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Abstract—To cope with an exponentially increasing demand on
mobile data traffic in cellular networks, high-capacity WiFi and
device-to-device networks can be exploited as a complementary
means to offload and reduce the traffic load of cellular networks.
This paper proposes a novel cooperative content dissemination
strategy for a heterogeneous network consisting of different
types of devices, such as WiFi access points, smart phones
and intelligent vehicles. The proposed strategy offloads a sig-
nificant proportion of data traffic from cellular networks to
WiFi or device-to-device networks using ad hoc connections that
emerge opportunistically when mobile devices move and meet
one another. The strategy is particularly suited for dissemi-
nation of delay tolerant content. Detailed analysis is provided
for the content dissemination process in heterogeneous mobile
networks adopting the proposed strategy. On that basis, the
optimal parameter settings for the content dissemination strategy
are discussed. Simulation and numerical results show that the
proposed strategy significantly reduces the amount of data traffic
for cellular networks while guaranteeing the successful delivery
of content.

Index Terms—content dissemination; data offloading; mobile
network; heterogeneous network; epidemic broadcast; erasure
coding

I. Introduction
With the development of wireless communication technolo-

gies and the increase in the number of mobile devices such
as smart phones, tablet PCs and intelligent vehicles, there is
an explosive demand on the data traffic in mobile cellular net-
works [1]–[3]. This paper investigates a content dissemination
strategy for heterogeneous mobile networks where a portion
of data traffic is offloaded from cellular networks to high-
capacity and low-cost complementary networks, including
WiFi, vehicular and device-to-device networks, to ease the
burden of cellular networks.

Content dissemination in mobile networks has become an
increasingly important and challenging task. It is predicted that
an average mobile broadband user will soon consume 7 GB
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of traffic per month, which is 5.4 times more than the current
value [4]. Usually in cellular networks, a user downloads
content directly from a Content Provider’s (CP) server over
a Communication Service Provider’s (CSP) network. Due to
limited bandwidth of cellular networks, an increasing number
of base stations are deployed by CSPs to increase the capacity
of cellular networks to fulfil the aforementioned explosive data
traffic demand. In addition to the capacity issue, downloading
content through CSP networks incurs a cost, which must be
borne either by the end users or by the CPs [5].

To solve the challenges in both capacity and cost, there
is intensive research on offloading mobile data traffic from
cellular networks, which rely on congested and expensive
licensed frequency bands, to complementary networks, such
as WiFi and device-to-device networks, which typically use
free unlicensed frequency spectrum [4], [6].

In addition to complementary networks, the mobility of
users can also be exploited to assist the content dissemination.
When users carry mobile devices physically while walking
around university campus, shopping centres or travelling by
taxis or buses, the content in their mobile devices also
move with them without consuming any bandwidth. Together
with device-to-device communication technologies, mobility
of users offers an alternative way to transport delay-tolerant
content efficiently [1].

A large proportion of the content delivered by CSPs over
mobile networks is delay-tolerant content, like videos, news-
papers and weather reports [7]. Consider a typical example of
delay-tolerant content dissemination of videos or newspapers
via pedestrians. The mobile device carried by a pedestrian
may receive the content from a cellular base station or a
WiFi access point. As the pedestrian moves, the content
moves with the pedestrian. When the pedestrian encounters
another pedestrian(s) interested in the content, the pedestrian
may pass the content through device-to-device connection
between them. In this way, the content originally carried via
cellular networks is offloaded to the WiFi and device-to-device
networks. Consider another example of delay-tolerant content
dissemination in taxis or buses. The dissemination of multi-
media content (e.g. video clips) to the vehicles can be costly
using cellular networks. In contrast, vehicular networks are
an important class of mobile networks, which have attracted
increasing interests recently. Vehicles are highly mobile and
can communicate with each other or with nearby roadside
units using the dedicated short range communication (DSRC)
radio [8]. These features make vehicular networks a suitable
candidate for data offloading too, i.e. using a complementary
network and device mobility to ease the burden of cellular
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networks. In both examples, the content is offloaded from
cellular networks to other complementary networks. This
reduces the traffic load of cellular networks (and boosts the
capacity of cellular networks in the sense that more users can
be served) and also provides a higher data rate for the users.
The expense is that content offloading will incur higher delay
compared with direct transmission using cellular networks.

This paper investigates content dissemination and offloading
in heterogeneous mobile networks, which reduces the traffic
load of cellular networks while guaranteeing the successful
delivery of content.

More specifically, the following contributions are made in
the paper:

1) a cooperative content dissemination strategy is proposed,
which exploits all three data dissemination methods, i.e.
cellular networks, complementary networks and device
mobility, to disseminate content;

2) an analytical framework is proposed for studying the
information dissemination process, taking into account all
three data dissemination methods. Analytical results are
presented to stochastically characterise the content dis-
semination process, considering the heterogeneity in the
devices, in terms of mobility and transmission capability.
On that basis, the reduction in the amount of data traffic
in cellular networks is calculated;

3) based on the above results, the optimal parameter set-
tings of the content dissemination strategy are discussed.
Simulation and numerical results show that the proposed
strategy can effectively reduce the traffic load of the cel-
lular network while guaranteeing the successful delivery
of all content.

The rest of this paper is organised as follows: Section II
reviews related work. Section III introduces the system model,
including the content dissemination strategy. Section IV
presents the analysis of the content dissemination process,
whose optimal design is studied in Section V. Section VI
validates the analysis using simulations. Finally Section VII
concludes this paper and proposes possible future work.

II. Related work

The explosive growth of mobile data traffic has attracted
significant attention from both academia and industry. A
number of innovative solutions have emerged to offload data
traffic and reduce the load of cellular networks, as well as
increase the capacity of cellular networks [3]. Some of the
key technologies [7] include small cell technology and using
WiFi networks and device-to-device networks for mobile data
offloading. This paper focuses on the latter technology.

Recent research [4] has shown that WiFi networks have
already carried and offloaded a large amount of mobile data
traffic. When a device enters into a WiFi-covered area, it
can switch its data traffic from a cellular network to a WiFi
network [9] to reduce cost and traffic load of the cellular
network. A major issue in WiFi offloading is the optimum
deployment of WiFi access points (APs) for efficient offload-
ing. Bulut et al. [9] compared different methods of deploying
WiFi APs for efficient offloading of mobile data traffic. They

also proposed a greedy approach that can achieve a high
offloading efficiency, i.e. a higher percentage of data traffic is
offloaded to WiFi networks, compared with existing methods
like Sequential or Hot-Zone. Moreover, instead of relying
solely on existing WiFi APs, recent development of technology
has also allowed mobile devices to become a virtual WiFi
access points (a.k.a. WiFi Tethering [10]), so that devices
can communicate with one another opportunistically without
relying on infrastructure. In this way, devices can cooperate
with one another to disseminate content.

Using a typical cooperative content dissemination strategy
[7]; the service providers first deliver the content to only a
small set of users, then these users can further disseminate the
content to other subscribed users when their mobile devices
are in proximity and can communicate using WiFi tethering or
Bluetooth technology. It is obvious that entirely relying on the
opportunistic content dissemination cannot a priori guarantee
the delivery of content. This paper proposes a mechanism that
can provide guarantee on the delivery of content by combing
the use of cellular networks and opportunistic networks.

A further point of differentiation of this paper is as follows.
Existing work on cooperative mobile data offloading (e.g. [1],
[11]) mainly focuses on the design and selection of helpers,
viz. some special mobile devices selected to help the content
provider to deliver messages to other mobile devices using
ad hoc connections. A recent work for example of Li et al.
[1] considered the impact of the buffer size constraint on the
amount of data offloaded by helpers. Specifically, assuming
Poissonly distributed inter-contact time interval between mo-
bile users, Li at al. [1] proposed three algorithms for storage
allocation of helpers to maximise the system offloading utility
function taking into account the constraints on the helpers’
buffer-size. In contrast, this paper considers the case where
every node can be a potential helper and issues such as
buffer size become of much less importance in the scenarios
considered in the paper.

