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Abstract—Road traffic density estimation provides important
information for road planning, intelligent road routing, road
traffic control, vehicular network traffic scheduling, routing and
dissemination. The ever increasing number of vehicles equipped
with wireless communication capabilities provide new means to
estimate the road traffic density more accurately and in real time
than traditionally used techniques. In this paper, we consider
the problem of road traffic density estimation where each
vehicle estimates its local road traffic density using some simple
measurements only, i.e. the number of neighboring vehicles. A
maximum likelihood estimator of the traffic density is obtained
based on a rigorous analysis of the joint distribution of the
number of vehicles in each hop. Analysis is also performed on
the accuracy of the estimation and the amount of neighborhood
information required for an accurate road traffic density estima-
tion. Simulations are performed which validate the accuracy and
the robustness of the proposed density estimation algorithm.

Index Terms—Intelligent transportation systems, vehicle den-
sity estimation, vehicle-to-vehicle communication.

I. INTRODUCTION

Vehicular networks (VANETs) or intelligent transport sys-
tems have been attracting increasing research interest. This
is evidenced by recent developments from both automobile
industry and the wireless communication community that
make the vehicles more and more intelligent. Intelligent
transport systems projects have been launched in the US,
Japan and Europe. Several well-known projects include Intel-
liDrive(sm)/VII, V2V communication for safety, SAFESPOT
and NoW [1]. VANETs or intelligent transport systems have
been promising in improving the safety of drivers and passen-
gers, improving the efficiency of road transportation and mak-
ing the transportation experience more enjoyable by providing
a number of services from collision warning, lane change
assistance, speed limit notification, intelligent navigation and
road traffic control, and multimedia content deliveries.

Road traffic density estimation provides important infor-
mation in VANET and intelligent transport systems for road
planning, intelligent road routing, road traffic control, network
traffic scheduling, routing and dissemination. Traditionally
road traffic density has been estimated using a number of
techniques including roadside magnetic loop detectors, surveil-
lance cameras, wireless vehicle sensors, and speed guns. They
require the detection devices to be pre-installed, often at loca-
tions like cross the road, at traffic lights and in highway toll
stations. The ever increasing number of vehicles equipped with
wireless communication capabilities provide new opportunities

to estimate the road traffic density more accurately and in real
time than these traditional techniques.

In this paper, we investigate the problem of road traffic
density estimation where each vehicle estimates its local
road traffic density in a road segment using some simple
measurements only, i.e. the number of neighbors.

The main contributions of this paper are:
• For a randomly chosen vehicle, a rigorous analysis of the

joint distribution of the number of neighboring vehicles
in each hop is provided.

• A maximum likelihood estimator of the road traffic
density is obtained based on the above analysis, which
uses a simple count of the number of neighboring vehicles
in each hop only for estimation.

• The relationship between the amount of neighborhood
information, measured in the number of hops, used in
the estimation and the accuracy of the estimation is
analyzed. The results can help to determine the amount
of neighborhood information required in order to meet a
designated accuracy requirement on density estimation.

• Simulations are performed which are indicative of good
performance of the proposed algorithm.

The rest of this paper is organized as follows. Section II
reviews related work. System model and problem formulation
are described in Section III. The proposed road traffic density
estimation algorithm is presented in Section IV. Section V
analyzes the accuracy of the estimation. Simulation studies
are presented in Section VI. Finally Section VII concludes
this paper and suggests future work directions.

II. RELATED WORK

Traditionally road traffic density has been estimated using
a number of techniques including roadside magnetic loop
detectors, surveillance cameras, wireless vehicle sensors, and
speed guns [2], [3].

Magnetic loop detectors are often costly to install and
maintain. The physical work involved in laying magnetic loops
also prevent the method to be widely used on a large scale and
in real-time applications.

In [4], Buch et al. provided an excellent review of the use of
computer vision techniques for urban traffic monitoring. Video
cameras are often installed at high poles to collect vehicle
counts information. In [5], three vision sensors were used to
detect the number of vehicles. In [6], cumulative road acoustics
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were used in estimating road traffic density and the impact of
noise on the estimation was analyzed.

