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Capacity of Large Wireless Networks with
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Abstract—This paper investigates the capacity of a random
network in which the nodes have a general spatial distribution.
Our model assumes n nodes in a unit square, with a pair of
nodes directly connected if and only if their Euclidean distance
is smaller than or equal to a threshold, known as the transmission
range. Each link has an identical capacity of W bits/s. The
transmission range is the same for all nodes and can be any value
so long as the resulting network is connected. A capacity upper
bound is obtained for the above network, which is valid for both
finite n and asymptotically infinite n. We further investigate the
capacity upper bound and lower bound for the above network
as n → ∞ and show that both bounds can be expressed as a
product of four factors, which represents respectively the impact
of node distribution, link capacity, number of source destination
pairs and the transmission range. The bounds are tight in
that the upper bound and lower bound differ by a constant
multiplicative factor only. For the special case of networks with
nodes distributed uniformly or following a homogeneous Poisson
distribution, the bounds are of the same order as known results
in the literature.

Index Terms—Capacity, general node distribution, wireless
networks.

I. INTRODUCTION

S INCE the seminal work of Gupta and Kumar [1], extensive
research has been done on studying the capacity of

large wireless networks under various scenarios [1]–[9]. More
specifically, in [1], Gupta and Kumar considered an ad-hoc
network with a total of n nodes uniformly and i.i.d. on an
area of unit size. Each node in the network is capable of
transmitting at W bits/s and using a fixed and identical trans-
mission range. It was shown that when each node randomly
and independently chooses another node in the network as its
destination, the transport capacity and the achievable per-node
throughput are Θn

(
W
√

n
logn

)
and Θn

(
W√

n logn

)
respec-

tively1. When the nodes are optimally and deterministically
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1The following notations are used throughout the paper. For two positive

functions f (x) and h (x):

• f (x) = ox (h (x)) iff (if and only if) limx→∞ f(x)
h(x)

= 0 or

limx→0
f(x)
h(x)

= 0 ;

placed to maximize throughput, the transport capacity and
the achievable per-node throughput become Θn (W

√
n) and

Θn

(
W√
n

)
respectively. In [2], Franceschetti et al. considered

essentially the same random network as that in [1] except
that nodes are now allowed to use two different transmission
ranges. The link capacity is determined by the associated
SINR through the Shannon–Hartley theorem. By having each
source-destination pair transmitting via the so-called “highway
system”, formed by nodes using the smaller transmission
range, it was shown in [2] that the transport capacity and the
per-node throughput can also reach Θn (

√
n) and Θn

(
1√
n

)
respectively even when nodes are randomly deployed. The
existence of such highways was demonstrated analytically
using the continuum percolation theory [10]. The key to
achieving a higher capacity in the network considered in [2]
is that nodes are restricted to use the smaller transmission
range as often as possible and the larger transmission range
can only be used by source (destination) nodes to access their
respective nearest highway nodes. In this way, the number
of concurrent transmissions that can be accommodated in
the network area is maximized, hence the improvement in
capacity. In [4] Grossglauser and Tse showed that in mobile
ad hoc networks, by leveraging on the nodes’ mobility, a per-
node throughput of Θn (1) can be achieved at the expense of
a large delay. Their work [4] has sparked tremendous interest
in studying the capacity-delay tradeoffs in mobile networks
assuming various mobility models and the obtained results
often vary greatly with the different mobility models being
considered, see [3], [5], [11]–[14] and references therein for
examples. In [7], Chen et al. studied the capacity of wireless
networks under a different traffic distribution. More specifi-
cally, they considered a network with a set of n randomly
deployed nodes transmitting to single sink or multiple sinks
where the sinks can be either regularly-deployed or randomly-
deployed. Under the above settings, it was shown that with
single sink, the transport capacity is given by Θn (W ); with
k sinks, the transport capacity is increased to Θn (kW ) when
k = On(n logn) or Θn (n lognW ) when k = Ωn (n logn).
In a more recent work [15], Chen et al. further studied the
transport capacity of a network with n arbitrarily distributed

• f (x) = ωx (h (x)) iff h (x) = ox (f (x));
• f (x) = Θx (h (x)) iff there exist a sufficiently large x0 and two

positive constants c1 and c2 such that for any x > x0, c1h (x) ≥
f (x) ≥ c2h (x);

• f (x) ∼x h (x) iff limx→∞ f(x)
h(x)

= 1 or limx→0
f(x)
h(x)

= 1 ;
• f (x) = Ox (h (x)) iff there exist a sufficiently large x0 and a positive

constant c such that for any x > x0, f (x) ≤ ch (x);
• f (x) = Ωx (h (x)) iff h (x) = Ox (f (x)) ;
• An event ξx depending on x is said to occur asymptotically almost

surely (a.a.s.) if its probability tends to one as x → ∞.
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nodes and single sink. In [16], Zhang et al. studied the impact
of directional antennas on the transport capacity of a network
with n randomly deployed nodes and single sink. In [17], Ji et
al. studied the transport capacity of continuous data collection
in dual-radio multi-channel networks with single sink and
proposed a multi-path scheduling algorithm for continuous
data collection in these networks. There is also a significant
amount of work studying the impact of infrastructure nodes [6]
and multiple-access protocols [9] on capacity and the multicast
capacity [8], [18]. We refer readers to [19] for a comprehensive
review of related work.

Almost all of the existing work studying the (asymp-
totic) capacity of random networks assumes that nodes in
the network are either uniformly distributed or distributed
following homogeneous Poisson distributions. While uniform
and Poisson distributions form an important class of spatial
distributions and have been extensively used in the area, their
capability in capturing the spatial distribution of users in
various scenarios and application settings is limited. Therefore
it is critical to investigate to what extent the above results on
network capacity depend on the underlying node distribution
being uniform or Poisson. It is worth noting that in a series
of papers [20]–[22], Alfano and Garetto et al. studied the
capacity of a class of clustered networks in which nodes
are distributed according to a doubly stochastic shot-noise
Cox process. [A doubly stochastic shot-noise Cox process
is formed by first deploying a set of nodes, termed cluster
centers, randomly and independently in the network area,
and then each cluster center generates independently a point
process of nodes with a designated density function.] Conse-
quently, the overall node process is given by the superposition
of the individual processes generated by the cluster centers.
Their work [20]–[22] generated interesting insight on the
performance impact of the doubly stochastic shot-noise Cox
process, compared with commonly used Poisson or uniform
spatial node distribution. Different from the work of Alfano
and Garetto et al. [20]–[22], in this paper we study the capacity
of random networks under a more general node distribution,
to be defined in Section II.

In addition to capacity, delay is also an important perfor-
mance metric that has been extensively investigated. In this
paper we focus on the study of capacity. We refer readers to
[3], [5], [11]–[13] for relevant work on delay and to [23], [24]
for relevant work on network connectivity.

The following is a detailed summary of our contributions:
• We develop a novel method of analyzing information

exchanges across a closed curve for studying the capacity
of large wireless networks, distinct from the methods
used in work following the methodology in [1];

• Using the method, we derive the capacity upper bound of
networks with generally distributed nodes. The capacity
upper bound is valid for both finite and asymptotic
infinite networks. The method is shown to be effective
and efficient for analyzing the capacity of large networks
in a more general setting;

• We derive a necessary condition on the transmission
range required for networks with generally distributed
nodes to be asymptotically almost surely (a.a.s.) con-
nected;

• Using the above necessary condition on the transmission
range, we simplify the capacity upper bound to gain in-
sight on the interactions among major capacity-impacting
factors. We show that the asymptotic capacity upper
bound for networks with generally distributed nodes is
determined by four factors, i.e. node distribution, the
link capacity, the number of source-destination pairs
and transmission range, in a multiplicative form. The
tightness of the upper bound is validated by comparing
the upper bound with known results obtained assuming
uniform or Poisson node distribution;

• We analyze the lower bound of the asymptotic capacity of
networks with generally distributed nodes and show that
the lower bound can also be expressed as a product of
the four factors, i.e. node distribution, the link capacity,
the number of source-destination pairs and transmission
range. The method used to obtain the lower bound has
been used in other papers. However in order to present
the lower bound as the product of the four factors, some
novel results need to be established using the continuum
percolation theory. These set our work apart from existing
results in the literature.

Despite the intellectual challenges in the analysis, our results
on the upper bound and lower bound of the asymptotic
capacity of networks with generally distributed nodes are
presented in a simple form. This simplicity helps to deliver
an intuitive understanding on the impact of the four main
factors, i.e. node distribution, the link capacity, the number
of source-destination pairs and transmission range, on the
asymptotic capacity of networks with general node distribution
and the interactions among these four main factors. Further,
both the analytical techniques developed in the paper and some
intermediate results derived when analyzing the capacity are
expected to contribute to the network capacity analysis under
more general settings.