As vehicular networks are an important category of mobile
networks, content dissemination in vehicular networks has also
been investigated [2], [6]. Particularly, wireless access through
vehicle-to-roadside communications can be utilised in public
transportation vehicles for streaming applications, e.g., video
and interactive advertisement. As pointed out in [12], it is
challenging to develop an efficient wireless access scheme that
minimises the cost of wireless connectivity for downloading
data. There are also a number of empirical studies on con-
tent dissemination methods for vehicular networks based on
simulations only [13]. In this paper, we propose a cooperative
content dissemination strategy backed by analytical studies and
the strategy is particularly suitable for vehicular networks.

Research in the area of content caching is also relevant to
this work. Taghizadeh et al. proposed a cooperative caching
strategy in [5]. Specifically, they introduced a novel peer-
to-peer rebate mechanism to encourage the users to cache
previously downloaded content and to share it with other
users, taking into account the selfish behaviour of users. This
paper not only takes into account the willingness of user
cooperation but also considers the impact of heterogeneity in
device mobility on the content dissemination process.
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III. System model

A. Network model

We consider a heterogeneous network [14]–[16] consisting
of N nodes. Without loss of generality, suppose that there are
H ∈ {1, 2, . . . ,N} types of nodes, e.g. static WiFi APs, mobile
devices carried by pedestrians or vehicles, nodes with different
social characteristics [15]. Let Nh be the total number of nodes
of type h:

∑H
h=1 Nh = N.

For our work, it is important to consider spatial distributions
of nodes. We shall adopt an assumption that is obviously never
exactly fulfilled in practice, but is nevertheless indicative of
what will happen in a real network. Suppose that at some
initial time instant t = 0, the N nodes are independently,
randomly and uniformly distributed on a torus (0, L]2 [17]. It
follows that the nodes’ density is λ = N/L2. The consideration
of a torus allows us to ignore the boundary effect and focuses
on the impact of main parameters that affect the design and
performance of the content dissemination strategy. After time
t = 0, these nodes start to move independently according to
some mobility models [18]. As commonly done in the field,
we assume that the nodes’ mobility is such that the spatial
distribution of nodes is stationary and ergodic with stationary
uniform distribution on the torus. Our theoretical analysis can
be applied to a class of mobility models [19] under which
the spatial distribution of nodes is stationary and ergodic, and
does not rely on the use of a particular mobility model. As
shown in [19], a number of mobility models have this property.
On the other hand, we acknowledge that under some mobility
models, e.g. the well known random waypoint model [20],
the spatial distribution of nodes is no longer stationary and
ergodic. Particularly under the random waypoint model, even
if the nodes are initially uniformly distributed on a square, as
time goes on, the spatial distribution of nodes will change such
that nodes will be concentrated around the centre of the square
[20]. Our analysis cannot be applied to these mobility models.
In Section VI, we use simulations to study the performance of
the proposed content dissemination strategy under the random
waypoint model.

Note that in many scenarios encountered in real applica-
tions, the spatial distribution of nodes is clustered instead of
being uniform. We limit our theoretical analysis to uniformly
distributed nodes for analytical tractability. Particularly, almost
all existing related studies are based on uniform or Poisson
node distribution. The main reason is that the theoretical tools
used in the studies are mainly based on stochastic geome-
try or continuum percolation theory where results are only
available for uniform or Poisson node distribution. Realising
the limitation of uniform or Poisson distribution, there have
been attempts at establishing mathematical tools for more
general node distribution [21]–[24]. So far, these attempts
have had only limited success and we are yet to develop the
theoretical tools for analysing more general node distribution.
The simulation presented in Section VI assuming the random
waypoint model sheds insight on the performance of the
proposed dissemination strategy under clustered node distri-
butions because under the random waypoint mobility model,
even when the initial distribution of nodes is uniform, as time

evolves, the spatial distribution of nodes becomes clustered
[20].

In some parts of the paper, we do need to specialise to
consider a particular mobility model. For example, when
using simulations to evaluate the performance of the proposed
content dissemination strategy, a particular mobility model
has to be adopted. In this case, we consider a widely used
mobility model called the random direction model (RDM)
[18]. Specifically, under the model, at time t = 0, every node
chooses its direction independently and uniformly in [0, 2π),
and then moves thereafter at a constant speed V . The speed
may be different for nodes of different types. Obviously V = 0
for stationary nodes. It has been shown by Nain et al. in [19]
that under the aforementioned model, at any time instant t ≥ 0,
the spatial distribution of nodes is stationary and follows the
same uniform distribution.

B. Wireless communication model

As introduced earlier, we consider two interacting types of
wireless networks: the cellular network and the complementary
network; the latter can comprise mobile and stationary nodes.

It is assumed that within any sufficiently long time interval,
every node is able to be directly connected to at least one
cellular base station (BS) at a time instant during the interval
and therefore is able to receive packets from the cellular
network within the time interval. If a mobile node temporarily
moves outside the coverage of the cellular network, it is
able to be directly connected to the cellular network when
it moves back into the coverage area. As introduced earlier,
the bandwidth of BSs is limited and a large number of
packet transmissions via cellular networks can be monetarily
expensive and inefficient for the mobile users and the content
providers.

In the complementary network, devices communicate with
one another via ad hoc connections using device-to-device
communication technologies such as Bluetooth, WiFi or
DSRC [8], [10]. These ad hoc connections are usually of
high capacity, and can be exploited by mobile devices to
cooperatively share content of common interest. The challenge
is that ad hoc connections usually have a relatively short
range (e.g. 10 meters using Bluetooth, 20 meters using Wi-Fi
Tethering [10] or 250 meters using DSRC [8]).

Fig. 1. Illustration of the system model for cooperative content dissemination
in mobile networks.

Due to the limited communication range, the ad hoc con-
nection between two nodes only appears when they move
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close to each other. Considering a commonly used model,
called the unit disk connection model (UDM), two nodes are
directly connected iff the Euclidean distance between them
is not larger than the radio range r0. Adopting this commonly
used connection model, we say that two nodes meet each other
when they move into the radio range of each other.

Define the inter-meeting time of two nodes as the time
interval between two consecutive meetings of two nodes.
There have been a number of studies on the probability
distribution of the inter-meeting time. In particular, Cai and
Eun [25] analytically proved that for two nodes moving in
a finite area (with reflective or wrapping boundary) under
random waypoint or random walk mobility models 1, their
inter-meeting time has an exponential distribution, whereas
the inter-meeting time of nodes moving in an infinite area
follows a power-law distribution. This paper assume that the
inter-meeting time follows an exponential distribution. In the
Appendix, we show that for nodes moving according to the
random direction model, their inter-meeting time follows an
exponential distribution. Furthermore, the analysis presented
in this paper is directly applicable to other inter-meeting time
distributions as shown in Section IV-A.

C. Cooperative content dissemination strategy

This section describes a cooperative content dissemination
strategy which makes use of both the cellular network and the
complementary network.

1) Cooperative content dissemination strategy: Consider
that a content provider has M messages (e.g. advertisements,
news updates or a video clip) to deliver to N nodes. The
content dissemination process has three phases: initial phase,
sharing phase and complement phase.
Phase 1 Initially at time t = 0, the cellular BSs transmit (a.k.a.

push) β packets to β different nodes via the cellular
network. The content in these packets depends on
the coding scheme to be described in Section III-C2.
On the one hand, the relationship between β and M,
particularly the maximum value of β, depends on the
coding scheme, which will be discussed in Section
III-C2. On the other hand, as later shown in Section
V, the value of β can also be optimally chosen to
minimise the traffic load of cellular networks.

Phase 2 Then the network enters into the sharing phase,
where the nodes broadcast their received packets
using the Susceptible-Infected-Recovered (SIR) epi-
demic scheme, to be described in Section III-C3.
Some of the nodes may be APs or stationary.

Phase 3 At time Tend (called deadline), the sharing phase
stops and the network enters into the complement
phase, where every node requests (a.k.a. pulls) the
remaining packets required to decode all M messages
from BSs when it is within the coverage of the cel-
lular network, where the remaining packets required
to decode the messages are determined by the coding
scheme, to be described in Section III-C2. The value

1Note that the random direction model introduced in Section III-A is a
special case of the random walk model.

of Tend has a significant impact on the performance
of the content dissemination strategy and will be
discussed later.

