
A Capacity Upper Bound for Large Wireless
Networks with Generally Distributed Nodes

Guoqiang Mao, Zihuai Lin Wei Zhang
School of Electrical and Information Engineering School of Electrical Engineering and Telecommunications

The University of Sydney The University of New South Wales
Email: {guoqiang.mao, zihuai.lin}@sydney.edu.au Email: w.zhang@unsw.edu.au

Abstract—Since the seminal work of Gupta and Kumar,
extensive research has been done on studying the capacity of large
wireless networks under various scenarios. Most of the existing
work focuses on studying the capacity of networks with uniformly
or Poissonly distributed nodes. While uniform and Poisson
distribution form an important class of spatial distributions,
their capability in capturing the spatial distribution of users in
various scenarios and application settings is limited. Therefore it
is critical to investigate to what extent, the aforementioned results
on capacity of networks with uniformly or Poissonly distributed
nodes depend on the underlying node distribution being uniform
or Poisson. In this paper, we study the capacity of networks under
a general node distribution. A capacity upper bound on networks
with generally distributed nodes is obtained, which is valid for
both finite networks and asymptotically infinite networks. By
imposing some mild conditions on the transmission range, we
further simplify the result and show that the asymptotic capacity
upper bound can be expressed as a product of four factors,
which represents respectively the impact of node distribution, link
capacity, number of source destination pairs and the transmission
range. The upper bound is shown to be tight in the sense that for
the special case of networks with uniformly distributed nodes,
the bound is in the same order as known results in the literature.

Index Terms—Capacity, node distribution, wireless networks

I. INTRODUCTION

Since the seminal work of Gupta and Kumar [1], extensive
research has been done on studying the capacity of large wire-
less networks under various scenarios [1]–[9]. More specifi-
cally, in [1], Gupta and Kumar considered an ad-hoc network
with a total of n nodes uniformly and i.i.d. on an area of unit
size. Each node in the network is capable of transmitting at
W bits/s and using a fixed and identical transmission range. It
was shown that when each node randomly and independently
chooses another node in the network as its destination, the
transport capacity and the achievable per-node throughput are
Θn

(
W
√

n
logn

)
and Θn

(
W√
n logn

)
respectively1. When the
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1The following notations are used throughout the paper. For two positive
functions f (x) and h (x):

• f (x) = ox (h (x)) iff (if and only if) limx→∞
f(x)
h(x)

= 0;
• f (x) = ωx (h (x)) iff h (x) = ox (f (x));
• f (x) = Θx (h (x)) iff there exist a sufficiently large x0 and two

positive constants c1 and c2 such that for any x > x0, c1h (x) ≥
f (x) ≥ c2h (x);

• f (x) ∼x h (x) iff limx→∞
f(x)
h(x)

= 1;

nodes are optimally and deterministically placed to maximize
throughput, the transport capacity and the achievable per-node
throughput become Θn (W

√
n) and Θn

(
W√
n

)
respectively.

In [2], Franceschetti et al. considered essentially the same
random network as that in [1] except that nodes are now
allowed to use two different transmission ranges. The link
capacity is determined by the associated SINR through the
Shannon–Hartley theorem. By having each source-destination
pair transmitting via the so-called “highway system”, formed
by nodes using the smaller transmission range, it was shown
in [2] that the transport capacity and the per-node throughput
can also reach Θn (