The rest of this paper is organized as follows: Section II
presents the network model of interest; Section III presents
theoretical analysis on the capacity upper bound of networks
with generally distributed nodes; in Section IV, we conduct
a deep examination of the condition that the network is
connected and show that the condition implies that we can
impose some mild restrictions on the transmission range; in
Section V, using the restrictions on the transmission range, we
simplify the results obtained in Section III for asymptotically
infinite networks and discuss insight revealed through the
simplified results. The tightness of the capacity upper bound
is also validated; Section VI presents a lower bound on the
capacity of asymptotically infinite networks; finally, Section
VII concludes this paper.

II. NETWORK MODEL

Two network models are widely used in the study of
(asymptotic) network capacity: the dense network model and
the extended network model. The dense network model con-
siders that the network is deployed in a finite area with a
sufficiently large node density, while the extended network
model considers that the node density is fixed and the net-
work area is sufficiently large. By appropriate scaling of the
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distance, the results obtained under one model can often be
readily extended to the other model [25], [26].

In this paper, we consider the dense network model. More
specifically, we consider a wireless multihop network with a
total of n nodes i.i.d. on a unit square A =

[− 1
2 ,

1
2

]2
following

a general density function f (x) where f (x) > 0, ∀x ∈ A
and
´
A
f (x) dx = 1. For convenience, we further assume that

f is a continuous function. Let

c1 = min
x∈A

f (x) and c2 = max
x∈A

f (x) . (1)

Further, a pair of nodes are directly connected if and only if
(iff) their Euclidean distance is smaller than or equal to r (n),
known as the transmission range, and the capacity of each
link is W bits/s. Here r (n) can be any value (or any function
of n) as long as the resulting network is connected, which is
a prerequisite for studying the capacity of the network. For
simplicity, we may drop the dependence on n for notational
brevity and use r and r (n) interchangeably. The above model,
widely known as the disk model, captures the key feature
in wireless communications that direct communications often
occur between nearby devices at predesignated link capacities.
Of course, more sophisticated models have been used in the
literature. For example, both the existence of a link and its
capacity may be determined by the associated SINR [2]. It
is often the case that under certain conditions, the results
obtained assuming the disk model can be extended to the more
sophisticated models [1], [19]. Even when analytic extension
is not possible, the disk results can be powerful predictors of
what happens in simulations with more sophisticated models.

We consider a scenario where each node chooses randomly
and independently another node in the network as its des-
tination. Therefore there are a total of n source-destination
pairs in the network. Further, a saturated traffic scenario is
considered where each node always has a packet to transmit
when a transmission opportunity becomes available. Each
node transmits following a CSMA protocol at a common and
fixed transmission power 2. That is, before transmitting, a node
first senses the channel and can only transmit if there is no
other active transmitter within (1 +�) r (n), where � is a
positive constant and (1 +�) r (n) is commonly known as
the sensing range. Thus two simultaneously active transmitters
are separated by a distance of at least (1 +�) r (n). Note that
in the widely used protocol model or the SINR model [1], a
distance can also be identified such that two simultaneously
active transmitters must be separated by at least that distance.
Therefore the communication model used in this paper can
be readily extended to incorporate other models. Given the
transmission power, the path loss model and the carrier-
sensing threshold, the sensing range can be easily computed.
We refer readers to [9] and our previous work [27] for
more details of CSMA protocols. Further, a random backoff
mechanism, which is commonly adopted in CSMA protocols,
is often used to resolve channel contention when multiple

2Because in our network model, all nodes use the same transmission power
(or range), our results are not directly comparable with those in [2], [9], where
nodes are allowed to use different transmission ranges. As explained in Section
I, when nodes are allowed to use different transmission ranges, the number
of concurrent transmissions is maximized. Hence the capacity can be greatly
improved.

nodes contend for transmission. Therefore we consider (as is
common) an ideal scenario where there is no packet loss due
to collision.

Denote the above network by G (n, r, A). In this work, we
are interested in finding the capacity of G (n, r, A).

In particular, we study the capacity of G (n, r, A) by inves-
tigating the so-called per-node throughout. Let Φ be the set
of all spatial and temporal routing and scheduling algorithms.
Let λχ

i (n) be the long-term average throughput obtained by
the ith source-destination pair when χ ∈ Φ. The per-node
throughput of G (n, r, A) when using χ ∈ Φ, denoted by
λχ (n), is given by λχ (n) = mini∈Γ λ

χ
i (n) where Γ is the

set of indices of all source-destination pairs. The per-node
throughput of G (n, r, A), denoted by λ (n), is given by

λ (n) = max
χ∈Φ

(λχ (n)) = max
χ∈Φ

(
min
i∈Γ

λχ
i (n)

)
. (2)

That is, there exists a routing and scheduling algorithm and
a sufficiently large time interval τ such that every τ time
interval, each and every source can transmit at least λ (n) τ
bits to its destination simultaneously with all other source-
destination pairs in the network. This definition is both natural
and consistent with that used in [1].

III. A CAPACITY UPPER BOUND FOR NETWORKS WITH

GENERALLY DISTRIBUTED NODES

In this section we analyze the capacity upper bound for
networks with generally distributed nodes. The obtained upper
bound is valid for both finite and asymptotically infinite
random networks.

The set of concurrent transmitters using the CSMA protocol
at a particular time instant is commonly modeled by a marked
point process, known as a Matern process or the hardcore
process [19], [28]. In particular, let x i be the location of
node i. A random number uniformly distributed within [0, 1]
is assigned to each node. Denote the number assigned to node
i by pi and it is assumed that pi and pj are independent where
i �= j. A node i is an active transmitter at the time instant if
[28]

pi < min
j∈{k:‖xk−xi‖≤(1+�)r}/{i}

pj . (3)

That is, its pi is the smallest among all nodes within its sensing
range.

We will use a disk method to determine the capacity upper
bound. Let D (R) be a disk centered at the origin and with
a radius R where 0 < R ≤ 1

2 , as illustrated in Fig. 1. For
a randomly chosen node, the probability that the node falls
within D (R) is given by

η (R) =

ˆ
D(R)

f (x) dx (4)

and the probability that the node falls outside D (R) is given
by 1 − η (R). It follows that the expected number of nodes
within D (R) is η (R)n. For any node within D (R), with
probability 1− η (R) its destination is located outside D (R).
Therefore the expected fraction of source-destination pairs
with the source and the destination located on different sides
of the boundary of D (R) is given by 2η (R) (1− η (R)).
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2r

Fig. 1. An illustration of using the disk method to compute the capacity
upper bound. The dotted circle represents a circle centered at the origin and
with a radius R. The two solid circles represent two circles centered at the
origin and with radii R+ r and R− r respectively. The arrow represents the
direction of packet forwarding.

Denoting by m (R) the expected number of active links
crossing the boundary of D (R), the following inequality must
hold:

2η (R) (1− η (R))nλ (n) ≤ m (R)W (5)

for any value of R so long as D (R) ⊂ A. As an easy
consequence of the above inequality

λ (n) ≤ min
0<R≤0.5

m (R)W

2η (R) (1− η (R))n
. (6)

In the following analysis, we will aim to find the value of
m (R).

Consider Fig. 1 where the boundary of D (R) is shown as
the dotted circle. Let D (R− r, R+ r) be an annulus centered
at the origin and with an inner radius of R − r and an outer
radius of R+ r. Let L (R− r, R+ r) be the random number
of simultaneously active transmitters within D (R− r, R + r)
in a randomly chosen time slot. If at any time there is an active
link crossing the boundary of D(R), there must be an active
transmitter within a distance r on either side of the boundary.
Hence by averaging we obtain

m (R) ≤ E (L (R− r, R + r)) . (7)

As with the number of links, the number of simultaneously
active transmitters is random and time-varying.

Next we shall find E (L (R− r, R + r)). Let dA be a very
small (differential) area and dA ⊂ D (R− r, R+ r). Let x ∈
dA be the center of dA. Denote by ηdA the event that there
is at least one node in dA. Using the property that nodes are
i.i.d. on A following f (x), it is evident that

Pr (ηdA) = 1− (1− f (dA))n = nf (dA) + odA (f (dA)) .
(8)

For convenience, we use f (dA) for
´
dA f (x) dx. When

dA → 0, f (dA) → f (x) dA.
Let D (dA, (1 +�) r) be a disk centered at the center

of dA and with a radius (1 +�) r. The pmf (probability
mass function) of the random number of nodes falling into

D (dA, (1 +�) r), denoted by N (dA, (1 +�) r), is given
by:

Pr (N (dA, (1 +�) r) = k)

=(
n
k

) [f (D (dA, (1 +�) r))]
k

× [1− f (D (dA, (1 +�) r))]
n−k

.

