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Abstract—Sensor fusion plays an increasingly important role
in real-time traffic perception using roadside sensing devices
because the use of single type of sensors often fail to deliver
satisfactory performance in certain harsh environment. This pa-
per investigates asynchronous data fusion for real-time vehicle
tracking with inaccurate and randomly delayed measurements
from millimeter-wave (MMW) radars and magnetic sensors
in tunnel environment. We first propose a multisensor data
association algorithm to assign the measurements of MMW
radar and magnetic sensors to a particular vehicle. A track-
ing algorithm is then designed to asynchronously update the
current vehicle states with randomly delayed magnetic sensor
measurements. The proposed algorithm is implemented in the
Xianfengding Tunnel, Jiangxi Province, China. Experiments
validate the proposed method’s accuracy using real data. The
method and collected data form the basis of a real-time
digital twin system to support advanced traffic management.
The fusion results and measurement dataset are available at
https://github.com/futianxuan/data.

Index Terms—Asynchronous data fusion, roadside sensor,
MMW radar, magnetic sensor, vehicle tracking.

I. INTRODUCTION

Roadside traffic perception is crucial for developing a traf-

fic digital twin system for advanced traffic management [1].

Continuous monitoring and transmission of traffic conditions

to management centers facilitate smoother traffic movement

and improve overall road safety.

Single-type sensors often produce incomplete and inaccu-

rate data in harsh and dynamic environments. Cameras, the

most commonly used roadside sensor, utilize AI-driven algo-

rithms but face accuracy challenges due to poor lighting and

occlusions [2]. LiDAR, while offering greater detection range

and comprehensive data, requires high computing power and

is affected by airborne particles [3]. MMW radar, a cost-

effective alternative to LiDAR, is robust to environmental

factors but has limited range and suffers from decreased

accuracy at longer distances and in tunnels due to occlusion

and multi-path interference [4].

Magnetic sensors have been extensively used for road

traffic detection [5], [6]. Our previous works introduced

smart studs—small, solar-powered, road-embedded Internet

of Things (IoT) devices integrating magnetic sensors [7].

Magnetic sensors are robust to weather changes and un-

affected by multi-path interference, complementing MMW

radars, especially in tunnel environments. However, as the

local magnetic field generated by a target attenuates quickly

with propagation distance, magnetic sensors are generally

only capable of lane-level detection and cannot detect targets

too far away. The complementary nature of MMW radar

and magnetic sensors, particularly in tunnel environments,

motivates us to develop a robust detection system that fuses

measurements from both magnetic sensor and MMW radar.

Multi-sensor fusion for asynchronous sensors is typically

classified into centralized and distributed strategies. Central-

ized fusion, such as the centralized Kalman filter, is opti-

mal but computationally expensive due to high-dimensional

matrix operations. To mitigate this, a credibility measure

combined with the KF [8] helps assess the validity of

delayed measurements. Additionally, an adaptive Kalman

filter (AKF) dynamically adjusts the Kalman gain based on

sensor measurement quality, enhancing robustness to noise

and model uncertainties [9]. In contrast, distributed fusion

involves individual sensors generating local estimates, which

are then combined by a fusion center to produce a globally

optimal estimate, making it ideal when communication re-

sources are limited. Asynchronous information fusion (AIF)

for cameras and radar in intelligent driving systems has

been addressed using matrix-weighted fusion algorithms for

reliable estimates with a broad detection range [10], while

a distributed covariance intersection (CI) fusion method has

also been proposed for decentralized estimate fusion [11].

Timestamped data from heterogeneous sensors, such as

MMW radar and magnetic sensors, are often asynchronous.

While many methods assume uniform sampling intervals

[12], this is unrealistic for systems with non-uniform sam-

pling periods. Event-triggered systems execute tasks based

on specific events, such as new measurements, leading to

asynchronous sampling and estimation. In this paper, we

address asynchronous data fusion involving aperiodic and

delayed measurements that can impair vehicle tracking. To

our knowledge, this is the first work considering delayed,
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aperiodic, and inaccurate measurements in asynchronous

fusion of MMW radar and magnetic sensors for precise real-

time vehicle tracking in a multi-lane tunnel scenario. The

novelty and major contributions of this paper are summarized

as follows:

1) To reduce computational complexity and the impact

of false measurements, a data association algorithm is

designed to match MMW radar and magnetic sensor

measurements to vehicles using Hungarian and auction

algorithms [13], respectively.

2) We present an asynchronous vehicle state update algo-

rithm that updates the current state in one step using

the randomly delayed measurements, unlike conven-

tional methods requiring extensive historical data and

iterative retrodiction.

3) The proposed heterogenous MMW radar and magnetic

sensors based system is deployed in the Xianfengding

Tunnel which allows validation of the accuracy and

superiority of the proposed data fusion technique.