√
n) and Θn

(
1√
n

)
respectively even when

nodes are randomly deployed. The existence of such highways
was analytically proved using the percolation theory [10]. The
key to achieving a higher capacity in the network considered in
[2] is that nodes are restricted to use the smaller transmission
range as often as possible and the larger transmission range
can only be used by source (destination) nodes to access their
respective nearest highway nodes. In this way, the number
of concurrent transmissions that can be accommodated in
the network area is maximized, hence the improvement in
capacity. In [4] Grossglauser and Tse showed that in mobile
ad hoc networks, by leveraging on the nodes’ mobility, a per-
node throughput of Θn (1) can be achieved at the expense of
unbounded delay. Their work [4] has sparked huge interest
in studying the capacity-delay tradeoffs in mobile networks
assuming various mobility models and the obtained results
often vary greatly with the different mobility models being
considered, see [3], [5], [11]–[14] and references therein for
examples. In [7], Chen et al. studied the capacity of wireless
networks under a different traffic distribution. More specifi-
cally, they considered a network with a set of n randomly
deployed nodes transmitting to single sink or multiple sinks
where the sinks can be either regularly-deployed or randomly-
deployed. Under the above settings, it was shown that with
single sink, the transport capacity is given by Θn (W ); with
k sinks, the transport capacity is increased to Θn (kW ) when
k = On(n log n) or Θn (n log nW ) when k = Ωn (n log n).
There is also a significant amount of work studying the impact
of infrastructure nodes [6] and multiple-access protocols [9]

• An event ξx depending on x is said to occur asymptotically almost
surely (a.a.s.) if its probability tends to one as x→∞.

Globecom 2013 - Ad Hoc and Sensor Networking Symposium

978-1-4799-1353-4/13/$31.00 ©2013 IEEE 369



on capacity and the multicast capacity [8]. We refer readers
to [15] for a comprehensive review of related work.

The above work studying the capacity of random networks
has all assumed that nodes in the network are either uni-
formly or Poissonly distributed. While uniform and Poisson
distribution form an important class of spatial distributions
and have been extensively used in the area, their capability in
capturing the spatial distribution of users in various scenarios
and application settings is limited. Therefore it is crucial
to investigate to what extent, the aforementioned results on
network capacity depend on the underlying node distribution
being uniform or Poisson. It is worth noting that in a series
of papers [16]–[18], Alfano and Garetto et al. studied the
capacity of a class of clustered networks in which nodes are
distributed according to a doubly stochastic shot-noise Cox
process. A doubly stochastic shot-noise Cox process is formed
by first deploying a set of nodes, termed cluster centers,
randomly and independently in the network area, and then
each cluster center generating independently a point process
of nodes with a designated density function. The overall node
process is then given by the superposition of the individual
processes generated by the cluster centers. Their work [16]–
[18] generated interesting insight on the performance impact
of doubly stochastic shot-noise Coxs process, compared with
commonly used Poisson or uniform spatial node distribution.
Different from the work of Alfano and Garetto et al. [16]–
[18], in this paper we study the capacity of networks under a
more general node distribution, to be defined in Section II.

In addition to capacity, delay is also an important perfor-
mance metric that has been extensively investigated. In this
paper we focus on the study of capacity. We refer readers to
[3], [5], [11]–[13] for relevant work on delay.

The following is a detailed summary of our contributions:
• We develop a novel method of analyzing information

exchanges across a closed curve for studying the capacity
of large wireless networks, distinct from the methods used
in previous work following the methodology in [1];

• Using the method, we derive the capacity upper bound of
networks with generally distributed nodes. The capacity
upper bound is valid for both finite and infinite networks.
The method is shown to be effective and efficient for
analyzing the capacity of large networks in a more
general setting;

• By imposing some mild conditions on the transmission
range, we simplify the capacity upper bound to gain in-
sight on the interactions among major capacity-impacting
factors. We show that the (asymptotic) capacity upper
bound of networks with generally distributed nodes is
determined by four factors, i.e. node distribution, the link
capacity, the number of source-destination pairs and the
transmission range, in a multiplicative form. The tightness
of the upper bound is validated by comparing the upper
bound with known results obtained assuming uniform or
Poisson node distribution.

The rest of this paper is organized as follows: Section II
presents the network model of interest; Section III presents
theoretical analysis on the capacity upper bound of networks
with generally distributed nodes; in Section IV, by imposing

some mild conditions on the transmission range, we simplify
the results obtained in Section III and discuss insight revealed
through the simplified results. The tightness of the capacity
upper bound is also validated. Finally, Section V concludes
this paper.