Using the above equation and the expression for Pr (ηdA)
in (8), the joint distribution Pr (N (dA, (1 +�) r) = k, ηdA)
can be obtained:

Pr (N (dA, (1 +�) r) = k, ηdA)

=Pr(ηdA|N (dA, (1 +�) r) = k) Pr(N (dA, (1 +�) r) = k)

=(
n
k

) [f (D (dA, (1 +�) r))]k−1

× [1− f (D (dA, (1 +�) r))]n−k kf (dA)

+odA(
f (dA)

f (D (dA, (1 +�) r))
).

Conditioned on the two events N (dA, (1 +�) r) = k and
ηdA, denoting by ξdA the event that there is exactly one node
in dA3 and that node is an active transmitter, it can be shown
that

Pr (ξdA|N (dA, (1 +�) r) = k, ηdA)

=

ˆ 1

0

(1− x)
k−1

dx =
1

k
(9)

where in the above equation the term (1− x)
k−1 is the

probability that all other k − 1 nodes in D (dA, (1 +�) r),
which are competing for transmission opportunities with the
node in dA, have their respective values of p larger than
x conditioned on that the node in dA has its value of p
equal to x. Equation (9) implies that the node in dA has
equal opportunity to transmit compared with other nodes in
its contention domain.

From the above equations, it follows that

Pr(ξdA)

=Pr(ξdA, ηdA)

=

n∑
k=1

[Pr(ξdA|N (dA, (1 +�) r) = k, ηdA)

×Pr(N (dA, (1 +�) r) = k, ηdA)]

=
n∑

k=1

{[f (D (dA, (1 +�) r))]k [1− f (D (dA, (1 +�) r))]n−k

×(
n
k

)
f (dA)

f (D (dA, (1 +�) r))
+ odA(

f (dA)

f (D (dA, (1 +�) r))
)}

=
f (dA)

f (D (dA, (1 +�) r))

n∑
k=1

{( n
k

) [f (D (dA, (1 +�) r))]k

× [1− f (D (dA, (1 +�) r))]n−k}+ odA (f (dA))

=
1− [1− f (D (dA, (1 +�) r))]n

f (D (dA, (1 +�) r))
f (dA) + odA (f (dA)) . (10)

It follows from the above equation that

E (L (R− r, R+ r))

3Following some simple argument, it can be shown that when dA → 0,
the probability that there is more than one node in dA is negligible.
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=

ˆ
L(R−r,R+r)

1− [1− f (D (x, (1 +�) r))]
n

f (D (x, (1 +�) r))
f (x) dA.

(11)

Summarizing the four equations (4), (6), (7) and (11), a
main result on the capacity upper bound of networks with
generally distributed nodes is obtained:

Theorem 1. For both finite n and asymptotically infinite n,
the per-node throughput of G (n, r, A) satisfies

λ (n)

≤ min
0<R≤0.5

W
´
L(R−r,R+r)

1−[1−f(D(x,(1+�)r))]n

f(D(x,(1+�)r)) f (x) dA

2n
´
D(R)

f (x) dx
(
1− ´

D(R)
f (x) dx

) .

(12)

Remark 1. In the analysis, we used a disk, i.e. D (R),
essentially for convenience. In (12), D (R) can be replaced
by a connected area of any shape, satisfying the condition
that the Minkowski sum [28] of the area and a disk centered
at the origin and with radius r is entirely contained in A, and
the inequality on the capacity upper bound will remain valid.

IV. TRANSMISSION RANGE REQUIRED FOR A CONNECTED

NETWORK

The capacity upper bound obtained in the last section, see
(12), is valid for both finite n and therefore asymptotically
infinite n, and for both uniformly and Poissonly distributed
nodes and nodes distributed under a more general distribution.
The analytical form of the capacity upper bound in (12) is
however complicated and it is obviously difficult to extract
key information on the impact of major capacity-impacting
factors. In the rest of this paper, we continue to investigate
the asymptotic capacity of networks with generally distributed
nodes as n → ∞ because it turns out that the above capacity
upper bound can be greatly simplified in the asymptotic
regime. The simplified result helps to give insight on the
main factors that determine the capacity and their interactions.
Unless otherwise specified, the capacity bounds obtained in
the rest of this paper are only valid as n → ∞.

In this section we establish some conditions on r (n)
required for an a.a.s. connected network. These conditions will
then be exploited in Sections V and VI to simply the results
on capacity.

First, we argue that in the asymptotic regime when n → ∞,
it is reasonable to impose the following condition on r (n):

r (n) → 0. (13)

Recall that in this paper, a dense network model is used.
It is a natural outcome of the dense network model that,
as n → ∞, a smaller and smaller transmission range, i.e.
r (n) → 0, is used to improve the spatial frequency reuse
and hence the capacity; otherwise the entire network may
end up being able to have a small and constant number (i.e.
non-increasing with n) of simultaneous transmissions only,
despite an asymptotically infinite number of nodes competing
for channel access. Consequently, the analysis becomes trivial
if condition (13) is not met.

Secondly, we shall show that the requirement set out in
Section II that the network is connected implies that we can

impose a second condition on the transmission range r(n)
when analyzing the asymptotic capacity of the network, viz.:

lim inf
n→∞

r (n)√
logn+b
c1πn

≥ 1. (14)

Recall that c1 = minx∈A f (x). Parameter b in (14) is a
non-negative real number and satisfies the properties that
b = on (logn) (b equals a non-negative constant is allowed).

In the rest of this section, we shall focus on analyz-
ing the sufficient and necessary condition on r (n) required
for G (n, r, A) to have no isolated nodes a.a.s. Note that
G (n, r, A) having no isolated nodes is a necessary condition
for G (n, r, A) to form a connected network. The analysis thus
provides justification for condition (14).

The main result of this section is summarized in the
following theorem:

Theorem 2. Let AC = {y ∈ A : f (y) = c1}, |AC | be the
Lebesgue measure of AC and

r (n) =

√
logn+ b

c1πn
. (15)

The distribution of the number of isolated nodes in G (n, r, A)
converges to a Poisson distribution with mean c1e

−b |AC |.
Further, with B = A\AC , a.a.s. there is no isolated node
in B as n → ∞.

Proof: See Appendix.
The following result readily follows from Theorem 2:

Corollary 1. Under the same settings of Theorem 2, when
|AC | = 0, a.a.s. G (n, r, A) has no isolated node; when
|AC | > 0, G (n, r, A) has no isolated node a.a.s. iff b → ∞
as n → ∞.

V. A CAPACITY UPPER BOUND FOR ASYMPTOTICALLY

INFINITE NETWORKS

In this section, by imposing some mild conditions on the
transmission range r (n), particularly (13) and (14) which have
been justified in Section IV, we simplify the upper bound in
(12) for asymptotic infinite networks in a bid to extract the
major factors that determine the capacity and understand their
roles.

In particular under the two conditions (14) and (13), it can
be shown that

f (D (x, (1 +�) r)) ∼n f (x) π (1 +�)2 r2

and
[
1− f (x)π (1 +�)

2
r2
]n

= en log[1−f(x)π(1+�)2r2]

∼n e−nf(x)π(1+�)2r2

where in the last step, log (1− x) ∼x −x as x → 0 is used.

Therefore,
[
1− f (x)π (1 +�)

2
r2
]n

→ 0 as n → ∞ as a
consequence of (14). Using the above two results and (12), it
follows that:

λ (n)
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≤ min
0<R≤0.5

W
´
L(R−r,R+r)

1−[1−f(D(x,(1+�)r))]n

f(D(x,(1+�)r)) f (x) dA

2n
´
D(R)

f (x) dx
(
1− ´

D(R)
f (x) dx

)

∼n min
0<R≤0.5

4R
(1+�)2r

W

2n
´
D(R)

f (x) dx
[
1− ´

D(R)
f (x) dx

]

= min
0<R≤0.5

2R
(1+�)2´

D(R) f (x) dx
[
1− ´D(R) f (x) dx

]W 1

n

1

r

(16)

where the second step results because of the following deriva-
tion: ˆ

L(R−r,R+r)

1− [1− f (D (x, (1 +�) r))]n

f (D (x, (1 +�) r))
f (x) dA

∼n

ˆ
L(R−r,R+r)

1− [
1− f (x)π (1 +�)2 r2

]n
f (x)π (1 +�)2 r2

f (x) dA

∼n

ˆ
L(R−r,R+r)

1

π (1 +�)2 r2
dA =

4R

(1 +�)2 r
.