The rest of this article is organized as follows. Section

II formulates the problem. Section III explains the proposed

data association and real-time vehicle tracking algorithms.

Section IV analyzes the performance of the algorithm and

implementation in real tunnel scenarios. Section V presents

the conclusions.

II. SYSTEM MODEL AND PROBLEM

FORMULATION

The schematic diagram and deployment of MMW radars

and magnetic sensors in a tunnel are illustrated in Fig. 1. The

study considers a typical one-way and three-lane tunnel in

China, but the proposed technique can be readily extended

to tunnels with fewer or more lanes. Each lane has a width

L = 3.75m. The lane boundary lines are numbered as

{0, 1, 2, 3}, denoted by O = {0, 1, 2, 3}, as shown in Fig. 1.

The origin is defined as the center of the first magnetic sensor

on the rightmost lane line in the driving direction. The x-

axis aligns with the centerline of the rightmost lane boundary

line, while the y-axis is locally perpendicular to the x-axis

and points towards the leftmost lane. Here, a curvilinear

coordinate system [14] is adopted, where the x-axis may be a

curve. The curvilinear coordinate system helps to maximally

utilize the knowledge that vehicles in most cases drive inside

a lane, which can greatly simplify the estimation problem.

The conversion from the curvilinear coordinate system to a

global coordinate system can be readily done [15].

Magnetic sensors are positioned at equal intervals of La

(La = 15m) along lane boundary lines 0 and 3 on both

sides of the roadway. These sensors are denoted as b0,j
and b3,j for the j-th sensors on lines 0 and 3, respectively.

The middle lane boundary lines doe not magnetic sensors

deployed because of the difficulty of supplying electricity to

smart studs and the unavailability of solar energy in tunnel

environments. MMW radars are installed at intervals of Lb

(Lb = 150m) along the tunnel wall adjacent to Lane 1 at a

height of 4.5 meters.

When a passing vehicle triggers magnetic sensors, mea-

surement timestamps, lateral positions and lane line informa-

tion are transmitted to the fusion center via LoRA, a low-rate

wireless transmission method for IoT applications, at a non-

periodic rate. In contrast, vehicle positions and speeds are

periodically measured by MMW radars and transmitted to the

fusion center via optical fibers due to the high data volume.

Consequently, MMW radar and magnetic sensor data arrive

at the fusion center with vastly different delays and loss

rates. The fusion center conducts data association and vehicle

state estimation using both data sources every T (T = 0.1 s)
seconds.

Given that the environment under consideration is a high-

way or a tunnel, a constant-velocity vehicle motion model is

used to capture the kinematic relationship during tracking.

Although more complex models like constant acceleration

have been tested, they do not improve tracking accuracy. We

focus on discrete time-varying linear systems evolving from

time tk−1 to time tk following a linear state space model:

x(k) = F (k, k − 1)x(k − 1) + ω(k − 1) (1)

where the vehicle state is represented as x(k) =
[px(k), py(k), vx(k), vy(k)]

T , px(k) and py(k) are the po-

sitions in portrait and lateral directions, respectively, vx(k)
and vy(k) are the velocities. The system noise ω(k − 1) =
[wx(k − 1), wy(k − 1), wvx(k − 1), wvy (k − 1)]T is a zero-

mean white Gaussian noise with a known covariance matrix

Q. F (k, k − 1) is the system transition matrix to tk from

tk−1.

F (k, k − 1) =

⎡
⎢⎢⎣
1 0 Δtk 0
0 1 0 Δtk
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (2)

where Δtk = tk − tk−1. Initial vehicle motion information

is estimated separately from the MMW radars and magnetic

sensors. The measurement equation of magnetic sensors and

MMW radars is given by

zi(k) = Hi(k)x(k) + vi(k), i ∈ {r, b} (3)

where zr(k) = [zx,r(k), zy,r(k), zvx,r(k), zvy,r(k)]
T and

zb(k) = [zx,b(k)] are measurements of MMW radar and

magnetic sensors, respectively, zx,r(k) and zvx,r(k) are the

lateral position and velocity obtained from MMW radar,

while zy,r(k) and zvy,r(k) correspond to the longitudinal

position and velocity. Additionally, zx,b(k) indicates the

x coordinate of the magnetic sensor. Parameter Hi(k) is

a known measurement matrix, Hr(k) = diag[1, 1, 1, 1],
Hb(k) = [1, 0, 0, 0], and vi(k) is an additive zero-mean

white Gaussian noise with a known covariance matrix Ri(k).
It is assumed that the MMW radar measurement noise and
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Fig. 1. A schematic diagram of the deployment of magnetic sensors and
MMW radars in a three-lane tunnel.

magnetic sensor noise are independent, and the measurement

noise vi(k) is uncorrelated with the process noise ω(k).
Communication delay is almost inevitable in a networked

environment and should be considered in the filter design.