The main objective in the design of the content dissem-
ination strategy is to minimise the total number of packets
requiring to be transmitted through cellular networks, which
include the packets transmitted in the initial phase and in the
complement phase, while guaranteeing the successful delivery
of the content.

2) Coding scheme: Erasure codes have been shown to have
a good tolerance to delay and packet losses when recon-
structing original messages from packets transmitted through
unreliable networks [26], [27].

This paper considers a simple erasure coding scheme.
Specifically, the M messages are encoded into β coded packets
Furthermore, we assume that the Galois field [26], [27],
denoted by GF(2φ), used in the encoding process is large
enough so that the content provider can generate β linear-
independently coded packets. Particularly, the Galois field
GF(2φ) needs to be chosen such that 2φ ≥ β. It follows
that each node needs to acquire M distinct coded packets to
reconstruct all the M messages.

Consequently, if a node receives B < M coded packets by
the end of the sharing phase, then it needs to pull M − B
coded packets in the complement phase via cellular networks
in order to decode all M messages.

For benchmarking, we also consider the case that no coding
technique is employed. In this case, the BSs transmit β̂m ∈

{0, 1, . . . , β} copies of the mth message in the first phase for
m = {1, 2, . . . ,M} and

∑M
m=1 β̂m = β. Then each node needs to

receive at least one copy of each message.
3) Epidemic sharing scheme: In the sharing phase, the β

packets are shared among N nodes via ad hoc connections us-
ing a Susceptible-Infected-Recovered (SIR) epidemic sharing
scheme.

Without loss of generality, consider the epidemic sharing of
an arbitrary packet, say packet j. Using a classic SIR scheme,
a node can be in any of the following three states regarding
the packet j: the node that has never received the packet j
is in the state of susceptible (S j). A susceptible node goes
into the state of infected and infectious (I j) immediately after
receiving the packet j. The node in state I j keeps transmitting
the packet j to every node it meets for a certain time period,
which is referred to as the active period. Denote by τh the
length of the active period of a type-h node. Parameter τh is
a pre-determined value, which is the same for all nodes of
the same type. After the active period, the node recovers and
enters into state R j. A recovered node stops transmitting and
receiving the packet.

The nodes that have received the packet j are referred to as
the informed nodes of packet j.

Note that the length of the active period τh is determined by
the capability and level of cooperation of each type of nodes.
For example, a pre-installed WiFi AP can have a significantly
larger value of τh compared with other mobile devices that are
powered by battery. Furthermore, the value of τh for a mobile
device can be tuned by introducing some incentives (e.g. a
lower subscription fee or some rewards) to the mobile users
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[11], so that the mobile users are willing to share more packets
with other users. It is well known that nodes can be selfish
and therefore incentives for cooperative communications is
an important topic that has been extensively studied in the
context of ad hoc networks and cooperative communications.
It is beyond the scope of this paper to study the impact
of incentive and selfish behaviour of nodes on cooperative
communications. We refer interested readers to [11], [28] and
references therein for further discussion on the topic.

The popularity of the content and the user preference may
also affect the willingness of nodes to participate in the coop-
erative communications and to forward the received packet. A
simple model to capture this effect is to add a parameter p such
that instead of forwarding the received packet indiscriminately,
the node receiving the packet may forward the packet with
probability p where the value of p is adjusted according to
the popularity of the content and the user preference. Our
theoretical analysis can be readily extended to incorporate
such a parameter into the packet propagation process. This
will effectively reduce the density of cooperating nodes in
the cooperative communications such that the total number of
nodes participating in the cooperative content dissemination
reduces from N to pN.

Note that Tend is an important parameter for the epidemic
sharing process and the optimisation of Tend is an important
and interesting problem to study. When the length of the
sharing phase Tend is sufficiently large, the epidemic sharing
process stops naturally (i.e. reaches the steady state) when, for
all the packets, there is no infectious node. We are particularly
interested in the case when Tend is large because it is suitable
for delay-tolerant content disseminations and minimises the
data traffic load of the cellular network by fully utilising the
complementary networks to share content. On the other hand,
choosing a smaller value of Tend may help to reduce the
delay incurred during the data dissemination process. When
Tend is small however, the system will be in a transient state
and the associated transient state analysis becomes notoriously
difficult. We leave it for our future work to consider the
optimisation of Tend.

Furthermore this paper considers a large network where
N � M. In the next section, when we consider an asymptotic
network with N → ∞, we increase the network area L → ∞
while keeping the density of every type of nodes unchanged.
That is, we adopt the widely used extended network model in
our analysis.

IV. Analysis of the content dissemination process

The main challenge in the analysis of the content dissemina-
tion process is the analysis of the packet propagation process
in the sharing phase. This section first analyses the propagation
process of single packet and then generalises to the entire set
of packets.

A. Characterising the ad hoc connections

Recall that there are H types of nodes in the network and
nodes move independently of one another. This sub-section

considers the inter-meeting process of a randomly chosen type-
h node and a randomly chosen type-k node.

The inter-meeting time of two nodes is the time interval
between consecutive meetings of two nodes. Denote by Th,k

the inter-meeting time between a randomly-chosen type-h node
and a randomly-chosen type-k node, for h, k ∈ {1, 2, . . . ,H}.

When Th,k follows an exponential distribution with mean
λh,k, the pdf of the inter-meeting time can be written as

Pr(Th,k = t) = λh,k exp(−λh,kt). (1)

In the Appendix, it is shown that the distribution of the
inter-meeting time for nodes moving following the random
direction model is an exponential distribution. Furthermore,
the exponential inter-meeting time distribution has been widely
used in a large number of research (e.g. [29]–[31]).

It follows from Eq. 1 that the probability that the type-h
node meets the type-k node during the active period of the
type-h node is

γh,k =

∫ τh

0
Pr(Th,k = t)dt = 1 − exp(−λh,kτh). (2)

If the inter-meeting time follows a distribution other than
the exponential distribution, a similar method can be used to
calculate γh,k. Thus our analysis does not rely on the inter-
meeting time following an exponential distribution.

Define a symmetric matrix Ξ , {γh,k; h, k = 1, 2, ...,H}.
The matrix stochastically characterises the ad hoc connections
between every pair of devices in the network. It is interesting
to note that in the special case when H = N, the matrix Ξ

is equivalent to the (probabilistic) adjacency matrix of the
network. Furthermore, the case where H = 1 corresponds to a
network where nodes have an identical mobility and the same
active period. When H = 2, V1 = 0, V2 , 0, γ1,1 = 0, γ2,2 = 0,
γ1,2 > 0 and γ2,1 > 0, it corresponds to the traditional non-
cooperative data offloading networks where mobile devices
(type-2 nodes) can only receive data packets from cellular
BSs or WiFi APs (type-1 nodes). Besides the above examples,
more interesting cases, including a network with more than
two types of nodes, are studied later in Section VI.

Note that γh,k is determined by the nodes’ mobility model
and the length of the active period. There are two assumptions
imposed on γh,k so that the analysis becomes non-trivial:

Assumption 1 (Strictly positive). Let γn
h,k be the (h, k)th

element of Ξn for n ∈ {1, 2, 3, . . . }. There exists a finite value
of n such that γn

h,k > 0 for all h, k = 1, 2, ...,H. In this case,
the matrix Ξ is called strictly positive [32, Chapter V].

The above assumption means that the underlying graph
of the network over time [0,∞) is connected, where the
underlying graph of a network over a time interval [0, t) is
defined [29] to be an undirected graph where each vertex
uniquely represents a node and each edge uniquely represents
a link between two nodes, if the link exists between the two
associate nodes at any time instant during [0, t).

Assumption 2 (Finite number of connections). When con-
sidering a large network, i.e. increase the area size L2 while
keeping nodes’ density unchanged, the communication ranges



0018-9545 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVT.2015.2477363, IEEE Transactions on Vehicular Technology

6

of all nodes are decreased so that Nkγh,k is a finite constant
for all h, k = 1, 2, ...,H.

The above assumption lets us avoid the trivial case where
a device can communicate with an (asymptotically) infinite
number of other devices, which reflects the limited communi-
cation capability of each device in real world.