Let

βf � min
0<R≤0.5

2R
(1+�)2´

D(R)
f (x) dx

[
1− ´

D(R)
f (x) dx

] (17)

where the subscript f emphasizes the dependence of β on
the node distribution function f , (16) can be written in neater
form as that given in the following theorem:

Theorem 3. As n → ∞, asymptotically almost surely the
per-node throughput of G (n, r, A) satisfies

lim
n→∞ λ (n) ≤ lim

n→∞βfW × 1

n
× 1

r
. (18)

In (18), the parameter βf captures the impact of node distri-
bution and is also entirely determined by the node distribution.
The parameter W represents the impact of link capacity. The
parameter 1

n represents the impact of the number of source-
destination pairs sharing the network capacity. Finally the
parameter 1

r represents the impact of the transmission range
and shows that the network capacity (upper bound) is inversely
proportional to the transmission range. Equation (18) shows
that the network capacity (upper bound) can be expressed as
the product of the above four terms.

Remark 2. In this paper, following the most commonly used
model in the field [1], it is assumed that the number of
source-destination pairs is equal to the number of nodes in
the network. Hence the parameter n has the dual meaning of
being both the number of nodes and the number of source-
destination pairs. We can also consider a scenario where the
number of source-destination pairs is not equal to the number
of nodes. Let m be the number of source-destination pairs.
Then under some mild conditions, i.e. each node has an
equal probability, albeit smaller than 1, to become a traffic
source independently and the respective destinations of the
source nodes are uniformly and independently chosen from
the remaining nodes, the capacity scaling law suggested in
(18) also holds with the parameter n being replaced by the
parameter m.

In the rest of this section, we validate the tightness of the
capacity upper bound by first computing the upper bound for
a special case that has been widely investigated, i.e. networks
with uniformly distributed nodes, then comparing the obtained
upper bound with the known results for networks with this
distribution.

For networks with uniformly distributed nodes, f (x) = 1.
It follows from (17) that

βf = min
0<R≤0.5

2R
(1+�)2´

D(R)
f (x) dx

[
1− ´

D(R)
f (x) dx

]
= min

0<R≤0.5

2

π (1 +�)
2 × 1

R (1− πR2)

=
4

3π (1 +�)2
√
3π

.

Combining the above equation with (18), an upper bound
on the per-node throughput of networks with uniformly dis-
tributed nodes results:

λ (n) ≤ 4

3π (1 +�)2
√
3π

W × 1

n
× 1

r
. (19)

It is well known that the critical (minimum) transmission range
required for a network with a total of n nodes uniformly
distributed in a unit area to be a.a.s. connected is [24], [29]

rc (n) =

√
logn+ c (n)

πn
(20)

where c (n) = on (logn) and c (n) → ∞ as n → ∞.
As an easy consequence of (19) and (20), as n → ∞

λ (n) ≤ 4

3π (1 +�)
2 √

3
W × 1√

n (log n+ c (n))
.

It is well known that the per-node throughput of networks
with uniformly distributed node is Θn

(
W√

n logn

)
[1]. There-

fore the capacity upper bound obtained in (18) is tight in the
sense that when applied to the special case of networks with
uniformly distributed nodes, the capacity upper bound is in
the same order of the capacity of networks with uniformly
distributed nodes. Due to the close relationship between uni-
form and Poisson distributions [30], the above conclusion can
be readily extended to networks with nodes distributed in a
unit square following a homogeneous Poisson distribution with
density n.

VI. A CAPACITY LOWER BOUND FOR ASYMPTOTICALLY

INFINITE NETWORKS

In this section, we derive a capacity lower bound for
asymptotically infinite networks. This is done by using a
constructive method. More specifically, we shall first construct
a deterministic (i.e. the set of active transmitters at a particular
time instant is not random but scheduled a priori) scheduling
and routing algorithm obeying the carrier-sensing constraint of
CSMA networks and obtain the minimum capacity that can
be achieved using the algorithm. Then using the result in [9,
Lemma 9], which states that by adjusting the countdown rates
of nodes, where the countdown rate is a controllable parameter
in CSMA protocols, a distributed scheduling algorithm exists
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Bm,1

Bm, 1
mc

Dm, 1
mc

Dm,1 Dm,2

· · ·

· · ·

· · ·...
...

...
...

mc

1

1

L11

L 1
mc 1

S

D

Fig. 2. An illustration of the partitioning of A. Black square represents
a closed site and white square represents an open site. Note that Lij =
Bm,i ∩Dm,j . Packets between a randomly source S and its destination D
will be routed through these open sites entirely contained in Lijs intersecting
the line segment connecting S and D, as shown via grey squares in the figure.

such that the CSMA network in which each node accesses the
channel randomly following the distributed CSMA protocols
can achieve a capacity that is larger than or equal to that
achieved by its deterministic counterpart, the capacity lower
bound for the CSMA network being studied readily follows.

In the rest of this section, we construct the deterministic
routing and scheduling algorithm and study the capacity of the
network under the algorithm. Before we explain our routing
algorithm, we need to first establish some preliminary results.

We partition A into squares of size c2 where c = r√
5

.
Following common terminology used in percolation theory,
we also refer to these squares as sites and use the two terms
squares and sites interchangeably. Let m = 
5π� = 16 where

5π� is the smallest integer larger than 5π. We also partition
A into 1

mc horizontal slices, where each slice is a rectangle of
size 1×mc. Obviously there are 1

c ×m squares in each slice.
See Fig. 2 for an illustration of the partitioning. Modifications
to handle the situation that 1

mc may not be an integer are well
known [2], [10]. Therefore in the following analysis, we ignore
the possibility that 1

mc may not be an integer and assume that
1
mc is an integer. Denote the i-th rectangle by Bm,i where
1 ≤ i ≤ 1

mc . We call a site (or a square) an open site if there
is at least one node in it; call a site a closed site if there is
no node in it. Let pj be the probability that the j-th site is an
open site and let Aj ⊆ A denote that site. It is straightforward
to show that

pj = 1− (1− f (Aj))
n ≥ 1− (1− c1c

2
)n � p. (21)

The site is closed with probability 1 − pj ≤ 1 − p. Further,
the event that a site is closed (or open) and the event that
another site is closed (or open) are asymptotically independent
as n → ∞ [10], [25].

We describe two sites as adjacent sites if they share a
common edge. Obviously if two sites are adjacent, any node
located in the first site (if exists) and any node located in the
second site must be directly connected. We define a left to
right crossing of open sites in Bm,i as a sequence of distinct
open sites that starts from an open site on the left border of
Bm,i and ends at an open site on the right border of Bm,i such
that all sites are entirely contained in Bm,i and sites next to

each other in the sequence are adjacent sites. Denote by B↔
m,i

the event that there exists a left to right crossing of open sites
in Bm,i. The following result on B↔

m,i can be established:

Lemma 1. There is a left to right crossing of open sites in
each Bm,i, 1 ≤ i ≤ 1

mc , a.a.s. as n → ∞.

Proof: Obviously the complement of B↔
m,i is the event

that there exists a top to bottom crossing of closed sites in
Bm,i [10]. That is, there is a sequence of distinct closed sites
in Bm,i that starts from the top border of Bm,i and ends at
the bottom border of Bm,i where sites next to each other in
the sequence are adjacent sites. Denote by B↔

m,i the event
that there is a top-bottom crossing of closed sites in Bm,i. It

suffices to show that limn→∞ Pr
(
∪1≤i≤ 1

mc
B↔

m,i

)
= 0.

Let Λ denote a randomly chosen site in the top border of
Bm,i. A top to bottom crossing of sites in Bm,i (with the
open or closed status of each site at this point irrelevant)
starting from Λ comprises at least m sites. The total number
of sequences of distinct sites in Bm,i of length m starting
from Λ, where sites next to each other in the sequence are
adjacent sites, is not larger than 3m−1. This is because starting
from Λ, in each step, only one out of (up to) three sites can
be chosen to add into the sequence. The probability that all
m sites in this sequence of sites are closed sites is upper
bounded by (1− p)

m. As a consequence of the union bound,
the probability that there is a sequence of m closed sites
starting from Λ and sites next to each other in the sequence are
adjacent, is upper bounded by 3m−1 (1− p)

m. Noting that for
a sufficiently large n, 3 (1− p) < 1 and hence 3k−1 (1− p)

k

is a decreasing function of k. Therefore, if a top to bottom
crossing of closed sites in Bm,i, starting from Λ, has more
than m closed sites, its probability will only be smaller than
3m−1 (1− p)

m.
Using the union bound and noting that the total number of

sites in the top border of Bm,i is 1
c , it follows from the above

analysis that

Pr
(
B↔

m,i

) ≤ 1

c
3m−1 (1− p)m .

Using the union bound again and (21), an upper bound on the
probability that there exists a top to bottom crossing of closed
sites in any of the Bm,i, 1 ≤ i ≤ 1

mc , can be obtained:

Pr
(∪iB↔

m,i

) ≤ 1

mc
× 1

c
3m−1 (1− p)

m

=
1

mc2
3m−1

(
1− c1c

2
)nm

.

