
r2ρρe

− 1
4ρr

2
ρ

´
D(y,r

−ε
ρ )

g(‖x−y‖)dx

= 4 lim
ρ→∞

r2−2ερ ρe
− 1

4ρr
2
ρ

(
C−
´
<2\D(y,r

−ε
ρ )

g(‖x−y‖)dx
)

= 4 lim
ρ→∞

(
log ρ+ b

Cρ

)1−ε
ρe−

1
4 (log ρ+b) (36)

= 4C−1+εe−
1
4 b lim
ρ→∞

(log ρ+ b)
1−ε

ρ
1
4−ε

= 0 (37)

where the second step results by noting that for any y ∈
∠A 1

rρ
, Aρ ∩ D

(
y, r−ερ

)
covers at least one quarter of

D
(
y, r−ερ

)
, (19) is used in reaching (36), and ε < 1

4 is used
in the final step.

As a result of (15), (21), (35) and (37):

lim
ρ→∞

E (W ) = e−b (38)

APPENDIX II: PROOF OF LEMMA 1

The torus that is commonly discussed in random geometric
graph theory is essentially the same as a square except that
the distance between two points on a torus is defined by
their toroidal distance, instead of Euclidean distance. Thus

a pair of nodes in GT
(
X log ρ+b

C
, g, AT1

rρ

)
, located at x1

and x2 respectively, are directly connected with probability
g
(
‖x1 − x2‖T

)
where ‖x1 − x2‖T denotes the toroidal dis-

tance between the two nodes. For a unit torus AT =
[
− 1

2 ,
1
2

]2
,

the toroidal distance is given by [10, p. 13]:

‖x1 − x2‖T , min
{
‖x1 + z − x2‖ : z ∈ Z2

}
(39)

The toroidal distance between points on a torus of any other
size can be computed analogously.

Remark 5: The use of toroidal distance allows nodes lo-
cated near the boundary to have the same number of con-
nections probabilistically as a node located near the center.
Therefore it allows the removal of the boundary effect that is
present in a square. The consideration of a torus implies that
there is no need to consider special cases occurring near the
boundary of the region and that events inside the region do
not depend on the particular location inside the region. This
often simplifies the analysis.
From now on, whenever the difference between a torus and
a square affects the parameter being discussed, we use super-
script T to mark the parameter in a torus.

We note the following relation between toroidal distance and
Euclidean distance on a square area centered at the origin:

‖x1 − x2‖T ≤ ‖x1 − x2‖ (40)

‖x‖T = ‖x‖ (41)

which will be used in the later analysis.

It can then be shown that for an arbitrary node in

GT
(
X log ρ+b

C
, g, AT1

rρ

)
at location y, the probability that it

is isolated is given by:

Pr
(
ITy = 1

)
= e

−
´
AT1
rρ

log ρ+b
C g(‖x−y‖T )dx

= e

−
´
AT1
rρ

log ρ+b
C g(‖x‖T )dx

= e
−
´
A 1
rρ

log ρ+b
C g(‖x‖)dx

where in the second step, the property of a torus that the
probability that an arbitrary node at location y is isolated is
equal to the probability that a node at the origin is isolated is
used; in the third step (41) is used.

Thus the expected number of isolated nodes in

GT
(
X log ρ+b

C
, g, AT1

rρ

)
is given by

E
(
WT

)

=

ˆ
A 1
rρ

log ρ+ b

C
e
−
´
A 1
rρ

log ρ+b
C g(‖x‖)dx

dy (42)

=
1

r2ρ

log ρ+ b

C
e
−
´
A 1
rρ

log ρ+b
C g(‖x‖)dx

(43)

= ρe
−
´
A 1
rρ

log ρ+b
C g(‖x‖)dx

(44)

First it can be shown using (6) that for g satisfying (4)

lim
ρ→∞

ρe
−
´
D(0,r

−ε
ρ )

log ρ+b
C g(‖x‖)dx

= lim
ρ→∞

ρe
− log ρ+b

C

(
C−
´
<2\D(0,r

−ε
ρ )

g(‖x‖)dx
)

= e−b lim
ρ→∞

e
log ρ+b
C

´∞
r
−ε
ρ

2πxg(x)dx

= e−b (45)

where D (0, x) denotes a disk centered at the origin and with
a radius x, ε is a small positive constant, and the last step
results because

lim
ρ→∞

´∞
r−ερ

2πxg (x) dx

1
log ρ+b

= lim
ρ→∞

πεr−ερ g
(
r−ερ
)
r−ε−2ρ

log ρ+b−1
Cρ2

1
ρ(log ρ+b)2

(46)

= lim
ρ→∞

πε (log ρ+ b)
2
r−2ερ oρ

(
1

r−2ερ log2
(
r−2ερ

)
)

= 0

where L’Hï¿œpital’s rule is used in reaching (46) and in
the third step g (x) = ox

(
1

x2 log2 x

)
is used. Note that by

definition of C in (6),

ρe−
´
<2

log ρ+b
C g(‖x‖)dx = e−b (47)
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and

ρe−
´
<2

log ρ+b
C g(‖x‖)dx

≤ ρe
−
´
A 1
rρ

log ρ+b
C g(‖x‖)dx

≤ ρe
−
´
D(0,r

−ε
ρ )

log ρ+b
C g(‖x‖)dx

(48)

As a result of (42), (45), (47) and (48)

lim
ρ→∞

E
(
WT

)
= e−b (49)
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