In [7]–[9], the authors presented methods to estimate vehicle
density on a road segment based on the traffic data collected at
the two wireless vehicle sensors placed at both ends of the road
segment. In [8], Singh considered density estimation on a road
segment with multiple lanes and the density estimation prob-
lem was solved using an Markov model approach. In [7], Yuan
et al. proposed an Lagrangian state estimator-based approach
to estimate vehicle density. A modified extended Kalman filter-
based approach for density estimation is presented in [9]. In
[10], [11], vehicle density estimation problem is formulated
and solved using an Expectation Maximization approach.

In [12], vehicle density is estimated by using the average
fraction of stop time of a probe vehicle. A main purpose for
density estimation in that paper was to distinguish between
the free-ow and the congested traffic phases.

Reference [13] is possibly the most closely related work
to ours. In [13], assuming that each vehicle knows its own
location and the location of all other vehicles, a density
estimation algorithm was designed that uses the neighborhood
information of neighbors separated by up to 2-hop away and
the location of these neighbors. In this paper, we design
a density estimation algorithm that uses a simple count of
number of neighbors in each hop. The proposed algorithm
does not rely on the use of location information and can
utilize neighborhood information of an arbitrary number of
hops. Further, we provide results characterizing the relation
between the amount of neighborhood information used in the
estimation and the accuracy of the estimation.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we consider a set of vehicles Poissonly
distributed on a road segment with an unknown density ρ.
The use of Poisson distribution for modeling the distribution
of vehicles has been supported by a number of measurement
studies (see [14] and references therein). Each vehicle is able
to directly communicate with nearby vehicles separated by a
maximum Euclidean distance R away. That is, following the
same model as that used in [13], a unit disk communication
model is used in this paper. Without loss of generality, we
assume that the road segment is sufficiently long, >> R, such
that the effects associated with vehicles located near both ends
of the road segment, viz. the boundary effect, can be neglected.

For a randomly chosen vehicle, this paper designs tech-
niques for the vehicle to estimate the vehicle density ρ using
its local neighborhood information. A more detailed problem
statement is given below:

Without loss of generality, designate the location of the
above randomly chosen vehicle to be the origin. Choose a
direction randomly along the road segment and designate that
direction to be the +x direction. Let k1 be the (random)
number of vehicles along the +x direction that are directly
connected to the chosen vehicle; let k2 be the (random) number
of vehicles along the +x direction that are exactly two hops
away from the chosen vehicle; ...; and let kn be the (random)
of vehicles along the +x direction that are exactly n hops away

from the chosen vehicles (Note that it is a trivial extension to
include the number of neighbors along the −x direction into
the analysis). See Fig. 1 for an illustration. This paper provides
answers to the following two problems:

• Given the neighborhood information specified in terms of
number of neighbors in each hop, k1, k2, ..., kn, how to
obtain an estimate of the vehicle density ρ.

• Intuitively as more and more neighborhood information
is taken into account, i.e. when n increases, the accuracy
of the estimation will improve. What is the amount of
neighborhood information required, specified in terms
of n, in order to meet a designated level of estimation
accuracy.

Because the collection of the local neighborhood information
can typically be completed quickly (in the order of ms) com-
pared with the mobility of vehicles, the mobility of vehicles
has little impact on the problem during the short time interval
being considered. That is, we are essentially using a snap shot
of the road traffic taken at a particular time instant to estimate
the road traffic density.

Figure 1. An illustration of the neighborhood of a randomly chosen vehicle
at the origin. ξi is the furthest vehicle along the +x direction that is i-hop
away from the vehicle at the origin. ki is the number of vehicles that are
exactly i-hop away from the vehicle at the origin.

IV. DESIGN OF THE DENSITY ESTIMATION ALGORITHM
USING THE NEIGHBORHOOD INFORMATION

In this section, we first analyze the estimation of ρ when
only k1 is known. Then we gradually extend to the situations
that (k1, k2) and (k1, k2, k3) are known. Finally the more
generic situation of the estimation of ρ using (k1, . . . , kn) is
investigated.

A. One-hop neighbor scenario

Figure 2. An illustration of the one-hop neighbor scenario

We first consider the one-hop scenario, i.e. only k1 is
known. This is illustrated in Figure 2. Let mi be a non-negative
integer. As an easy consequence of the Poisson distribution of
vehicles, the probability that k1 = m1 is given by:

Pr(k1 = m1) =
(ρR)m1

m1!
× exp(−ρR) (1)

Using the maximum likelihood estimation,

ρ̂ = argmax
ρ

Pr(k1 = m1) =
m1

R
(2)
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Figure 3. An illustration of two-hop neighbor scenario

B. Two-hop neighbor scenario

Now we move on to study the two-hop neighbor scenario,
i.e. when both k1 and k2 are known. This is illustrated in
Figure 3.