II. NETWORK MODEL

Two network models are widely used in the study of
(asymptotic) network capacity: the dense network model and
the extended network model. By appropriate scaling of the
distance, the results obtained under one model are often readily
extendable to the other model [19]. In this paper, we consider
the dense network model. More specifically, we consider a
wireless multihop network with a total of n nodes i.i.d. on a
unit square A =

[
− 1

2 ,
1
2

]2
following a general density function

f (x) where

f (x) > 0 ∀x ∈ Aˆ
A

f (x) dx = 1

Further, a pair of nodes are directly connected if and only
if (iff) their Euclidean distance is smaller than or equal to
r (n), known as the transmission range, and the link capacity
of each link is W bits/s. Here the value of r (n) is assumed
to be known and such that it ensures the resulting network is
connected, which is a prerequisite for studying the capacity of
the network. For simplicity, we may drop the dependence on
n for notational brevity and use r for r (n).

We consider a scenario where each node chooses randomly
and independently another node in the network as its destina-
tion. Therefore there are a total of n source-destination pairs in
the network. Further, a saturated traffic scenario is considered
where each node always has a packet to transmit when trans-
mission opportunity becomes available. Each node transmits
following a CSMA protocol. That is, before transmitting, a
node first senses the channel and can only transmit if there is
no other active transmitter within (1 +4) r (n), where 4 is
a positive constant and (1 +4) r (n) is commonly known as
the sensing range. Thus two simultaneously active transmitters
must be separated by a distance of at least (1 +4) r (n).
Noting that in the widely used protocol model or SINR
model [1], a distance can also be identified such that two
simultaneously active transmitters must be separated by at least
that distance. Therefore the communication model used in this
paper can be readily extended to incorporate other models
too. Given the transmission power, the path loss model and
the carrier-sensing threshold, the sensing range can be easily
computed. We refer readers to [9] and our previous work
[20] for more details of CSMA protocols. Further, a random
backoff mechanism, which is commonly adopted in CSMA
protocols, is used to resolve channel contention when multiple
nodes contend for transmission. Therefore we consider an ideal
scenario where there is no packet loss due to collision.

Denote the above network by G (n, r,A). In this work, we
are interested in finding the capacity of G (n, r, A).

Particularly, we study the capacity of G (n, r, A) by inves-
tigating the so-called per-node throughput. Let Φ be the set
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of all spatial and temporal routing algorithms. Let λχi (n) be
the long-term average throughput obtained by the ith source-
destination pair when using routing algorithm χ ∈ Φ. The per-
node throughput of G (n, r, A) when using routing algorithm
χ ∈ Φ, denoted by λχ (n), is given by

λχ (n) = min
i∈Γ

λχi (n)

where Γ is the set of indices of all source-destination pairs.
The per-node throughput of G (n, r, A), denoted by λ (n), is
given by

λ (n) = max
χ∈Φ

(λχ (n)) = max
χ∈Φ

(
min
i∈Γ

λχi (n)

)
That is, there exists an optimum routing algorithm and a
sufficiently large time interval τ such that every τ time
interval, each and every source can transmit at least λ (n) τ
bits to its destination simultaneously with all other source-
destination pairs in the network. This definition is consistent
with that used in [1].

III. ANALYSIS OF CAPACITY UPPER BOUND

The set of concurrent transmitters using the CSMA protocol
is commonly modeled by a marked point process, known as
Matern process or the hardcore process [15], [21]. Particularly,
let xi be the location of node i. Assume that time is divided
into time slots of equal length. At the beginning of a time
slot, a random number uniformly distributed within [0, 1] is
assigned to each node. Denote the number assigned to node i
by pi and it is assumed that pi and pj are independent where
i 6= j. A node i is allowed to transmit if [21]

pi < min
j∈{k:‖xk−xi‖≤(1+4)r}/{i}

pj (1)

That is, its pi is the smallest among all nodes within its sensing
range. In the next time slot, the above process repeats.

We will use a disk method to determine the capacity upper
bound.