Noting that m = 
5π� and using c = r√
5

and the lower bound
on r given in (14) to derive the first inequality, it can be further
established that

lim
n→∞Pr

(∪iB↔
m,i

)
≤ lim

n→∞
5c1πn

m (log n+ b)
3m−1

(
1− logn+ b

5πn

)nm

= lim
n→∞

5c1πn

m (log n+ b)
3m−1enm log(1− log n+b

5πn ) = 0.

The implication of Lemma 1 is that there is a path starting
from a node on the left border of Bm,i and ending at a node on
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the right border of Bm,i in each Bm,i, 1 ≤ i ≤ 1
mc . Further,

each path does not “wiggle” more than a mc amount, i.e. each
path cannot have a difference in the maximum and minimum
distances from the bottom of the square by more than mc.

By symmetry, if we partition A into 1
mc vertical slices,

denoted by Dm,j where 1 ≤ j ≤ 1
mc (see Fig. 2 for an

illustration) and each slice is a rectangle of size mc × 1, it
follows that a.a.s. there is a top to bottom crossing of open
sites in each Dm,j , 1 ≤ j ≤ 1

mc .
Based on Lemma 1 and the above result on the existence of

a top to bottom crossing of open sites in Dm,j , 1 ≤ j ≤ 1
mc ,

it can be shown that an arbitrarily chosen node in the non-
boundary area of A, if it is not already located in the site
that forms one of the left-right or top-bottom crossings of
open sites, is enclosed in a region bounded by two left-right
crossings of open sites and two top-bottom crossings of open
sites. Further the two left-right (top-bottom) crossings of open
sites are separated by an Euclidean distance of at most 2mc.
Now using the property that the network is connected and
that nodes are directly connected to each other following a
disk model, it readily follows that there exists a (multi-hop)
path between the node and a node located in a site that forms
one of the four crossings and the two nodes are separated
by an Euclidean distance of no more than 2

√
2mc. A similar

argument can also be easily made for nodes located near the
four sides of A or located at the four corners of A.

We are now ready to introduce our routing algorithm. Let
Lij = Bm,i ∩Dm,j , 1 ≤ i, j ≤ 1

mc . It can be readily shown
that a.a.s. every Lij contains both a left to right crossing
of open sites and a top to bottom crossing of open sites.
After having reached a node located in the site that forms
a (left-right or top-bottom) crossing of open sites, using some
simple geometric arguments, it can be established that if we
route the packet in a zigzag pattern along these left-right
and top-bottom crossings of open sites contained in L ijs
intersecting the straight line segment connecting the source
and the destination, the path deviates from the line segment
by no more than

√
2mc. See Fig. 2 for an illustration of the

routing algorithm. The above discussions are summarized in
the following lemma:

Lemma 2. For every source-destination pair in A, as n → ∞,
a.a.s. there is path connecting the source and the destination
and the path deviates from the line segment connecting the
source and the destination by no more than 2

√
2mc.

Lemma 2 implies that packets between every source-
destination pair can be routed along a path which may have
many turns, but never deviates far in distance from a straight
line connecting the respective source-destination pairs. If
there are more than one paths that deviate from the source-
destination line by no more than 2

√
2mc, a path is chosen

randomly among the possibilities to route the packets between
the source and the destination.

Next we analyze the maximum number of source-
destination paths passing an arbitrarily chosen site in order
to obtain an upper bound on the traffic load of the site.

Let yi ∈ Ai be the center of an arbitrarily chosen site Ai.
Consider a randomly chosen source node S located at distance
x from yi. Let C (yi) be the disk centered at yi with a radius

S

D

yi

θi x

Ai

C (yi)

Fig. 3. An illustration of the analysis of the traffic load of a site.

2
√
2mc and let θi be the angle subtended by C (y i) at S. See

3 for an illustration. It can be shown that θ i = 2 arcsin 2
√
2mc
x .

Since all nodes are located on a unit square A, the size of
the area bounded by the two dashed lines and the border of A
in Fig. 3 is at most θi

2ππ
(√

2
)2

= θi. Denote the area by Aθi .
Denote by ςS the event that the destination of S is located in
Aθi . It can be shown:

Pr (ςS) =

ˆ
Aθi

f (x) dx ≤ c2θi. (22)

(Recall that c2 = maxx∈A f (x).) Let h (y) be the probability
density function that a randomly chosen node is located at
distance y from yi. Denote by D (yi, x, x+�x) an annulus
centered at yi and with an inner radius of x and an outer
radius x+�x. First it can be shown that

h (x) = lim
�x→0

´
D(yi,x,x+�x)∩A

f (x) dx

�x
≤ c22πx. (23)

Define an indicator random variable Yij such that Yij = 1 if
a randomly chosen source-destination line (say, labelled as the
j-th source-destination pair) passes through C (y i); Yij = 0

otherwise. Let Ni =
∑n

j=1 Yij . Using θi = 2 arcsin 2
√
2mc
x ,

(22), (23) and further considering the situation that if S is
located in C (yi) (a randomly chosen node has probabil-
ity π

(
2
√
2mc

)2
= 8πm2c2 to be in C (yi)), the source-

destination line must passes C (yi), it can be shown that

E (Ni)

≤n

(ˆ √
2

2
√
2mc

Pr (ςS)h (x) dx+ 8πm2c2

)

≤n

(ˆ √
2

2
√
2mc

(
2 arcsin

2
√
2mc

x

)
c222πxdx + 8πm2c2

)

≤n
(
c2216

√
2πmc+ 8πm2c2

)
where in the last step arcsinx ≤ 2x is used.

Let β = c2216
√
2πmc+8πm2c2 for convenience and define

a new set of i.i.d. indicator random variable Z j , 1 ≤ j ≤ n
such that Pr (Zj = 1) = β and Z =

∑n
j=1 Zj . Our further

analysis needs to use the following ordering result. For two
real-valued random variables X1 and X2, we say X1 ≤st X2

iff for all x ∈ (−∞,∞), Pr (X1 > x) ≤ Pr (X2 > x).
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Theorem 4. [31, Theorem 1(a)]Suppose Xi follows a Bi-
nomial distribution with parameters ni ∈ N and pi ∈ (0, 1),
denote the distribution of Xi by B (ni, pi), i = 1, 2, i.e. Xi ∼
B (ni, pi). We have X1 ≤st X2 iff (1− p1)

n1 ≥ (1− p2)
n2

and n1 ≤ n2.

As an easy consequence of the above theorem, for three
independent Binomial random variables X1 ∼ B (n1, p1),
X2 ∼ B (n1, p2) and X3 ∼ B (n2, p2) with n1 ≤ n2 and
p1 ≤ p2, it can be concluded that X1 ≤st X2 ≤st X3.

Using the above result, it follows that Ni ≤st Z . Therefore,

Pr (Ni ≥ (1 + δ)nβ) ≤ Pr (Z ≥ (1 + δ)nβ)

=Pr (Z ≥ (1 + δ)E (Z)) ≤ e−
δ2E(Z)

3 = e−
δ2

3 nβ

where δ is a small positive constant and in the third step, the
Chernoff bound is used.

On the basis of the above result, and using the union bound
and (14)

lim
n→∞Pr (∪i (Ni ≥ (1 + δ)nβ))

≤ lim
n→∞

1

c2
e−

δ2

3 nβ

= lim
n→∞{e−

[
nδ2

3

(
c2216

√
2πm

√
log n+b
5c1πn +8πm2 log n+b

5c1πn

)]

× 5c1πn

logn+ b
} = 0 (24)

Using Lemma 2, a node located in a site will only carry
the traffic of a source-destination pair if the associated source-
destination line segment intersects the disk centered at the site
and with a radius 2

√
2mc. Therefore as an easy consequence

of (24), a.a.s the number of source-destination lines pass-
ing through an arbitrarily chosen site, including the source-
destination lines originating from or ending at the site, is
bounded by (1 + δ)nβ for every site in A.

Further it can be easily shown that there exists a scheduling
algorithm and a positive constant C�, depending on �, such
that an open site can become active (i.e. a node in the site is
transmitting) for at least 1

C�
fraction of time.

It follows that

lim
n→∞λ (n)

≥ lim
n→∞

W

C�
× 1

(1 + δ)nβ

= lim
n→∞

W

C�
× 1

(1 + δ)n
[
c22256

√
2
5πr +

2048π
5 r2

]
= lim

n→∞
1

C� (1 + δ) c22256
√

2
5π

×W × 1

n
× 1

r
(25)

where (13) is used in the last step. The above result is
summarized in the following theorem:

Theorem 5. As n → ∞, asymptotically almost surely the
per-node throughput of G (n, r, A) satisfies

lim
n→∞λ (n) ≥ lim

n→∞
1

C� (1 + δ) c22256
√

2
5π

×W × 1

n
× 1

r

(26)

Equation (26) reveals that the lower bound of the ca-
pacity of asymptotically infinite networks with a general
node distribution can also be expressed as the product of
four factors: parameter 1

C�(1+δ)c22256
√

2
5π

captures the impact

of node distribution and is also entirely determined by the
node distribution. Parameter W represents the impact of link
capacity. Parameter 1

n represents the impact of the number
of source-destination pairs sharing the network capacity. Fi-
nally parameter 1

r represents the impact of the transmission
range and shows that the network capacity (lower bound ) is
inversely proportional to the transmission range. Further, the
lower bound in (26) and the upper bound in (18) varies by a
constant multiplicative factor only.