Let zi be a positive real number. To avoid triviality, we
require that zi > zi−1. Conditioned on k1 = m1, the
probability that the distance between the furthest one-hop
neighbor, denoted by ξ1, and the vehicle at the origin is less
than or equal to z1 is given by:

Pr(ξ1 ≤ z1|k1 = m1) =
(z1
R

)m1

Combining the above equation with (1),

Pr(ξ1 ≤ z1, k1 = m1) =
(ρz1)

m1

m1!
× exp(−ρR)

It follows that:

Pr(ξ1 = z1, k1 = m1) =
∂

∂z1
Pr(ξ1 ≤ z1, k1 = m1)

=
ρm1zm1−1

1

(m1 − 1)!
× exp(−ρR) (3)

Note that in the above equation, it is implicitly assumed
that k1 ≥ 1 (hence m1 ≥ 1). This is required for (3) to be
meaningful. In the special case of k1 = 0, conclusion readily
follows that ki = 0, i > 1, the density estimation can be
quickly solved using (2). Therefore in the following analysis,
we assume that ki > 0 to avoid triviality.

Note that ξ1 = z1 implies that there is no vehicle within
(z1, R] (otherwise that vehicle becomes the furthest one-hop
neighbor which violates the condition that ξ1 = z1). Further,
any two hop neighbors must be located within (R,R + z1],
which has a length of z1 (see Figure 3 for an illustration.).
Therefore

Pr(k2 = m2|k1 = m1, ξ1 = z1)

= Pr(k2 = m2|ξ1 = z1)

=
(ρz1)

m2

m2!
× exp(−ρz1) (4)

where in the first step of the above equation, the property
of Poisson distribution that the (random) number of vehicles
in two non-overlapping intervals are independent is used.
Combining the two equations (3) and (4):

Pr(k1 = m1, k2 = m2, ξ1 = z1)

=
ρm1+m2zm1+m2−1

1

(m1 − 1)!m2!
exp[−ρ(z1 +R)] (5)

Using the total probability theorem,

Pr(k1 = m1, k2 = m2)

=
ρm1+m2 × exp(−ρR)

(m1 − 1)!m2!

∫ R

0

zm1+m2−1
1 × exp(−ρz1)dz1

(6)

Using the maximum likelihood estimation,

ρ̂ = argmax
ρ

Pr(k1 = m1, k2 = m2) (7)

A closed-form solution for ρ̂ becomes difficult but the above
equation can be readily solved numerically.

C. Three-hop neighbor scenario

Figure 4. Three-hop Neighbor Scenario

Now we continue to investigate the three-hop neighbor
scenario, i.e. when k1, k2 and k3 are all known. This is illus-
trated in Figure 4. The investigation of the three-hop neighbor
scenario will enable us to obtain recursively the solution for
the generic situation when (k1, . . . , kn) are known.

We first obtain the distribution of ξ2, i.e. the distance
between the furthest two-hop neighbor and the vehicle at the
origin, and then use it as a tool to obtain the final result.

Using the same analysis as that leads to (4), it can be
obtained that

Pr(R ≤ ξ2 ≤ z2|k2 = m2, k1 = m1, ξ1 = z1)

=(
z2 −R

z1
)m2 (8)

Obviously in the above equation z2 has to be greater than R in
order for the result to be meaningful, i.e. a two-hop neighbor
cannot be within distance R of the vehicle at the origin.