Let D (R) be a disk centered at the origin and with a radius
R where 0 < R ≤ 1

2 , as illustrated in Fig. 1. For an arbitrarily
chosen node, the probability that the node falls within D (R)
is given by

η (R) =

ˆ
D(R)

f (x) dx (2)

and the probability that the node falls outside D (R) is given
by 1 − η (R). It follows that the expected number of nodes
within D (R) is η (R)n. Among these nodes within D (R),
with probability 1 − η (R), its destination is located outside
D (R). Therefore the expected fraction of source-destination
pairs with the source and the destination located in different
side of D (R) is given by 2η (R) (1− η (R)).

Denote by m (R) the expected number of active links
crossing the boundary of D (R), the following inequality must
hold: 2η (R) (1− η (R))nλ (n) ≤ m (R)W for any value of
R so long as D (R) ⊂ A. As an easy consequence of the
above inequality

λ (n) ≤ min
0<R≤0.5

m (R)W

2η (R) (1− η (R))n
(3)

2r

Figure 1. An illustration of the disk method of computing the capacity upper
bound. The arrow represents the direction of packet forwarding.

In the following, we will try to find the value of m (R).
Consider Fig. 1 where the boundary of D (R) is shown as

the dotted circle. Let D (R− r,R+ r) be an annulus centered
at the origin and with an inner radius of R − r and an outer
radius of R+ r. Let L (R− r,R+ r) be the random number
of simultaneously active transmitters within D (R− r,R+ r)
in a randomly chosen time slot. It follows that

m (R) ≤ E (L (R− r,R+ r)) (4)

where the expectation E() is taken with regards to time
because the number of simultaneously active transmitters may
be time-varying.

Next we shall find E (L (R− r,R+ r)). Let dA be a very
small (differential) area and dA ⊂ D (R− r,R+ r). Let x
be the center of dA. Denote by ηdA the event that there is at
least one node in dA. It can be shown that

Pr (ηdA) = 1− (1− f (dA))
n

= nf (dA) + odA (f (dA))

For convenience, we use f (dA) for
´
dA
f (x) dx. When

dA→ 0, f (dA)→ f (x) dA.
Let D (x, (1 +4) r) be a disk centered at the center

of dA and with a radius (1 +4) r. The pmf (probability
mass function) of the random number of nodes falling into
D (dA, (1 +4) r), denoted by N (dA, (1 +4) r), is given
by:

Pr (N (dA, (1 +4) r) = k)

=(
n
k

) [f (D (x, (1 +4) r))]
k

[1− f (D (x, (1 +4) r))]
n−k

Using the above equation and the expression
for Pr (ηdA) obtained earlier, the joint distribution
Pr (N (dA, (1 +4) r) = k, ηdA) is then given by:

Pr (N (dA, (1 +4) r) = k, ηdA)

= Pr(ηdA|N (dA, (1 +4) r) = k) Pr(N (dA, (1 +4) r) = k)

=[1− (1− f (dA)

f (D (x, (1 +4) r))
)k] Pr(N (dA, (1 +4) r) = k)

=n(
n− 1
k − 1

) [f (D (x, (1 +4) r))]
k−1

× [1− f (D (x, (1 +4) r))]
n−k

f (dA)
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+odA(
f (dA)

f (D (x, (1 +4) r))
)

Conditioned on N (dA, (1 +4) r) = k, ηdA, denoting by
ξdA the event that there is exactly one node in dA and that
node is an active transmitter2, it can be obtained that

Pr (ξdA|N (dA, (1 +4) r) = k, ηdA)

=

ˆ 1

0

(1− x)
k−1

dx =
1

k

The above equation implies that the node in dA will have
equal opportunity to transmit compared with other nodes in
its sensing range.