Remark 3. As manifested in (26), the capacity lower bound
is solely determined by the maximum value of f (x). This
suggests that the traffic bottleneck in a network is in the
areas with denser nodes. When more knowledge on f (x)
is available, it is possible to design more intelligent routing
algorithms to bypass these traffic hot spots, thereby reducing
the gap between the capacity upper bound and the capacity
lower bound. Further, other things being equal, uniform distri-
bution is the optimum distribution among the class of random
distributions that maximizes the capacity lower bound in (26).

VII. CONCLUSION

In this paper, we studied the capacity of networks with
generally distributed nodes. More specifically, we considered
random networks with a total of n nodes i.i.d. on a unit
square following a general distribution function. Further, a pair
of nodes are directly connected following a unit disk model
with a transmission range r (n) and two simultaneously active
transmitters have to be separated by at least (1 +�) r (n) due
to the use of carrier sensing. The transmission range r (n) is
the same for all nodes and can take any value as long as the
resulting network is connected. A capacity upper bound of the
above network is obtained by analyzing the number of links
crossing a simple closed curve. The capacity upper bound is
valid for both finite networks and asymptotic infinite networks.

To simplify the analytical expression and to gain insight,
we conducted a deep examination of the condition that the
network is connected and showed that the condition implies
that we can impose some mild restrictions on the transmission
range. Utilizing these constraints on r (n), both the asymptotic
capacity upper bound and the asymptotic capacity lower bound
have been shown to be the product of four terms: a term
determined by the spatial node distribution only, the link
capacity W , 1

n where n represents the number of source-
destination pairs sharing the network capacity, and 1

r(n) which
represents the combined impact of spatial frequency reuse
and the number of relays required for end-to-end deliver
information. The results suggest that the impact of the spatial
node distribution on the network capacity can be captured
by a single parameter and the spatial node distribution only
affect the network capacity by up to a constant multiplicative
factor. The upper and lower bounds are tight in the sense that
they differ by a constant multiplicative factor only and for the
special case of networks with uniformly distributed nodes, the
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bounds are in the same order of the capacity of networks with
uniformly distributed nodes.

We expect that both the analytical techniques developed in
the paper and some intermediate results derived when analyz-
ing the capacity, e.g. an expression for the transmission range
required for an a.a.s. connected network with generally dis-
tributed nodes, and a demonstration that packets between every
source-destination pair can be routed along almost straight
lines connecting the respective source-destination pairs, to
contribute to the network capacity analysis under more general
settings.

Our result also reveals that the traffic bottleneck in the
network is likely to be in the areas with denser nodes. When
more knowledge on f (x) is available, it may be possible
to design more intelligent routing algorithms to bypass these
traffic hot spots, thereby reducing the gap between the capacity
upper bound and the capacity lower bound.

APPENDIX

In this Appendix, we prove Theorem 2.
Denoted by ξ the random number of isolated nodes in A,

we first analyze the expected value of ξ. Then we analyze
the asymptotic distribution of the number of isolated nodes
in a network with the same node distribution and trans-
mission range as G (n, r, A) however with nodes distributed
on a unit torus. Denote the latter network on a torus by
GT
(
n, r, AT

)
and denote the random number of isolated

nodes in GT
(
n, r, AT

)
by ξT . We show that the distribu-

tion of ξT converges to a Poisson distribution with mean
c1e

−b |AC |. Using the property that ξT ≤st ξ, the property
that E

(
ξT
)

= E (ξ) (both properties to be proved later),
together with the property that both random variables are non-
negative integers, we are able to conclude that as n → ∞,
ξT and ξ converge to the same distribution. Thus, Theorem
2 readily follows. For two real-valued random variables X 1

and X2, we say X1 ≤st X2 iff for all x ∈ (−∞,∞),
Pr (X1 > x) ≤ Pr (X2 > x).

Considering a differential area dA ⊂ A, the proba-
bility that there is exactly one node in dA is given by
nf (dA) (1− f (dA))

n−1
= nf (dA) + odA (f (dA)) and the

probability that there is more than one node in dA is negligible
compared with nf (dA). Let x be the center of dA. Denote
by ηdA the event that there is exactly one node in dA and
denote by ξdA the event that there is one node in dA and the
node is isolated. It can be shown that

Pr (ξdA) = Pr (ξdA|ηdA) Pr (ηdA)
= [1− f (D (x, r) \dA)]n−1 nf (dA) (1− f (dA))n−1

+odA (f (dA)) (27)

where D (x, r) denotes a disk centered at x and with a radius
r. It follows from the above equation that:

E (ξ) =

ˆ
A

[1− f (D (x, r) \dA)]n−1
nf (dA)

=

ˆ
A

e(n−1) log[1−f(D(x,r))]nf (x) dA

∼n

ˆ
A

e−(n−1)f(x)πr2nf (x) dA

where in the last step, r (n) =
√

logn+b
c1πn

, f (D (x, r)) ∼n

f (x)πr2 as n → ∞ and log (1− x) ∼x −x as x → 0 are
used. Recall that f (x) ∈ [c1, c2], it follows from the above
equation that

lim
n→∞E (ξ) = lim

n→∞

ˆ
A

e
−(n−1)f(x) log n+b

c1n nf (x) dA

= lim
n→∞

ˆ
AC

e−bf (x) dA = c1e
−b |AC | .(28)

Now let us consider another network with the same node
distribution and transmission range as G (n, r, A) however
with nodes distributed on a unit torus AT =

[− 1
2 ,

1
2

]2
. Denote

the network on the unit torus by GT
(
n, r, AT

)
.

The use of a toroidal rather than planar region as a tool in
analyzing network properties is well known [32]. The unit
torus AT = [− 1

2 ,
1
2 ]

2 that is commonly used in random
geometric graph theory is essentially the same as a unit square
A = [− 1

2 ,
1
2 ]

2 except that the distance between two points
on a torus is defined by their toroidal distance, instead of
Euclidean distance. Thus a pair of nodes in G T

(
n, r, AT

)
,

located at x1 ∈ AT and x2 ∈ AT respectively, are directly
connected iff their toroidal distance, denoted by ‖x 1 − x2‖T ,
is smaller than or equal to r (n). For a unit torus AT =
[− 1

2 ,
1
2 ]

2, the toroidal distance is given by ‖x1 − x2‖T �
min{‖x1 + z − x2‖ : z ∈ Z

2} [32, p. 13].
We note the following relation between toroidal distance

and Euclidean distance on a square area centered at the origin:

‖x1 − x2‖T ≤ ‖x1 − x2‖ and ‖x‖T = ‖x‖ (29)

which will be used in the later analysis.
Denote by ξT the random number of isolated nodes in

GT
(
n, r, AT

)
. Now we use the coupling technique [10] to

construct the connection between ξ and ξT . Note that given
a random instance of GT

(
n, r, AT

)
, a random instance of

G (n, r, A) can be obtained by removing connections between
nodes in GT

(
n, r, AT

)
whose toroidal distance is smaller than

or equal to r (n) but whose Euclidean distance is larger than
r (n), and the converse. Since the removal of connections will
increase or keep the number of isolated nodes in the network.
Therefore

ξT ≤st ξ. (30)

It readily follows that a necessary condition for G (n, r, A)
to have no isolated nodes a.a.s. is that GT

(
n, r, AT

)
has no

isolated nodes a.a.s.
Next we shall show that r (n) =

√
logn+b
c1πn

is a sufficient and

necessary condition for GT
(
n, r, AT

)
to have no isolated node

a.a.s. Our further analysis relies on the use of the Chen-Stein
bound [30], [33]. We first establish some preliminary results
that allow us to use the Chen-Stein bound for the analysis of
number of isolated nodes in GT

(
n, r, AT

)
.