As an easy consequence of the above equation and (5), it
can be obtained that

Pr(k2 = m2, R ≤ ξ2 ≤ z2, k1 = m1, ξ1 = z1)

=
ρm1+m2zm1−1

1 (z2 −R)m2

(m1 − 1)!m2!
× exp[−ρ(z1 +R)]

By taking the derivative of Pr(k2 = m2, R ≤ ξ2 ≤ z2, k1 =
m1, ξ1 = z1) with respect to z2, it can be shown that

Pr(k2 = m2, ξ2 = z2, k1 = m1, ξ1 = z1)

=
ρm1+m2zm1−1

1 (z2 −R)m2−1

(m1 − 1)!(m2 − 1)!
× exp[−ρ(z1 +R)] (9)

Note that ξ1 = z1 implies that a) there is no three-hop
neighbor within (z2, z1 +R]; and ξ2 = z2 implies that b) any
three-hop neighbor must be located in within (z2, z2 + R].
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The combination of the above two conditions means when
ξ1 = z1 and ξ2 = z2, the three-hop neighbor can only be
within (z1 +R, z2 +R]. Using the property that vehicles are
Poissonly distributed, it follows that

Pr(k3 = m3 | k2 = m2, ξ2 = z2, k1 = m1, ξ1 = z1)

=Pr(k3 = m3 | ξ2 = z2, ξ1 = z1)

=
[ρ(z2 − z1)]

m3

m3!
× exp[−ρ(z2 − z1)] (10)

Remark 1. Note that the expression for Pr(k3 = m3 | k2 =
m2, ξ2 = z2, k1 = m1, ξ1 = z1) has a quite different form
from the expression of Pr(k2 = m2|k1 = m1, ξ1 = z1). This
explains why we need to investigate the three-hop scenario in
order to extend to the more generic situation.

Combing (10) and (9) using Bayes’ formula:

Pr(k3 = m3, k2 = m2, ξ2 = z2, k1 = m1, ξ1 = z1)

=
ρm1+m2+m3zm1−1

1 (z2 −R)m2−1(z2 − z1)
m3

(m1 − 1)!(m2 − 1)!m3!

× exp[−ρ(z2 +R)]

Using the total probability theorem,

Pr(k3 = m3, k2 = m2, k1 = m1)

=
ρm1+m2+m3 × exp(−ρR)

(m1 − 1)!(m2 − 1)!m3!
×

∫ R

0

∫ R+z1

R

zm1−1
1 (z2 −R)m2−1

×(z2 − z1)
m3 exp(−ρz2)dz2dz1 (11)

Finally it can be obtained that

ρ̂ = argmax
ρ

Pr(k3 = m3, k2 = m2, k1 = m1) (12)

D. Vehicle density estimation for the more generic scenario

Now we are ready to study the more generic scenario of
vehicle density estimation when (k1, . . . , kn) are known. Note
that (10) reveals that the distribution of k3 depends only
on the distribution of ξ2 and ξ1, i.e. the distribution of the
distances of furthest vehicles in the previous two hops. This
relationship can be generalized to that the distribution of ki
depends only on the distribution of ξi−1 and ξi−2 (see Fig.
(5) for an illustration). The above observation forms the basis
of the following analysis on density estimation for the generic
scenario that (k1, . . . , kn) are known.

Figure 5. An Illustration of the N-hop Neighbor Scenario

The following theorem forms a major contribution of this
paper:

Theorem 2. The joint distribution of kn, kn−1,...,k1, where
n ≥ 3 is given by

Pr(kn = mn, kn−1 = mn−1, . . . , k2 = m2, k1 = m1)

=
ρ
∑n

i=1 mn × exp(−ρR)∏n−1
i=1 (mi − 1)!mn!

∫ R

0

∫ R+z1

R

∫ z2+R

z1+R

∫ z3+R

z2+R

. . .

∫ zn−2+R

zn−3+R

zm1−1
1 (z2 −R)m2−1

n−1∏
i=3

(zi − zi−2 −R)mi−1

×(zn−1 − zn−2)
mn exp(−ρzn−1)dzn−1dzn−2 . . . dz2dz1

(13)

Proof: In the following, we shall prove the theorem by
recursion. Particularly, assuming that (13) is valid for n (Note
that the correctness of (13) has been demonstrated in the earlier
subsection for the three-hop scenario), we shall prove that it
is also correct for n+ 1.

First, using the same procedure as that results in (8) (see
also Fig. 5), it can be obtained that

Pr(zn−2 +R ≤ ξn ≤ zn|kn = mn, kn−1 = mn−1, ξn−1

= zn−1, . . . , k1 = m1, ξ1 = z1) = (
zn − zn−2 −R

zn−1 − zn−2
)mn

By taking the derivative of the above equation with regards
to zn, it follows that

Pr(kn = mn, ξn = zn, . . . , k1 = m1, ξ1 = z1)

=
ρ
∑n

i=1 mnzm1−1
1 (z2 −R)m2−1

∏n
i=3(zi − zi−2 −R)mi−1∏n

i=1(mi − 1)!