The two assumptions are consistent with the extended
network model widely used in the analysis of large networks.

B. Extinction probability
Based on the knowledge of γh,k, a number of interesting

results can be obtained using the theory established in the
analysis of epidemiology. Firstly, there is a well-known phase
transition phenomenon [33], viz., there exists a threshold in
the average node degree below which an infectious disease
becomes extinct after some time with probability 1 (almost
surely); while above the threshold the disease has a positive
probability of spreading out to a large population. Using
the analogy in epidemiology, this sub-section provides results
on the phase transition phenomenon in the propagation of a
packet.

As widely used in the analysis of epidemics, a branching
process is used to investigate the propagation of a packet in
this section. Specifically, we construct a multi-type branching
process [32], [34] to study the number of informed nodes of a
typical packet, say packet j, where the 0th generation includes
the nodes that receive the packet j at time 0 (i.e. in the first
phase). Furthermore, the number of type-k children generated
by a type-h node is given by a random variable Q̂h,k. Because
nodes move independently of one another, it is evident that
Q̂h,k follows a Binomial distribution Bin(Nk, γh,k), where γh,k

is given in the previous sub-section.
Denote by Xh

α the number of type-h nodes in the αth

generation.

Definition 1 (extinction). The branching process for the
number of informed nodes for a typical packet becomes extinct
if

∑H
h=1X

h
α = 0 for any α ∈ {1, 2, 3, . . . }.

Following is a well-known result for the threshold phe-
nomenon of the extinction of a multi-type branching process.

Lemma 1 (Threshold phenomenon). Define the matrix Ξ̂ ,
{E[Q̂h,k] = Nkγh,k; h, k = 1, 2, ...,H}. Let Rq be the largest
eigenvalue of Ξ̂. Then the branching process will become
extinct with probability 1 if and only if Rq ≤ 1.

Proof. This result can be readily obtained by applying Theo-
rem 2 in [32, Chapter V]. �

When Rq > 1, there is a positive probability that the
branching process does not become extinct, i.e. the packet can
be disseminated to a significant number of nodes. Note that
in a heterogeneous network, the type of source nodes that a
branching process is rooted at can have a significant impact
on the probability that the branching process becomes extinct.

Denote by wh the extinction probability of a type-h source,
which is defined as the probability that a branching process
rooted at a type-h node becomes extinct. The following
theorem characterises wh.

Theorem 1 (Extinction probability). Consider an asymptotic
network with L→ ∞ while keeping nodes’ density unchanged
and reducing the node’s communication range so that Assump-
tions 1 and 2 are satisfied. The extinction probabilities wh for
h = 1, 2, . . . ,H are the solutions to the following system of
equations:

wh = exp

 H∑
k=1

Nkγh,k(wk − 1)

 , for h = 1, 2, . . . ,H. (3)

Proof. Firstly, note that in the construction of the branching
process, we consider that every node that a type-h node meets
is a susceptible node. As the packet propagates, more and more
nodes receive the packet and hence the probability that a type-
h node meets an informed node increases. This may decrease
the expected number of newly informed nodes generated by
an infectious node. However, there is no need to consider
the impact of this in the analysis of extinction probability
because when analysing the extinction probability, we are
only interested in the case that the fraction of recipients is
vanishingly small as L → ∞ and N → ∞, i.e. the probability
that a type-h node meets an informed node is vanishingly small
and negligible.

Recall that according to Assumption 2, when we increase
L→ ∞ while keeping nodes’ density unchanged, the network
has Nk → ∞ while the quantity Nkγh,k remains a finite
constant. Consequently, the distribution of Q̂h,k, i.e. a Binomial
distribution Bin(Nk, γh,k), approaches a Poisson distribution
with an expected value Nkγh,k [35]. The difference between
Q̂h,k and its Poisson distribution counterpart (denoted by Qh,k)
diminishes as Nk → ∞ and γh,k → 0, where the convergence
rate is given in [35].

Denote by Gh,k(s) the probability generating function of
Qh,k. Because Qh,k follows a Poisson distribution, it is straight-
forward that

Gh,k(s) = E[sQh,k ] = exp
(
Nkγh,k(s − 1)

)
. (4)

Furthermore, define the multi-variate probability generating
function Ĝh(s) , E[sQh1

1 sQh2
2 . . . sQhH

H ], where s , {s1, s2, . . . , sH}

is a row vector. It can be shown that

Ĝh(s) =

∞∑
qh1=0

∞∑
qh2=0

· · ·

∞∑
qhH=0

Pr(Qh1 = qh1) Pr(Qh2 = qh2)

. . . Pr(QhH = qhH)sqh1
1 sqh2

2 . . . sqhH
H

= Gh,1(s1)Gh,2(s2) . . .Gh,H(sH). (5)

Denote the extinction probabilities by a row vector w ,
{w1,w2, . . . ,wH}. Then according to Theorem 2 in [32, Chap-
ter V], if Assumption 1 is satisfied, the extinction prob-
abilities satisfy w = Ĝ(w), where Ĝ(s) is a row vector(
Ĝ1(s), Ĝ2(s), . . . , ĜH(s)

)
. The conclusion follows that the ex-

tinction probabilities wh for h = {1, 2, . . . ,H} are the solutions
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to the following system of equations:

w1 =

H∏
k=1

exp
(
Nkγ1,k(wk − 1)

)
, (6)

. . .

wH =

H∏
k=1

exp
(
NkγH,k(wk − 1)

)
,

where Nk is the number of type-k nodes in the network and
γh,k is given by Eq. 2. �

Using Theorem 1, we can further obtain the extinction
probability for several special cases.

Corollary 2. [Extinction probability for homogeneous net-
works] Consider the special case of a network with only
H = 1 type of nodes. Then the extinction probability is
w1 = −

W(−Nγ1,1 exp(−Nγ1,1))
Nγ1,1

, where W(.) is the Lambert-W
function.

Proof. In a network with only H = 1 type of nodes, it
can be readily shown that the extinction probability is the
solution to w1 = exp

(
Nγ1,1(w1 − 1)

)
using Theorem 1. Solving

this equation straightforwardly yields the unique value w1 =

−
W(−Nγ1,1 exp(−Nγ1,1))

Nγ1,1
, where W(.) is the Lambert-W function

[36]. �

Corollary 3. [Extinction probability with multiple source
nodes] Suppose that a packet is initially disseminated from
β =

∑H
h=1 βh source nodes at the beginning of phase 2, where

βh is the number of type-h source nodes. Then the extinction
probability for this packet is

∏H
h=1 wβh

h .

Proof. Because every node moves and transmits independently
of other nodes, each of the type-h child nodes generated by
a parent node becomes an ancestor of an independent sub-
processes (which restarts with the type-h node) [37]. Because
of this so-called ”multiplicative“ nature [37], the probability
that all the branching processes, rooted at β initial nodes,
become extinct is

∏H
h=1 wβh

h . �

Note that when the branching process does not become
extinct, the packet is disseminated to a significant number of
nodes and we say that the packet spreads out. The next sub-
section quantifies the number of recipients of a packet when
it spreads out.

C. Expected fraction of recipients

Denote by ẑh the expected fraction of type-h nodes which
receive the packet j in the steady state, where the packet
is initially broadcast from a randomly chosen source node
and the packet spreads out. In this subsection, we further
investigate ẑh.

Theorem 2 (Fraction of recipients when a packet spreads out
). In a large network with N → ∞, suppose that the packet j is
disseminated from a randomly chosen source node of arbitrary
type. Given that the packet is spread out, the expected fractions
of recipients ẑh for h = 1, 2, . . . ,H are the solutions to the

following system of equations

1 − ẑh = exp

− H∑
k=1

Nkγk,hẑk

 , for h = 1, 2, . . . ,H. (7)

Proof. According to the analysis of epidemics [33], [38],
conditioned on the epidemic not becoming extinct and under
the assumption that the initial number of infected nodes is
relatively small compared with the total number of nodes in the
network, the probability of a type-h node not being infected is
given by the unique positive solution to the following equation

1 − ẑh =

H∏
k=1

exp
(
−Nkγk,hẑk

)
(8)

= exp

− H∑
k=1

Nkγk,hẑk

 , for h = 1, 2, . . . ,H,

where γk,h is the probability that the type-h node is infected by
a type-k node during the type-k node’s active period, given by
Eq. 2, and Nk ẑk is the total expected number of type-k nodes
that have been infected during the whole epidemic sharing
process. �

Next we consider the case that there is more than one source
nodes of the packet j.