Divide the network area AT into m2 non-overlapping
squares each with size 1

m2 . Denote the ithm square by Aim .
Define two sets of indicator random variables Jim and Iim
with im ∈ Γm � {1, . . .m2}, where Jim = 1 iff there
exists exactly one node in Aim , otherwise Jim = 0; Iim = 1
iff there is exactly one node in Aim and that node is iso-
lated, Iim = 0 otherwise. Obviously Jim is independent of
Jjm , jm ∈ Γm\ {im}. Denote the center of Aim by xim and
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without loss of generality we assume that when Jim = 1, the
associated node in Aim is at xim

4. Observe that for any fixed
m, the values of Pr (Iim = 1) and Pr (Jim = 1) do not depend
on the particular index im on a torus. However both the set
of indices Γm and a particular index im depend on m. As m
changes, the square associated with IT

im and JT
im also changes.

In this paper, we are only interested in the limiting values of
the above parameters associated with a sub-square as m → ∞.
Without causing any confusion, we drop the subscript m for
convenience in the following analysis.

First it can be shown that

Pr(Ji = 1) = n

ˆ
Ai

f (x) dx

(
1−
ˆ
Ai

f (x) dx

)n−1

∼m
n

m2
f (xi) . (31)

Let us consider Pr(Ii = 1|Ji = 1) now, i.e the probability
that given exactly one node in Ai, the node is isolated. Let
DT (xi, r) be a disk of radius r centered at xi in the torus, i.e.

DT (xi, r) =
{
y ∈ AT : ‖y − xi‖T ≤ r

}
. It can be readily

shown that

Pr(Ii = 1|Ji = 1)

∼m

(
1−
ˆ
DT (xi,r)

f (x) dx

)n−1

. (32)

Combining the two equations (31) and (32), it follows that

Pr(Ii = 1)

∼m
n

m2
f (xi)

(
1−
ˆ
DT (xi,r)

f (x) dx

)n−1

. (33)

Now consider the event IiIj = 1, i �= j, conditioned on the
event that JiJj = 1, meaning that both nodes having been
placed inside Ai and Aj respectively are isolated. It can be
shown that

Pr(IiIj = 1|JiJj = 1)

=1
(
‖xi − xj‖T > r

)(
1−
ˆ
D(xi,r)∪D(xj ,r)

f (x) dx

)n−2

.

(34)

where 1
(∥∥xi − xT

j

∥∥ > r
)

is an indicator function and

1
(
‖xi − xj‖T > r

)
= 1 iff ‖xi − xj‖T > r;

1
(
‖xi − xj‖T > r

)
= 0 otherwise. The inclusion of the term

1
(
‖xi − xj‖T > r

)
is due to the requirement that the two

nodes located inside Ai and Aj respectively cannot be directly
connected given that they are both isolated nodes. Further, it
can be shown that

Pr (JiJj = 1)

∼m n (n− 1) f (xi) f (xj)

(
1

m2

)2

. (35)

4In this paper we are mainly concerned with the case that m → ∞, i.e.
the size of the square is vanishingly small. Therefore the actual position of
the node in the square is not important.

Combining the two equations (34) and (35):

Pr(IiIj = 1)

∼mn (n− 1) f (xi) f (xj)

(
1

m2

)2

1
(
‖xi − xj‖T > r

)

×
(
1−
ˆ
DT (xi,r)∪DT (xj ,r)

f (x) dx

)n−2

. (36)

Noting that when ‖xi − xj‖T ≥ 2r,
ˆ
DT (xi,r)∪DT (xj ,r)

f (x) dx

=

ˆ
DT (xi,r)

f (x) dx+

ˆ
D(xj ,r)

f (x) dx.

It follows that when ‖xi − xj‖T ≥ 2r,

lim
m→∞

Pr(IiIj = 1)

Pr(Ii = 1)Pr(Ij = 1)

∼n

(
1− ´

DT (xi,r)
f (x) dx− ´

DT (xj ,r)
f (x) dx

)n−2

(1 − ´DT (xi,r)
f (x) dx)n−1(1− ´DT (xj ,r)

f (x) dx)n−1

∼n exp{− (n− 2) (

ˆ
DT (xi,r)

f (x) dx+

ˆ
DT (xj ,r)

f (x) dx)

+ (n− 1)

ˆ
DT (xi,r)

f (x) dx+ (n− 1)

ˆ
DT (xi,r)

f (x) dx}

∼ne
´
DT (xi,r)

f(x)dx+
´
DT (xj ,r) f(x)dx ∼n 1. (37)

where in the second step, log (1− x) ∼x −x as x → 0 is used.
Equation (37) implies that the event that a node is isolated and
the event that another node separated by a distance of more
than 2r from the first node is also isolated are asymptotically
independent as n → ∞.

As an easy consequence of (33), it can be shown that

E
(
ξT
)

= lim
m→∞E

(∑
i∈Γm

Ii

)

= lim
m→∞

∑
i∈Γm

n

m2
f (xi)

(
1−
ˆ
DT (xi,r)

f (x) dx

)n−1

=

ˆ
AT

nf (y)

(
1−
ˆ
DT (y,r)

f (x) dx

)n−1

dy. (38)

Based on the above analysis, the following theorem on the
asymptotic convergence of E

(
ξT
)

as n → ∞ can be proved:

Theorem 6. Let ξT be the number of isolated nodes in
GT
(
n, r, AT

)
. As n → ∞, E

(
ξT
)

converges to a non-
negative constant c1e

−b |AC | where c1 = miny∈A f (y),
AC =

{
y ∈ AT : f (y) = c1

}
and |AC | is the Lebesgue

measure of AC . Further, let B = AT \AC , a.a.s. there is no
isolated node in B as n → ∞.

Proof: It follows from (38) that

lim
n→∞E

(
ξT
)
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= lim
n→∞

ˆ
AT

nf (y)

(
1−
ˆ
DT (y,r)

f (x) dx

)n−1

dy

= lim
n→∞

ˆ
AT

f (y) e
logn+(n−1) log

(
1−f(y) log n+b

c1n

)
dy

where (15) is used in the last step. It can be further shown
that

lim
n→∞ logn+ (n− 1) log

(
1− f (y)

logn+ b

c1n

)

= lim
n→∞

logn
n−1 + log

(
1− f (y) logn+b

c1n

)
1

(n−1)

= lim
n→∞

1−logn
(n−1)2

+ −1

1−f(y) log n+b
c1n

× f (y) − logn−b+1
c1n2

− (n− 1)
−2

= lim
n→∞

(
1− f (y)

c1

)
logn− b

f (y)

c1
+

(
f (y)

c1
− 1

)

where L’Hï¿ 1
2pital’s rule is used in the second step of the

above derivations. Combining the above two equations

lim
n→∞E

(
ξT
)

= lim
n→∞

ˆ
AT

f (y)n1− f(y)
c1 e

−b f(y)
c1

+
(

f(y)
c1

−1
)
dy

=

ˆ
AC

c1e
−bdy

+ lim
n→∞

ˆ
B

f (y)n1− f(y)
c1 e

−b f(y)
c1

+
(

f(y)
c1

−1
)
dy = c1e

−b |AC | .
(39)

Let WB be the number of isolated nodes in B. As an easy
consequence of the above analysis,

lim
n→∞E (WB)

= lim
n→∞

ˆ
B

f (y)n
1− f(y)

c1 e
−b f(y)

c1
+
(

f(y)
c1

−1
)
dy = 0.

Noting that WB is a non-negative random integer, the conclu-
sion readily follows that limn→∞ Pr (WB = 0) = 1.

Now we are ready to use the Chen-Stein bound to obtain
the asymptotic distribution of the number of isolated nodes
in AT . Below we give a formal statement of the Chen-Stein
bound for completeness:

Theorem 7. [30, Theorem 1.A] For a set of indicator random
variables Ii, i ∈ Γ, define W �

∑
i∈Γ Ii, pi � E (Ii) and

η � E (W ). For any choice of the index set Γs,i ⊂ Γ, Γs,i ∩
{i} = ï¿ 1

2 ,

dTV (L (W ) , Po (η))

≤
∑
i∈Γ

[(p2i + piE(
∑

j∈Γs,i

Ij))]min(1,
1

η
)

+
∑
i∈Γ

E(Ii
∑

j∈Γs,i

Ij)min(1,
1

η
)

+
∑
i∈Γ

E|E{Ii|(Ij , j ∈ Γw,i)} − pi|min(1,
1

η
)

where L (W ) denotes the distribution of W , Po (η) denotes a
Poisson distribution with mean η, Γw,i = Γ\ {Γs,i ∪ {i}} and

dTV denotes the total variation distance. The total variation
distance between two probability distributions α and β on Z

+

is given by dTV (α, β) � sup {|α (A)− β (A)| : A ⊂ Z
+}.

For convenience, we separate the bound in Theorem 7
into three terms b1 min(1, 1

η ), b2min(1, 1
η ) and b3min(1, 1

η )

where b1 �
∑

i∈Γ[(p
2
i + piE(

∑
j∈Γs,i

Ij))], b2 �∑
i∈Γ E(Ii

∑
j∈Γs,i

Ij) and b3 �
∑

i∈Γ E|E{Ii|(Ij , j ∈
Γw,i)} − pi|.