From the above analysis, it follows that

Pr(ξdA)

= Pr(ξdA, ηdA)

=

n∑
k=1

Pr(ξdA, N (dA, (1 +4) r) = k, ηdA)

=

n∑
k=1

[Pr(ξdA|N (dA, (1 +4) r) = k, ηdA)

×Pr(N (dA, (1 +4) r) = k, ηdA)]

=

n∑
k=1

1

k
{[f (D (x, (1 +4) r))]

k
[1− f (D (x, (1 +4) r))]

n−k

×(
n
k

)k
f (dA)

f (D (x, (1 +4) r))
+ odA(

f (dA)

f (D (x, (1 +4) r))
)}

=
1

f (D (x, (1 +4) r))

n∑
k=1

{( n
k

) [f (D (x, (1 +4) r))]
k

× [1− f (D (x, (1 +4) r))]
n−k}f (dA) + odA (f (dA))

=
1− [1− f (D (x, (1 +4) r))]

n

f (D (x, (1 +4) r))
f (dA) + odA (f (dA))

(5)

It follows from the above equation that

E (L (R− r,R+ r))

=

ˆ
L(R−r,R+r)

1− [1− f (D (x, (1 +4) r))]
n

f (D (x, (1 +4) r))
f (dA)

=

ˆ
L(R−r,R+r)

1− [1− f (D (x, (1 +4) r))]
n

f (D (x, (1 +4) r))
f (x) dA

(6)

Summarizing the four equations (2), (3), (4) and (6), a main
result on the capacity upper bound of networks with generally
distributed nodes is obtained:

λ (n)

≤ min
0<R≤0.5

W
´
L(R−r,R+r)

1−[1−f(D(x,(1+4)r))]n

f(D(x,(1+4)r)) f (x) dA

2n
´
D(R)

f (x) dx
(

1−
´
D(R)

f (x) dx
)

(7)

Remark 1. In the analysis, we use a disk, i.e. D (R), mainly
for convenience. In (7), D (R) can be replaced by a connected

2Following some simple argument, it can be shown that when dA → 0,
the probability that there is more than one node in dA is negligible.

area of any shape entirely contained in A and the inequality
on the capacity upper bound will remain valid.

IV. DISCUSSION ON THE CAPACITY UPPER BOUND

The capacity upper bound obtained in the last section,
particularly in (7), is valid for both finite n and asymptotically
infinite n, and for both uniformly and Poissonly distributed
nodes and nodes distributed following a more general dis-
tribution. The analytical form of the capacity upper bound
in (7) is however complicated and is difficult to extract key
information on the impact of major capacity-impacting factors.
Therefore, in this section, by imposing some mild conditions
on the transmission range r (n), we simplify the upper bound
in (7) in a bid to extract the major factors that determine the
capacity and their roles.

Particularly, we assume that in the asymptotic regime when
n→∞, r (n) satisfies the two conditions that

r (n) → 0 (8)

r (n) = ωn

(
1√
n

)
(9)

Recall that in this paper, a dense network model is used. It is a
natural outcome in the dense network model that, as n→∞, a
smaller and smaller transmission range, i.e. r (n)→ 0, is used
to improve the spatial frequency reuse and hence the capacity;
otherwise the entire network may end up being able to have
a small and constant number (i.e. does not increase with n)
of simultaneous transmissions only, despite a large number of
nodes competing for channel access.

The condition in (9) that r (n) = ωn

(
1√
n

)
is a necessary

condition for the network G (n, r, A) to be a.a.s. connected.
We illustrate this by evaluating the number of isolated nodes
in G (n, r,A). A node is isolated if there is no other node in
its transmission range.