× exp[−ρ(zn−1 +R)] (14)

As mentioned in the beginning of this section, the distribution
of kn+1 only depends on the distribution of ξn and ξn−1.
Therefore

Pr(kn+1 = mn+1 | kn = mn, ξn = zn, . . . , k1 = m1, ξ1 = z1)

=Pr(kn+1 = mn+1 | ξn = zn, ξn−1 = zn−1)

=
[ρ(zn − zn−1)]

mn+1

mn+1!
× exp[−ρ(zn − zn−1)] (15)

As an easy consequence of (14) and (15):

Pr(kn+1 = mn+1, kn = mn, ξn = zn, . . . , k1 = m1, ξ1 = z1)

=
ρ
∑n+1

i=1 mnzm1−1
1 (z2 −R)m2−1

∏n
i=3(zi − zi−2 −R)mi−1∏n

i=1(mi − 1)!mn+1!

×(zn − zn−1)
mn+1 exp[−ρ(zn +R)]

Then using the total probability theorem,

Pr(kn+1 = mn+1, kn = mn, . . . , k1 = m1)

=
ρ
∑n+1

i=1 mn × exp(−ρR)∏n
i=1(mi − 1)!mn+1!

∫ R

0

∫ R+z1

R

. . .

∫ zn−1+R

zn−2+R

zm1−1
1

(z2 −R)m2−1
n∏

i=3

(zi − zi−2 −R)mi−1(zn − zn−1)
mn+1

× exp(−ρzn)dzndzn−1 . . . dz2dz1 (16)
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Using Theorem (2), a maximum likelihood estimator of ρ
given the knowledge of (k1, . . . , kn) is

ρ̂ = argmax
ρ

Pr(kn = mn, . . . , k1 = m1) (17)

where Pr(kn = mn, . . . , k1 = m1) is given in (13).

V. AN ANALYSIS OF THE ACCURACY OF THE ESTIMATION

In the earlier sections, we have given a maximum like-
lihood estimator of ρ given an observation of (k1, . . . , kn).
It is intuitively true that when more and more neighborhood
information is taken into account, i.e. when n increases, a
more accurate estimate of ρ can be obtained. In this section,
we shall quantitatively characterization the relation between
ρ̂ and the amount of neighborhood information used in the
observation, which is quantitatively represented by n.

Note that the maximum likelihood estimate of ρ given
in (17) (hence also in (12), (7) and (2)) can be more
accurate written as ρ̂| (k1 = m1, . . . , kn = mn). That is, it
is an estimate of ρ when a particular (random) instance
of (k1, . . . , kn) is observed. Because of the randomness of
(k1, . . . , kn), ρ̂| (k1 = m1, . . . , kn = mn) is also a random
variable whose distribution is solely determined by the joint
distribution of (k1, . . . , kn). Based on the above observation,
it can be obtained that the bias of the estimation, denoted by
δ (ρ̂), is given by

δ (ρ̂) = E (ρ̂)− ρ

where

E (ρ̂) =

∞∑
mn=0

· · ·
∞∑

m1=0

{[ρ̂| (k1 = m1, . . . , kn = mn)]

Pr (k1 = m1, . . . , kn = mn)}

The variance of the estimation is given by

V ar (ρ̂) = E
(
ρ̂2
)
− (E (ρ̂))

2

where

E
(
ρ̂2
)

=

∞∑
mn=0

· · ·
∞∑

m1=0

{[ρ̂| (k1 = m1, . . . , kn = mn)]
2

Pr (k1 = m1, . . . , kn = mn)}

Another commonly used metric to measure the accuracy of
the estimation, the mean absolute error, denoted by ε (ρ̂), is
given by

ε (ρ̂) = E (|ρ̂− ρ|)

=
∞∑

mn=0

· · ·
∞∑

m1=0

{|ρ̂| (k1 = m1, . . . , kn = mn)− ρ|

Pr (k1 = m1, . . . , kn = mn)}

The above equations allow us to quantitatively characterize
the relationship between the accuracy of the estimation and the
amount of neighborhood information used in the estimation.
It helps to determine the amount of neighborhood information
that needs to be collected in order to meet a prescribed level
of accuracy. In the next section, we shall further illustrate this
relationship more intuitively using figures (more specifically
in Fig. 7 and 6).