Using the Chen-Stein bound, the following theorem, which
provides a stronger result on the distribution of ξ T than
Theorem 6, can be established:

Theorem 8. Let ξT be the number of isolated nodes in
GT
(
n, r, AT

)
. As n → ∞, the distribution of ξT converges

to a Poisson distribution with mean E
(
ξT
)
= c1e

−b |AC |.
Proof: Note that in Theorem 7, pi = E(Ii) and E(Ii) =

Pr(Ii = 1) has been given in (33). Parameter ξT is related
to parameter W in Theorem 7 by that in each and every
random instance of GT

(
n, r, AT

)
, the number of isolated

nodes is equal to the corresponding value of W as m → ∞.
Therefore, limm→∞ W

d
= ξT , where

d
= means equal in

distribution. The above equation implies that to prove the
theorem, it suffice to show that as n → ∞, the distribution
of limm→∞ W converges to a Poisson distribution with mean
E
(
ξT
)
= c1e

−b |AC |. This result is proved using the Chen-
Stein bound.

Let DT (xi, r) = {x ∈ AT : ‖x− xi‖T ≤ r}. Further
define the neighborhood of an index i ∈ Γ as Γs,i � {j :
xj ∈ D (xi, 2r)}\{i} and define the non-neighborhood of
the index i as Γw,i � {j : xj /∈ D(xi, 2r)}. It can be shown
that

|Γs,i| = m24πr2 + om(m24πr2). (40)

Further, as an easy consequence Theorem 6, particularly
equation (39), limn→∞ limm→∞ η = c1e

−b |AC |, and that
pi = E(Ii), the conclusion follows:

lim
m→∞

∑
i∈Γ

pi

=

ˆ
AT

nf (y)

(
1−
ˆ
DT (y,r)

f (x) dx

)n−1

dy, (41)

lim
n→∞ lim

m→∞

∑
i∈Γ

pi = c1e
−b |AC | . (42)

Next we shall evaluate the b1, b2 and b3 terms in the
following three subsections separately and show that all three
terms converge to 0 as n → ∞.

A. An Evaluation of the b1 Term

Using (33) and (41), it can be shown that

lim
n→∞ lim

m→∞ b1

= lim
n→∞ lim

m→∞

∑
i∈Γ

piE(
∑

j∈Γs,i∪{i}
Ij)
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= lim
n→∞

ˆ
AT

{nf (y) (1−
ˆ
DT (y,r)

f (x) dx)n−1

×[

ˆ
DT (y,2r)

nf (z) (1−
ˆ
DT (z,r)

f (x) dx)n−1dz]}dy
(43)

= lim
n→∞

ˆ
AT

{nf (y) (1−
ˆ
DT (y,r)

f (x) dx)n−1

×[

ˆ
DT (y,2r)

f (z)n1− f(z)
c1 e

−b
f(z)
c1

+
(

f(z)
c1

−1
)
dz]}dy (44)

≤ lim
n→∞

ˆ
AT

{nf (y) (1−
ˆ
DT (y,r)

f (x) dx)n−1 (45)

×[c2e
−b+

(
f(y)
c1

−1
)
4πr2]}dy (46)

≤c2e
−b+

(
c2
c1

−1
)

lim
n→∞{4πr2

ˆ
AT

nf (y)

×(1−
ˆ
DT (y,r)

f (x) dx)n−1dy} (47)

=c2e
−b+

(
c2
c1

−1
)

lim
n→∞ 4πr2c1e

−b |AC | = 0 (48)

where (33) and (38) are used in obtaining (43); (44) is obtained
using the same steps resulting in (39); (45) is obtained by
noting that c1 = minx∈A f (x), c2 = maxx∈A f (x) and that
DT (y, 2r) asymptotically converges to a single point y as
n → ∞; (48) is obtained using Theorem 6, more specifically
(39).

B. An Evaluation of the b2 Term

Now let us consider the b2 term. It can be shown that

lim
m→∞ b2

= lim
m→∞

∑
i∈Γ

(
∑

j∈Γs,i

E (IiIj))

= lim
m→∞

∑
i∈Γ

[
∑

j∈Γs,i

n (n− 1) f (xi) f (xj)

(
1

m2

)2

×1(‖xi − xj‖T > r)(1 −
ˆ
DT (xi,r)∪DT (xj ,r)

f (x) dx)n−2]

(49)

=

ˆ
AT

[

ˆ
DT (y,2r)

n (n− 1) f (y) f (z) 1(‖y − z‖T > r)

×(1−
ˆ
DT (y,r)∪D(z,r)

f (x) dx)n−2dz]dy (50)

=

ˆ
AT

[

ˆ
DT (y,r,2r)

n (n− 1) f (y) f (z)

×(1−
ˆ
DT (y,r)∪DT (z,r)

f (x) dx)n−2dz]dy

∼n

ˆ
AT

[

ˆ
DT (y,r,2r)

n (n− 1) f2 (y)

× (1− f (y)
∣∣DT (y, r) ∪DT (z, r)

∣∣)n−2
dz]dy (51)

where (36) is used in obtaining (49) and DT (y, r, 2r) =
DT (y, 2r) \DT (y, r). Using some straightforward geometric
analysis, it can be shown that when z ∈ D (y, r, 2r),

|D(y, r) ∪D(z, r)|

=2πr2 − 2r2 arcsin(

√
1− ‖y − z‖2 /(4r2))

+r ‖y − z‖
√
1− ‖y − z‖2 /(4r2) ≥ 4

3
πr2 +

√
3

2
r2.

Using the above inequality, it follows from (51) thatˆ
AT

[

ˆ
DT (y,r,2r)

n (n− 1) f2 (y)

× (1− f (y) |D(y, r) ∪D(z, r)|)n−2
dz]dy

≤
ˆ
AT

[

ˆ
DT (y,r,2r)

n (n− 1) f2 (y)

×
(
1− f (y) (

4π

3
+

√
3

2
)r2

)n−2

dz]dy

∼n

ˆ
AT

[n (n− 1) f2 (y)

×
(
1− f (y) (

4π

3
+

√
3

2
)r2

)n−2

3πr2]dy. (52)

Consider the term n (n− 1)
(
1− f (y) (4π3 +

√
3
2 )r2

)n−2

πr2

inside the above integral. It can be shown that

lim
n→∞

n (n− 1)

(
1− f (y) (

4π

3
+

√
3

2
)r2

)n−2

πr2

= lim
n→∞

(n− 1) (1− f (y) (
4π

3
+

√
3

2
)
log n+ b

c1πn
)n−2 log n+ b

c1

≤ lim
n→∞

(n− 1) (1− (
4π

3
+

√
3

2
)
log n+ b

πn
)n−2 log n+ b

c1

=
1

c1
lim

n→∞
e
log(n−1)+(n−2) log

(
1−( 4π

3
+

√
3

2
) log n+b

πn

)
+log(log n+b)

(53)

=
1

c1
lim

n→∞
elog(n−1)−( 4π

3
+

√
3

2
)
(n−2)(log n+b)

πn
+log(logn+b) = 0 (54)

where the equality that log (1− x) ∼x −x as x → 0 is used
in obtaining (53).

Combining the above equations (50), (51), (52) and (54),
conclusion follows that limn→∞ limm→∞ b2 = 0.

C. An Evaluation of the b3 Term

Using (37), it can be shown that when j ∈ Γw,i

lim
n→∞ lim

m→∞
Pr(Ii = 1|Ij = 1)

Pr(Ii = 1)

= lim
n→∞ lim

m→∞
Pr(IiIj = 1)

Pr(Ii = 1)Pr(Ij = 1)
= 1. (55)

Using the above equation and noting that
limn→∞ limm→∞ Pr(Ij = 0) = 1, it can be further
shown that

lim
n→∞ lim

m→∞
Pr(Ii = 1|Ij = 0)

Pr(Ii = 1)

= lim
n→∞ lim

m→∞
Pr(Ii = 1, Ij = 0)

Pr(Ii = 1)Pr(Ij = 0)

= lim
n→∞ lim

m→∞
Pr(Ii = 1)(1− Pr(Ij = 1))

Pr(Ii = 1)Pr(Ij = 0)
= 1. (56)

Using equations (55), (56), and equation (42), which shows
that

∑
i∈Γ E (Ii) converges to a finite value as m → ∞ and

n → ∞, it follows that

lim
n→∞ lim

m→∞ b3
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= lim
n→∞ lim

m→∞

∑
i∈Γ

E |E (Ii)− pi| = 0.

A combination of the analysis in subsections A, B and C
completes this proof.

Theorem 8, equations (28) and (30), together with the
property that both random variables are non-negative integers
[26, Lemma 2], allows us to obtain Theorem 2.
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