Consider a differential area dA ⊂ A, the probability
that there is exactly one node in the area is given by
nf (dA) (1− f (dA))

n−1 and the probability that there is
more than one node in the area is negligible. Denote by ηdA
the event that there is exactly one node in dA and denote
by ζdA the event that there is a node in dA and the node is
isolated. Let x be the center of dA. Without loss of generality,
we assume that when there is a node in dA, that node is
located at x (Because we are considering a differential area,
the actual position of the node in the area does not matter.) It
can be shown that

Pr (ζdA)

= Pr (ζdA|ηdA) Pr (ηdA)

= [1− f (D (x, r) \dA)]
n−1

nf (dA) (1− f (dA))
n−1

Denoted by ζ the number of isolated nodes in the network. It
can be shown:

E (ζ)

=

ˆ
A

[1− f (D (x, r) \dA)]
n−1

nf (dA)

=

ˆ
A

[1− f (D (x, r))]
n−1

nf (x) dA
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=

ˆ
A

e(n−1) log[1−f(D(x,r))]nf (x) dA

∼n
ˆ
A

e−(n−1)f(x)πr2nf (x) dA

where in the last step, the equations that f (D (x, r)) ∼r
f (x)πr2 as r → 0 and that log (1− x) ∼x −x as x → 0
are used. Let c2 = maxx∈A f (x), it follows from the above
equation that

lim
n→∞

E (ζ)

≥ lim
n→∞

ˆ
A

e−(n−1)c2πr
2

nf (x) dA

= lim
n→∞

ne−(n−1)c2πr
2

(10)

Equation (10) clearly shows that if the condition in (9) is not
fulfilled, the expected number of isolated nodes will increase
towards infinity as n → ∞. In fact, as suggested in (10), a
large fraction of the nodes will be isolated and the network
will be quite fragmented. Therefore the condition in (9) is
required for the network to be a.a.s. connected as n→∞.

After having established that the conditions in (8) and (9)
are reasonable conditions to be imposed on r (n), we now
examine the capacity upper bound established in (7) as n →
∞. Particularly under the two conditions, it can be shown that

f (D (x, (1 +4) r)) ∼n f (x)π (1 +4)
2
r2

and [
1− f (x)π (1 +4)

2
r2
]n

= en log[1−f(x)π(1+4)2r2]

∼n e−nf(x)π(1+4)2r2

Therefore,
[
1− f (x)π (1 +4)

2
r2
]n
→ 0 as n → ∞ as a

consequence of (9). Using the above two results and (7), it
follows that:

λ (n)

≤ min
0<R≤0.5

W
´
L(R−r,R+r)

1−[1−f(D(x,(1+4)r))]n

f(D(x,(1+4)r)) f (x) dA

2n
´
D(R)

f (x) dx
(

1−
´
D(R)

f (x) dx
)

≤ min
0<R≤0.5

4R
(1+4)2r

W

2n
´
D(R)

f (x) dx
[
1−
´
D(R)

f (x) dx
]

= min
0<R≤0.5

2R
(1+4)2´

D(R)
f (x) dx

[
1−
´
D(R)

f (x) dx
]W 1

n

1

r
(11)

where the second step results because of the following deriva-
tion: ˆ

L(R−r,R+r)

1− [1− f (D (x, (1 +4) r))]
n

f (D (x, (1 +4) r))
f (x) dA

∼n
ˆ
L(R−r,R+r)

1−
[
1− f (x)π (1 +4)

2
r2
]n

f (x)π (1 +4)
2
r2

f (x) dA

∼n
ˆ
L(R−r,R+r)

1

π (1 +4)
2
r2
dA

=
4R

(1 +4)
2
r

Let

βf , min
0<R≤0.5

2R
(1+4)2´

D(R)
f (x) dx

[
1−
´
D(R)

f (x) dx
] (12)

where the subscript f emphasizes the dependence of β on the
node distribution function f , (11) can be written in a more
neatly form as

λ (n) ≤ βfW ×
1

n
× 1

r
(13)

In (13), parameter βf captures the impact of node distribution
and is also entirely determined by the node distribution. Pa-
rameter W represents the impact of link capacity. Parameter 1

n
represents the impact of the number of source-destination paris
sharing the network capacity. Finally parameter 1

r represents
the impact of the transmission range and shows that the
network capacity (upper bound) is inversely proportional to
the transmission range. Equation (13) shows that the network
capacity (upper bound) can be expressed as the product of
the above four terms. Particularly, other things being equal,
different node distribution has an impact of up to a constant
factor (i.e. not varying with n) on the network capacity only.