VI. SIMULATIONS

In this section, we used simulations to validate the perfor-
mance of the proposed density estimation algorithm. The three
metrics: bias, mean absolute error and variance, are used to
measure the performance of the proposed algorithm.

Fig. 6 illustrates the mean absolute error (MAE) of the
proposed density estimation algorithm for four different trans-
mission ranges, i.e. R = 75m, R = 100m, R = 150m and
R = 200m. The MAE is plotted as a function of the number of
hops used in the measurements, i.e. n. The true vehicle density
used in the simulation is ρ = 0.08 vehicles/m. Each simulation
is repeated 300 times. The MAE shown in the figure are the
results from these 300 simulations.

Figure 6. Variation of the Mean Absolute Error with the Number of Hops.
The MAE is plotted as a percentage of the true value, where the true value
ρ = 0.08 vehicles/m.

As expected, when the amount of neighborhood information
used in the estimation, measured by the hop number n,
increases, the MAE decreases. When n = 4, a further increase
in the number of hops used in the estimation appears to have a
reduced effect on the reduction of the MAE. Therefore, a small
number of hops may be used to achieve an optimum tradeoff
between the amount of neighborhood information used in the
estimation and the accuracy of the estimation.

Fig. (7) plots the variation of the MAE with the number of
hops for different values of ρ.

Figure 7. Variation of the Mean Absolute Error with the Number of Hops.
The MAE is plotted as a percentage of the true value ρ, where the true value
varies from 0.05 to 0.15. The transmission range is fixed at R = 150m.
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The following table further shows the expected value of ρ̂,
the bias of the estimation and the variance where ρ = 0.08 and
R = 150m. As shown in the table, the bias and the variance
is generally small, compared with the true value ρ = 0.08.
When n = 2, the bias increases compared with when only k1 is
used in the estimation, viz. n = 1. Comparing (2) and (7), it is
easy to see that the maximum likelihood estimator is unbiased
when only k1 is used. When (k1, k2) are used, the estimator
becomes non-linear. The non-linearity will introduce bias into
the estimation however Table (I) shows that the bias is small.
Note that variance shows a consistent trend of decreasing with
an increase in n.

Table I
AN ILLUSTRATION OF THE EXPECTATION, BIAS AND VARIANCE

Hop Number Expectation Bias Variance
1 0.079910 -4.51× 10−5 3.96× 10−4

2 0.079662 −2.84× 10−4 2.13× 10−4

3 0.079655 -2.55× 10−4 1.44× 10−4

4 0.079911 -1.94× 10−4 1.09× 10−4

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a vehicle density estimation
algorithm that each vehicle only uses a simple count of the
number of its neighboring vehicles in each hop to estimate
the vehicle density. A maximum likelihood estimator of the
vehicle density was obtained and its performance was val-
idated using analytical studies and simulations. Further, we
also analyzed the relationship between the amount of neigh-
borhood information used in the estimation and the accuracy
of the estimation, and obtained results can help to decide on
the amount of neighborhood information required to meet a
prescribed level of accuracy on the estimation.

In our analysis, it was assumed that vehicles communicate
with each other following a unit disk model. The unit disk
model has been widely used in the area and the results obtained
using the unit disk model have been shown in numerous
literature to be good indicator of the performance in a more
realistic scenario. However the unit disk model often overly
simplifies the real scenario. Therefore it is part of our future
work plan to extend our work to more realistic scenario,
e.g. vehicles communicate with each other following the log-
normal communication model.

In this paper, we presented an algorithm that allows each
vehicle to obtain a local estimate of vehicle density using
its neighborhood information. An interesting problem arises
when the above analysis is extended to a larger scale. More
specifically, inside a road segment, there may exist many such
vehicles and each vehicle has its own local estimate of the
vehicle density. Assuming that these vehicles can report their
local density estimates to a central entity or can exchange
the density estimates, an interesting problem is how to form
a more accurate “global” estimate using the local estimates.
A main obstacle in solving the above problem is the so-
called spatial correlation problem. That is, a vehicle may
be neighbors of many other vehicles and therefore counted
many times in the local density estimates of these vehicles.

Consequently, these local density estimates become correlated.
It is also part of our future work plan to tackle the above
problem.
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