Corollary 4 (Fraction of recipients with multiple source
nodes). Suppose that at the initial time 0, there are

∑H
h=1 βh =

β nodes that have received the packet j, where βh is the number
of type-h source nodes. Denote by z(β1, . . . , βH) the expected
fraction of nodes, out of the total N nodes, which receive the
packet in the steady state. In a large network with N → ∞,
there holds

z(β1, . . . , βH) =

 H∑
h=1

Nhẑh

N

 1 − H∏
h=1

wβh
h

 . (9)

Proof. From Corollary 3, the probability that the packet
spreads out is

(
1 −

∏H
h=1 wβh

h

)
. Note that if the packet does not

spread out, the fraction of recipients goes to 0 as N → ∞. If the
packet spreads out, the expected number of type-h recipients
is Nhẑh, where ẑh is given by Theorem 2. The conclusion
follows. �

For the special case that there is only H = 1 type of node in
a network, a closed form expression of the fraction of informed
nodes in the steady state can be obtained.

Corollary 5 (Fraction of recipients for homogeneous net-
works). Suppose that there is only H = 1 type of nodes in
a network and a packet is sent to β different nodes in the
first phase. Then in the steady state, the expected fraction of
recipients of this packet is

z(β) =

(
1 +
W(−Nγ1,1 exp(−Nγ1,1))

Nγ1,1

)
1 − (

−
W(−Nγ1,1 exp(−Nγ1,1))

Nγ1,1

)β . (10)

Proof. When H = 1, Eq. 7 becomes 1 − ẑ1 = exp(−Nγ1,1ẑ1),
whose solution is ẑ1 = 1 +

W(−Nγ1,1 exp(−Nγ1,1))
Nγ1,1

. Then Eq. 10 can
be easily obtained using Corollary 4. �
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It is interesting to note that when β = 1, the expected
fraction of recipients of a packet, given that the packet spreads
out, is equal to the probability that the packet spreads out. This
coincides with the previous results in single-type epidemic
[39] that if the active period is a constant value, the expected
final fraction of recipients for an epidemic, given that it
does not become extinct, is equal to the probability that the
epidemic does not become extinct. On the other hand, when
H > 1, these two quantities can be significantly different.

D. Duration of the sharing phase

To fully utilize the complementary network to offload data
traffic, the duration of the sharing phase, i.e. Tend, needs to be
longer than the duration of the epidemic sharing process. This
section proposes two methods to determine Tend.

The first method is based on the report of the node to the
BSs. Each time a node receives a new packet, i.e. a node
starts a new infectious period, the node transmits a short notice
(the size of the notice is much smaller than the size of data
packets) to the BSs so that the BSs can calculate the time when
the epidemic sharing stops. For example, if the last notice is
received at time tl from a type-h node, then the sharing phase
stops at time Tend = tl + τh.

Separately, Tend can also be estimated analytically. The
existing research in epidemiology [40, Chapter 7.5] has shown
using a Markov Chain model that the duration of a single type
(H = 1) SIR epidemic can be approximately calculated as
follows.

Denote by Ti, j the expected duration of an SIR epidemic
given that there are i susceptible nodes and j infectious nodes.
Then according to [40, Chapter 7.5], Ti, j satisfies

Ti, j =
1

j/τ + i j/λ
+ piTi, j−1 + (1 − pi)Ti−1, j+1 (11)

where pi = λ
λ+iτ is the probability that an infectious node

recovers and 1 − pi is the probability that a susceptible node
is infected.

With initial condition Ti,0 = 0 for any value of i, the above
system of equations can be numerically solved.

V. Minimising the traffic load of cellular networks

Based on the above characterisation of the content dissem-
ination process, this section investigates the optimal content
dissemination strategy that minimises the total traffic load of
cellular networks.

Recall that in the initial phase, the BSs transmit β packets
to β different nodes through the cellular network. Denote by
Y the expected number of packets that BSs need to transmit
in the complement phase.

Definition 2 (Cellular traffic load). The cellular traffic load
is the expected number of packets transmitted by BSs through
the cellular network, which consist of the packets transmitted
in the first and the third phases, i.e. β+ Y , in order to transmit
M messages to N nodes.

Note that the value of β determines the value of Y , which
is calculated later in this section. Then the problem of min-
imising the cellular traffic load can be formulated as follows:

Minimise
β

β + Y

Subject to β ∈ {1, 2, . . . ,N}.
(12)

A. Case 1 - Without coding

This sub-section considers the case that no coding technique
is employed for comparison with our proposed dissemination
strategy employing coding. Recall that without coding, each
of the β packets transmitted in the first phase contains one of
the M messages. As described in Section III-C, among the β
packets, there are β̂m ∈ {0, 1, . . . , β} copies of the mth message
for m = {1, 2, . . . ,M}. Further, denote by β̂m,h ∈ {0, 1, . . . , βm}

the number of type-h nodes that receive the mth message in
the first phase. Note that

∑H
h=1 β̂m,h = β̂m and

∑M
m=1 β̂m = β.

Recall that each node needs at least one copy of each
message by the end of the third phase. It is straightforward
that

Y =

M∑
m=1

N
(
1 − z(β̂m,1, . . . , β̂m,H)

)
, (13)

where z(β̂m,1, . . . , β̂m,H) is the expected fraction of recipients
given by Corollary 4.

Then the optimisation problem in Eq. 12 can be read-
ily solved. Due to the complexity in the expressions of
z(β̂m,1, . . . , β̂m,H), the following lemmas only present the an-
alytical solution to the optimisation problem for H = 1.

We first investigate the optimal values of β̂m for m =

{1, 2, . . . ,M} that minimise the cellular traffic load.

Lemma 6 (Diversity). If H = 1 and β ≤ M, the strategy
that minimises the cellular traffic load is to push β different
messages in the initial phase rather than pushing multiple
copies of the same message.

Proof. If the mth message for m ∈ {1, 2, . . . ,M} has β̂m source
nodes, then according to Corollary 5, the expected fraction of
recipients of the mth message is z(β̂m) = (1 − w1)(1 − wβ̂m

1 ),
where w1 = −

W(−Nγ1,1 exp(−Nγ1,1))
Nγ1,1

is given by Corollary 2.
It is straightforward that the number of packets that the BSs

need to transmit in the third phase is

Y =

M∑
m=1

N(1 − z(β̂m)) =

M∑
m=1

N(w1 + wβ̂m
1 (1 − w1)). (14)

Given N and w1, which are determined by the properties
of a network, in order to minimise Y , one needs to minimise∑M

m=1 wβ̂m
1 , i.e.

Minimise
β̂1, β̂2,..., β̂M

M∑
m=1

wβ̂m
1

Subject to
M∑

m=1

β̂m = β ≤ M.

(15)

Generally this is a multivariate integer programming prob-
lem which can be complicated to solve. However, in this
particular case, a simple observation can straightforwardly lead
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to the solution. Without loss of generality, we start with an
arbitrary set of values of β̂m for m = {1, 2, . . . ,M}. Suppose
that there exists a m1 where β̂m1 > 1, then there must exist
a m2 where β̂m2 = 0 because

∑M
m=1 β̂m = β ≤ M. Now if we

decrease β̂m1 by one, the objective
∑M

m=1 wβ̂m
1 is increased by

w
β̂m1−1
1 − w

β̂m1
1 = w

β̂m1−1
1 (1 − w1). At the same time, in order to

satisfy the constraint
∑M

m=1 β̂m = β, we increase β̂m2 from zero
to one. This step causes the objective

∑M
m=1 wβ̂m

1 to be decreased
by 1 − w1. Because 0 ≤ w1 ≤ 1 and β̂m1 > 1, there holds
1 − w1 ≥ wβ̂1−1

1 (1 − w1). Therefore, these two steps decrease
the objective

∑M
m=1 wβ̂m

1 . Following the same procedure, one
can easily reach the conclusion that

∑M
m=1 wβ̂m

1 is minimised
when β̂m ≤ 1 for every m = {1, 2, . . . ,M}. �

Based on Lemma 6, the following lemma can be obtained.