A. Discussion on the tightness of the upper bound

In this subsection, we check the tightness of the capacity
upper bound by first applying the upper bound to a special
case, i.e. networks with uniformly distributed nodes, then com-
paring the obtained upper bound for networks with uniformly
distributed node with known results in the area.

For networks with uniformly distributed nodes, f (x) = 1.
It follows from (12) that

βf = min
0<R≤0.5

2R
(1+4)2´

D(R)
f (x) dx

[
1−
´
D(R)

f (x) dx
]

= min
0<R≤0.5

2R
(1+4)2´

D(R)
f (x) dx

[
1−
´
D(R)

f (x) dx
]

= min
0<R≤0.5

2

π (1 +4)
2 ×

1

R (1− πR2)

=
4

3π (1 +4)
2√

3π

Combining the above equation with (13), an upper bound
on the per-node throughput of networks with uniformly dis-
tributed nodes results:

λ (n) ≤ 4

3π (1 +4)
2√

3π
W × 1

n
× 1

r
(14)

That is, the capacity upper bound is inversely proportional
to the transmission range. It is well known that the critical
transmission range required for a network with a total of n
nodes uniformly distributed in a unit area to be a.a.s. connected
is [22], [23]

rc (n) =

√
log n+ c (n)

πn
(15)
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where c (n) = on (log n) and c (n)→∞ as n→∞.
As an easy consequence of (14) and (15),

λ (n) ≤ 4

3π (1 +4)
2√

3
W × 1√

n (log n+ c (n))

It is well known that the per-node throughput of networks
with uniformly distributed node is Θn

(
W√
n logn

)
[1]. There-

fore the capacity upper bound obtained in (13) is tight in the
sense that when applied to the special case of networks with
uniformly distributed nodes, the capacity upper bound is in
the same order of the capacity of networks with uniformly
distributed nodes.

V. CONCLUSION

In this paper, we studied the capacity of networks with
generally distributed nodes. More specifically, we considered
networks with a total of n nodes i.i.d. on a unit square
following a general distribution function. Further, a pair of
nodes are directly connected following a unit disk model
with a transmission range r (n) and two simultaneous active
transmitters have to be separated by at least (1 +4) r (n)
due to the use of carrier sensing. The capacity of each link
is W bits/s. A capacity upper bound of the above network is
obtained by analyzing the number of links crossing a simple
closed curve. The capacity upper bound is valid for both finite
networks and asymptotic infinite networks.

To simplify the analytical expression and to gain insight,
we imposed some mild conditions on the transmission range
r (n) which were shown to be reasonable conditions required
for the transmission range to meet. Under these additional
conditions, the (asymptotic) capacity upper bound is shown
to be the product of four terms: the first term βf determined
by the spatial node distribution only, the second term W
representing the link capacity, the third term 1

n where n
represents the number of source-destination pairs sharing the
network capacity, and the fourth term 1

r(n) representing the
combined impact of spatial frequency reuse and the number
of relay hops required for end-to-end information delivery. It
implies that the impact of the spatial node distribution on the
network capacity can be captured by a single parameter and
the spatial node distribution only affect the network capacity
by up to a constant factor. The tightness of the capacity upper
bound was validated by first applying the upper bound to the
special case of networks with uniformly distributed nodes and
then comparing the obtained upper bound with known results
in the literature. The capacity upper bound was shown to be
tight in the sense that for the special case of networks with
uniformly distributed nodes, the capacity upper bound is in
the same order as known results in the literature.

We expect that not only the (asymptotic) capacity upper
bound but also the (asymptotic) capacity of networks with
generally distributed nodes can be expressed in the product
form of the four factors, representing respectively the impact
of spatial node distribution, the link capacity, the number of
source-destination pairs and the combined impact of spatial
frequency reuse and the number of relays required for end-
to-end information delivery which is manifested through the

single parameter of transmission range. It is part of our future
work plan to validate the conjecture.
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