Lemma 7 (Diversity maximizing strategy). Suppose that the
BSs push β packets to β different nodes, where β is in the
range cM < β ≤ (c+1)M for a constant c ∈ {0, 1, 2, . . . }. Then
the optimal strategy that minimises the cellular traffic load is
to push β̂m copies of the mth message where c ≤ β̂m ≤ c + 1
for every m = {1, 2, . . . ,M} and

∑M
m=1 β̂m = β.

Proof. According to Lemma 6, it is straightforward that the
first M packets, among the total β packets pushed in the first
phase, should contain M different messages. Using the same
technique as that in the proof of Lemma 6, it can be shown
that the optimal strategy is the one illustrated in Fig. 2.

Fig. 2. Illustration of the strategy of allocating M messages in β packets. The
packets are arranged in c + 1 rows, where each of the first c rows contain M
packets and the last row contains β − cM packets. According to Lemma 7,
each message has at least c copies and at most c + 1 copies.

�

After investigating the packets pushed in the first phase,
we next calculate the number of packets pulled in the third
phase, denoted by Y . Suppose that cM < β ≤ (c + 1)M for
c ∈ {0, 1, 2, . . . }, then according to Lemma 7 there are β− cM
messages where each one has c + 1 source nodes, and the
number of source nodes for each of the remaining M−β+cM
messages is c.

Then according to Eq. 14, the expected number of packets
requiring to be transmitted over cellular networks in the third
phase can be readily obtained:

Y = (β − cM)N
(
w1 + wc+1

1 (1 − w1)
)

+(M − β + cM)N
(
w1 + wc

1(1 − w1)
)
. (16)

With the above expression of Y , the optimisation problem
specified in Eq. 12 can be readily solved by Matlab.

The following theorem provides a closed-form solution
to the optimal number of initial copies transmitted through
cellular networks in the first phase for the special case of a
homogeneous network with one message only.

Theorem 3 (Optimisation). In a network with only H = 1
type of nodes and M = 1 message, the cellular traffic load is
minimised when

β = logw1

(
1

N(w1 − 1) ln w1

)
, (17)

where w1 = −
W(−Nγ1,1 exp(−Nγ1,1))

Nγ1,1
is given by Corollary 2.

Proof. According to Lemma 6, when H = 1 and M = 1, there
holds β + Y = β + N (1 − z(β)), where z(β) is the expected
fraction of recipients given by Corollary 4. Then the problem
of minimising cellular traffic load can be formulated as follows

Minimise
β

β + N
(
1 − (1 − w1)(1 − wβ

1)
)

Subject to β ∈ {1, 2, . . . ,N}.
(18)

Take the second derivative of the objective function, there
yields

∂2

∂β2

(
β + N

(
1 − (1 − w1)(1 − wβ

1)
))

= N(1 − w1)wβ
1 ln2(w1) ≥ 0. (19)

Therefore, the objective function is convex. Further, the first
derivative of the objective function is

∂

∂β

(
β + N

(
1 − (1 − w1)(1 − wβ

1)
))

= 1 + N(1 − w1)wβ
1 ln(w1), (20)

which is equal to zero when β = logw1

(
1

N(w1−1) ln w1

)
. �

B. Case 2 - with coding

Using the erasure coding technique introduced in Section
III-C2, BSs push β coded packets to nodes in the initial phase.
Lemma 8 gives the optimum strategy to select the nodes to
distribute the β coded packets in the initial phase assuming
that BSs push β encoded packets to β different nodes.

Lemma 8 (Sharing maximising strategy). Label all nodes in
the network in the descending order of their values of wh,
which is given by Theorem 1. If more than one node have
the same value of wh, their order can be arbitrarily assigned.
Suppose that BSs push β encoded packets to β different nodes
in the initial phase. Then the optimal strategy that minimises
the cellular traffic load is to push β different packets to the
first β nodes in the above order.

Proof. Using the same technique as that in Lemma 6, it can
be easily shown that the strategy that minimises the cellular
traffic load is to push β different coded packets in the initial
phase rather than pushing multiple copies of the same coded
packet.

Because different encoded packets are shared independently
of one another, we next consider a randomly chosen encoded
packet, say packet j. It is obvious that to minimise the cellular
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traffic load, one needs to maximise the number of recipients
of packet j. According to Corollary 4, the expected fraction
of nodes, out of the total N nodes, which receive packet j in
the steady state is

z(β1, . . . , βH) =

 H∑
h=1

Nhẑh

N

 1 − H∏
h=1

wβh
h

 , (21)

where β1 +β2 + · · ·+βH = 1 as a consequence of the discussion
in the previous paragraph. In other words, only one value
among β1, β2, . . . , βH is equal to one and the other values are
all equal to 0. It is obvious that to maximise z(β1, . . . , βH),
one should assign the values of β1, β2, . . . , βH in a way that
minimises

∏H
h=1 wβh

h , i.e. let the only non-zero value βk = 1
for the kth type of nodes that have the smallest value of the
extinction probability wk among all wh for h ∈ {1, 2, . . . ,H}.

Since BSs push β encoded packets to β different nodes in
the initial phase, when the number of type-k nodes Nk is less
than the total number of packets β, some packets need to be
pushed to the nodes that have the second (and if needed, the
third, forth, etc.) smallest value of the extinction probability
wi among all wh for h ∈ {1, 2, . . . ,H}. �

In Lemma 8, the restriction that BSs push β encoded packets
to β different nodes in the initial phase is mainly employed for
fairness and to avoid overloading a single device. When these
considerations are of minor consequences, i.e. BSs can push
multiple encoded packets into the same node, the optimum
strategy to distribute the β encoded packets follows readily
from the analysis presented in the proof of Lemma 8.

Next we study the optimum value of β for the special case
of a homogeneous network with H = 1. The optimum value
of β for the more general case of a heterogeneous network
with H > 1 can be determined analogously albeit with greater
complexity.

Denote by random variable B the number of packets
received by a randomly chosen node at the end of the
sharing phase. Then B follows a Binomial distribution, i.e.
the probability that the node receives B = b packets is
Pr(B = b) =

(
β
b

)
(z(1))b(1 − z(1))β−b, where

(
β
b

)
=

β!
b!(β−b)! . It

follows that in the complement phase, the number of packets
that need to be transmitted to a randomly chosen node is
(M − B)+, where (x)+ = max{0, x}.

Finally, the expected number of packets that the BSs need
to transmit in the complement phases is

Y = NE[(M − B)+] (22)

= N
M∑

b=0

(M − b)
(
β

b

)
(z(1))b(1 − z(1))β−b. (23)

Then the optimization problem in Eq. 12 becomes

Minimise
β

β + N
M∑

b=0

(M − b)
(
β

b

)
zb

1(1 − z1)β−b

Subject to β ∈ {1, 2, . . . ,N}.

(24)

This is can be easily solved using Matlab, where the results
are presented in the next section.

Remark 1. As shown in this section, β is an important
parameter that can be optimised to reduce the traffic load
of cellular networks. The best choice of β that minimises
the traffic load of cellular networks depends on a number of
parameters such as the density of nodes, the number of types of
nodes and the nodal moving speed. The number of messages
M is also an important parameter affecting the selection of
β. As shown in this section, more specifically in Eq. 24, the
value of β that minimises the traffic load of cellular networks
depends on the value of M. Further, Fig. 2 also explains the
strategy to generate β packets from M messages for different
values of M and without employing coding.

VI. Simulation and discussion

This section reports on simulations to verify the accuracy of
the analysis presented in the previous sections. The simulations
are conducted using a mobile network simulator written in
C++. Specifically, N = 960 nodes are uniformly deployed
on a torus (0, 8000]2. Consequently the nodes’ density equals
to 15 nodes/km2, which is the density of cabs in New York
metropolitan area [41]. After initial deployment of the nodes,
they start to move according to the random direction mobility
model introduced in Section III. Unless otherwise specified,
the node’s speed is V = 10 (typical vehicle moving speed
[42]). The radio range r0 = 20m or 250m (typical radio
ranges using Wi-Fi Tethering [10] or DSRC [8]). Every point
shown in the simulation result is the average value from 500
simulations.

A. Exponential inter-meeting model

We first calculate the parameters characterising the expo-
nential distribution of inter-meeting time.

Consider two types of nodes moving according to the
random direction model with speeds V1 = 10 and V2 = 0, i.e.
mobile and static nodes. The relative speeds between nodes
(where Ṽi, j denotes the relative speed between a type i node
and a type j node) can be easily calculated (c.f. Lemma 9 in
the Appendix): Ṽ1,2 = 10, Ṽ2,2 = 0 and

Ṽ1,1 =

∫ 2π

0

√
102 + 102 − 200 cos θ

1
2π

dθ =
40
π
. (25)

Consequently, the inter-meeting time between nodes follows
an exponential distribution with mean (c.f. Lemma 10 in the
Appendix) λ1,1 =

2r0Ṽ
L2 =

80r0
πL2 , λ1,2 =

2r0Ṽ
L2 =

20r0
L2 and λ2,2 = 0

respectively.
Fig. 3 verifies the accuracy of the results of the exponential

inter-meeting time distribution given in Lemma 10.

B. Performance of the sharing phase

Fig. 4 shows the probability that a packet spreads out and
the expected fraction of recipients of a single packet in a
network with H = 2 types of nodes. The network setting is
the same as that used in the previous sub-section. Specifically,
half of the nodes (type-1) are mobile nodes and the other
half of the nodes (type-2) are static nodes. In Fig. 4(a), the
analytical result of the probability that a packet spreads out
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Fig. 3. Verifying exponential inter-meeting time distribution. Sim represents
the simulation result of the inter-meeting time between two nodes moving
under the random direction model. Ana exponential represents the analytical
result given in Lemma 10. Note that subplot (b) shows the first 200 seconds
of subplot (a).

when the source node is of type-1 (resp. type-2) is given by
w1 (resp. w2) from Theorem 1. In Fig. 4(b), the analytical
result of the expected fraction of recipients of a packet when
the source node is of type-1 (resp. type-2) is given by z(1, 0)
(resp. z(0, 1)) from Corollary 4. It is interesting to note that the
probability that a packet spreads out and the expected fraction
of recipients can be significantly affected by the type of source
node. Specifically, a mobile source node can spread the packet
to more recipients than a static source node.
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Fig. 4. Simulation and analytical results of (a) The probability that a packet
spreads out and (b) the expected fraction of recipients of a packet.

Fig. 5 shows the results of another interesting case where
the complementary network consists of a set of fixed-location
base stations (e.g. WiFi APs). In the second phase, the message
is disseminated from these WiFi APs to mobile users (i.e.
type-1 nodes). Specifically, we consider that a small set of
WiFi APs are randomly and uniformly deployed in a given
area, which is a widely-used setting for AP deployment [3].
Because the WiFi APs are usually connected to the Internet
via wired connections, we set γ2,2 = 1. Other parameters are
the same as those in the previous sub-section. A message is
transmitted to all the WiFi APs at time 0. Then the WiFi
APs keep transmitting the message for a given time period
τ2. In Fig. 5, we let the active period of type-2 nodes be
τ2 = 500, 1500 respectively while varying the active period of
type-1 nodes. Note that τ1 = 0 corresponds to the traditional
case [4], [9] where nodes do not cooperatively share received
packets and they solely rely on WiFi APs to offload data traffic
from cellular networks. It can be seen in Fig. 5 that a longer
active period of mobile nodes τ1 leads to a larger expected
fraction of recipients. It is obvious that packet sharing using
ad hoc connections between mobile nodes can significantly

increase the number of recipients of a packet, hence reducing
the number of transmissions required by BSs.
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Fig. 5. The expected fraction of recipients of a packet in a network with 10
fixed WiFi APs and some mobile nodes.

Fig. 6 shows the time duration of the epidemic sharing
process, i.e. the time required for the epidemic sharing process
to reach its steady state, using the same network setting as that
in the previous figure. It is obvious that when the active period
of mobile nodes is τ1 = 0, the time duration of the sharing
phase is equal to the active period of the WiFi APs. Then the
time duration of the sharing phase increases as τ1 increases.
This is because a longer active period of mobile nodes τ1 leads
to more infected mobile nodes hence a longer time duration
for the sharing phase. Above a certain value of τ1, e.g. 300 in
this case, an increase in τ1 has a limited impact on the time
duration of the sharing phase because there is limited increase
in the fraction of infected nodes above τ1 = 300 as can be seen
in Fig. 5 and most nodes are already infected in the first 1000
seconds of the sharing phase. This motivates further work to
study the benefit of terminating the epidemic sharing phase
before it reaches the steady state.

0 100 200 300 400 500
0

500

1000

1500

2000

Active period of mobile nodes τ
1
 

T
im

e 
du

ra
tio

n(
se

co
nd

)

H=2, V
1
=10, V

2
=0, λ=0.000015, r

0
=20, τ

1
=0~500, 10 WiFi APs

 

 

τ
2
=500

τ
2
=1500

Fig. 6. Simulation results of the time duration of the epidemic sharing phase.

Fig. 7 shows the probability that a packet spreads out and
the expected fraction of recipients of a single packet in a
network with H = 3 types of nodes, where the proportion
of nodes moving at speed 20m/s, 10m/s and 0m/s is 25%,
25% and 50% respectively. Besides the fact that the analytical
results well match the simulation results, it is interesting
to note that the choice of the source node type leads to a
significant difference in the results. More specifically, it is
evident from the curves (and to be expected) that choosing
a source node moving at faster speed leads to a higher
probability of spreading out and a higher expected fraction
of recipients.

Fig. 8 shows the simulation results in a network where nodes
move according to the random waypoint mobility model. More
specifically, under a random waypoint model [20], a node
randomly chooses a destination point in the area and moves
at a constant speed along a straight line to this point. After
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Fig. 7. Simulation and analytical results of (a) The probability that a packet
spreads out and (b) the expected fraction of recipients of a packet in a network
with H = 3 types of nodes.

Fig. 8. Simulation and analytical results of (a) The probability that a packet
spreads out and (b) the expected fraction of recipients of a packet in a network
with H = 3 types of nodes, where nodes are moving according to random
direction model (RD) and random waypoint model (RWP).

reaching the point, the node repeats the above process. Fig.
8 shows the probability that a packet spreads out and the
expected fraction of recipients of a single packet in a network
with H = 3 types of nodes, where the proportion of nodes
moving at speed 20m/s, 10m/s and 0m/s is shown in the
legend. It can be seen that the probability of spreading out
and the expected fraction of recipients for the networks under
the random waypoint model are higher than those under the
random direction model. This is because a special property of
the random waypoint model - it does not preserve uniform
distribution of nodes [18]. More specifically, if nodes are
uniformly distributed in an area at time 0 and and move
according to the random waypoint model, then after some
time the density of nodes near the centre of the area will
become higher than that near the boundary of the area, i.e. the
spatial distribution of nodes is no longer uniform. This causes
our analysis, which is based on the assumption of uniform
distribution of nodes, to deviate from the simulation results,
though the trend is similar. A more detailed study reveals that
due to a higher density of nodes near the centre of the area,
the packet spreads out more easily, as can be seen in Fig.
8(a), compared with the network with the random direction
model. On the other hand, the nodes near the boundary of the
area receive the packet with more difficulty, due to the lower
density of nodes near the edge of the area, compared with the
network with random direction model; this leads to a lower
expected fraction of recipients when τ > 30 in Fig. 8(b).

C. Minimising cellular traffic load

Based on the results of the packet sharing in the second
phase, this sub-section evaluates the cellular traffic loads.

Fig. 9 shows the results of a basic network with M = 1
message, H = 1 type of nodes where no coding technique is
employed. Specifically, Fig. 9(a) shows the expected fraction
of recipients of single packet at the end of the sharing phase.
The analytical result is calculated using Corollary 5. It can be
seen in Fig. 9(a) that an increase in either the active period
τ or the number of source nodes β leads to an increase in
the expected fraction of recipients of the packet. On the other
hand, a different trend can be observed in Fig. 9(b), which
shows the expected cellular traffic load β + Y , where the
analytical result of Y is calculated using Eq. 16. It can be
seen that initially the cellular traffic first decreases rapidly
when β increases, due to a rapid increase in the expected
fraction of recipients in the sharing phase as shown in Fig.
9(a). Then after β reaching a certain value, the cellular traffic
load increases gradually as β further increases. This is because
the expected fraction of recipients has limited increase when
β increases further; on the other hand the increase in β causes
more cellular data traffic. It is interesting to note that sending
out more packets in the initial phase is not always beneficial.
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Fig. 9. Results for a network consists of H = 1 type of nodes without
employing coding techniques. Specifically, subplot (a) shows the expected
fraction of recipients of a single packet and subplot (b) shows the expected
cellular data traffic load β + Y .

Fig. 10 shows the expected cellular data traffic load β + Y
with different values of β, viz. the number of packets sent in
the first phase, using different content dissemination strategies.
To study the impact of coding on the cellular traffic load, we
consider two networks with the same setting except that one
network employs the erasure coding technique (c.f. Section
III-C) but the other network does not. Several interesting
trends can be observed in Fig. 10. Firstly, when β is small,
the two networks have a similar and relatively high cellular
traffic load. This is because only a limited number of nodes
receive the packets through the complementary network, hence
most packets are directly transmitted to the users via cellular
networks. As β increases, the cellular traffic load first decreases
rapidly then increases gradually, due to the same reason as that
in Fig. 9(b).

It is interesting to note that above a certain value of β,
e.g. β = 17 in Fig. 9(a), the traffic load of cellular networks
employing coding is significantly smaller than that of networks
without coding, due to the following reason. Recall that when
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β > M, each node only needs M different coded packets to
decode all M messages when coding is employed. On the
other hand, in a network without coding, there is a non-zero
probability that two packets received at a node contain the
same message. Therefore a node may need more than M
packets in order to receive all M messages.

Note that without employing the cooperative content dis-
semination strategy, the BSs may need to transmit one packet
to every one of the 960 nodes via cellular networks, which
results in a total of 960 transmissions. Compared with the
values of β + Y in Fig. 9 and Fig. 10, e.g. 66 or 18, it is
evident that the cooperative content dissemination strategy can
significantly reduce the traffic load of cellular networks.
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Fig. 10. Comparison between the expected cellular data traffic loads β + Y
in networks with and without coding. Note that subplot (b) shows the range
β ∈ [1, 50] of subplot (a).

VII. Conclusion and future work

This paper proposed a cooperative content dissemination
strategy for heterogeneous networks consisting of different
types of devices. The content dissemination strategy can effec-
tively offload a significant amount of data traffic from cellular
networks to complementary networks such as WiFi and device-
to-device networks using ad hoc connections that emerge when
devices move and meet one another. A detailed analysis for
the content dissemination process was presented, based on
which the optimal design of the content dissemination strategy
was discussed. The cooperative content dissemination strategy
significantly reduces the amount of data traffic from cellular
networks while guaranteeing the successful dissemination of
the content.

In our paper, we consider that the duration of the sharing
phase Tend is sufficiently long such that the epidemic sharing
process is able to reach its steady state. In the future, one may
consider the case where only a short time period is allowed
for the sharing phase, causing the epidemic sharing process
to terminate before it reaches the steady state. In this case,
a non-trivial analysis is required to calculate the number of
recipients of a packet at an arbitrary time instant. It is also
an interesting extension of our work to consider different
probability distributions for the inter-meeting time of nodes,
where the distribution can be affected by the nodes’ mobility
and network area.

Our theoretical analysis can only be applied to mobility
models for which the resulting spatial distribution of nodes is
stationary and ergodic. There is a class of other models, for

example the well known random waypoint mobility model,
under which the spatial distribution of nodes is no longer
stationary and becomes time-varying. It will be interesting
and important to study the performance of our proposed
content dissemination strategy under such more general mo-
bility models. Furthermore, our analysis assumes that the
spatial distribution of nodes is uniform. Under many scenarios
encountered in real applications, the spatial distribution of
nodes is more likely to be clustered than uniform. It will
also be of interest to study the performance of the proposed
dissemination strategy under more general node distributions.

Appendix

In this Appendix, we show that when nodes move according
to the well-known random direction mobility model [18], their
inter-meeting time distribution is an exponential distribution.

Firstly, we provide the following lemma, which calculates
the relative speed between two nodes.

Lemma 9. Consider a network where nodes move ac-
cording to the random direction model, but at different
speeds. The expected relative speed between two randomly
chosen nodes with known speeds Vi and V j is Ṽi, j =∫ 2π

0

√
V2

i + V2
j − 2ViV j cos θ 1

2πdθ.

Proof. Denote by Θ the angle measured counterclockwise
from the movement direction of a randomly chosen node i to
the movement direction of a randomly chosen node j. Recall
that the direction of a node is randomly and uniformly chosen
in [0, 2π), independent of the directions of other nodes. It
follows that Θ is uniformly distributed in [0, 2π).

Fig. 11. Illustration of the relative speed between two nodes.

Conditioned on Θ = θ, the relative speed between the
two nodes, whose speeds are Vi and V j respectively, is
Ṽθ =

√
V2

i + V2
j − 2ViV j cos θ.

Then the expected relative speed can be calculated as

Ṽi, j =

∫ 2π

0
Ṽθ

1
2π

dθ (26)

�

Suppose that a node h is infected at time instant t1. Define
the first-meeting time interval Th,k as the time interval from
time t1 to the time when node h first meets another node k.
The following lemma uses the techniques described in [43,
Chapter 4] to estimate the parameters for the distribution of
Th,k.

Lemma 10. Denote by Ṽh,k the relative speed between two
nodes h and k respectively, both moving in a torus (0, L]2.
The first-meeting time interval Th,k approximately follows an
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exponential distribution with mean λh,k ≈ 2r0Ṽh,k
1
L2 where r0

is the radio range of nodes.

Proof. Consider a new network where node k does not move
and node h moves at speed Ṽh,k. It is straightforward that the
distribution of Th,k in the new network is the same as that in
the original network.

Now we consider the new network. Consider a randomly
chosen time instant t1 and assume that node h is located at
(x, y) at t1. The size of the area swept by the radio range of
node h during a differential time period ∆t starting from t1 is
∆Ax,y = 2r0Ṽh,k∆t [43, Chapter 4].

Recall that at any time instant, the nodes are uniformly
distributed in the area. Hence the pdf of node k’s location
is Pk(x, y) = 1

L2 . Then, the probability that node k is in the
differential area ∆Ax,y is

px,y =

∫ ∫
∆Ax,y

Pk(x, y)dxdy = ∆Ax,y
1
L2 . (27)

Similarly, the pdf of node h’s location at time instant t1 is
Ph(x, y) = 1

L2 . Then the probability that node h meets node k
in an incremental time ∆t is

p(∆t) =

∫ L

0

∫ L

0
px,yPh(x, y)dxdy (28)

=

∫ L

0

∫ L

0
2r0Ṽh,k∆t

1
L2

1
L2 dxdy

= 2r0Ṽh,k
1
L2 ∆t.

Then approximately consider that the event that the two
nodes h and k meet in one interval of length ∆t and the event
that the two nodes meet in another non-overlapping interval of
length ∆t are independent. The accuracy of the approximation
is evaluated by simulation in Section VI. It follows that the
probability that two nodes do not meet each other within time
interval t is

Pr(Th,k > t) ≈ lim
∆t→0

∏
∆t∈(0,t)

(1 − p(∆t)) (29)

= lim
∆t→0

exp

− ∑
∆t∈(0,t)

p(∆t)


= exp

(
−2r0Ṽh,k

1
L2 t

)
.

It is evident that Th,k approximately follows an exponential
distribution. �

Note that due to the memoryless property of the exponen-
tial distribution, it is straightforward that the inter-meeting
between two nodes also follows an exponential distribution.
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is a past president of the International Federation of Automatic Control and
the Australian Academy of Science. His current research interests are in
distributed control, sensor networks and econometric modelling.