MMW radars are connected to a fiber-optic transmission

system whereas magnetic sensors transmit their data through

wireless and low datarate LoRA connections designed specif-

ically for IoT applications. Therefore, transmission delays

of magnetic sensors generally are much larger than MMW

radar measurements. The MMW radar sampling time is set

to be the same as the state update time. The time instant of

the j-th measurement from sensor i, i = {r, b}, received at

the fusion center during the interval (tk, tk+1] are denoted

as ti,jk , j = 1, 2, ..., n, and satisfy tk < ti,1k < ti,2k <
· · · < ti,nk ≤ tk+1 = tk + T. Due to aperiodic sampling

and network-induced random delays, multiple measurements

may be available, or no newly arrived measurement may

occur during an estimation interval. Taking the estimation

interval (tk−1, tk] in Fig. 2 for example, where MMW

radar measurement zr(trk) and magnetic sensor measure-

ment zb(tbk−2) are received during the state update interval

(tk−1, tk]. Due to the very small transmission delays of

MMW radar measurements, it is often the case that MMW

radar measurements are generated and received during the

same interval (tk−1, tk] whereas magnetic sensor measure-

ment zb(tbk−2) generated during (tk−3, tk−2] is received a

during a later interval, e.g., (tk−1, tk]. Due to the wireless

low datarate LoRA connections being used, measurements

from magnetic sensors often suffer from large delays and

out-of-sequence arrivals at the fusion center as illustrated in

Fig. 2. Therefore, the objective of this paper is to design an

asynchronous data fusion method with time-varying delays

and inaccurate measurements to achieve accurate vehicle

tracking through advantageous combination of MMW radar

and magnetic sensors.

III. DATA ASSOCIATION AND REAL-TIME VEHICLE

TRACKING

As a vehicle approaches a tunnel entrance, it is first

detected by an MMW radar. These radar measurements

are associated with existing active tracks (data association

details are outlined in Section III-A). Measurements that do

not match existing tracks are used to initialize new targets,

with their measurements establishing the states of these
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Fig. 2. An illustration of the estimation system with lost and delayed
measurements. Parameter tk represents the estimator time, trk (tbk) is
the MMW radar measurement (magnetic sensor measurement) time and

tr,1k−1(t
b,2
k−1) is the time the MMW radar measurement (magnetic sensor

measurement) is received at the estimator or the fusion center during
(tk−1, tk].

new targets and forming new tracks with unique IDs. The

vehicle’s motion is modeled as (1). Measurements from the

MMW radars and magnetic sensors are then fed into the

Kalman estimation process via (3). The state prediction is as

follows:

x(k|k − 1) = F (k, k − 1)x(k − 1) (4)

P (k|k − 1) = F (k, k − 1)P (k − 1)F (k, k − 1)T +Q(k − 1)
(5)

where the state transition matrix F (k, k − 1) is provided in

(2). The prediction module performs state predictions for all

active tracks and synchronizes the states of all active tracks

(or vehicles) to the same time tk. This synchronized state is

then used for the multisensor association and track update in

the next step.

A. Measurement-Track Association

Considering the algorithm’s complexity and limited com-

puting resources, we design a low computational burden mul-

tisensor association algorithm using measurement-to-track

association. Data association is divided into two steps: first,

determining if the measurement falls within the association

gate threshold; second, calculating the distance between the

sensor measurements and the track’s predicted measurement,

then assigning the measurements to the tracks.

1) Data Association with MMW Radar: The Mahalanobis

distance measures the distance between an MMW radar

measurement and the state prediction by accounting for

variable covariances and scale differences. This distance is

particularly suitable as it normalizes the data and offers a

consistent method to assess the similarity between observed

measurements and predicted states. For an MMW radar

measurement at time tk, the square of the Mahalanobis

distance between measurement m and the corresponding

prediction of vehicle n is calculated as follows:

d2mn = (zrm(k)−x̂n(k|k−1))TSmn(k)
−1(zrm(k)−x̂n(k|k−1))

(6)

where zrm(k) is the measurement vector of measurement m
from MMW radar, and x̂n(k|k − 1) is the sate prediction
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vector of the vehicle n. The measurement covariance is

Smn(k) :

Smn(k) = Hr(k)Pn(k|k − 1)Hr(k)T +Rr(k) (7)

where Rr(k) is the measurement noise covariance matrix and

Pn(k|k−1) is the covariance of the state prediction of vehicle

n. The Mahalanobis distance values dmn are recorded in the

form of a matrix Mdis: the rows of the matrix Mdis are

MMW radar measurements and the columns are the vehicles.

Mdis =

{
(d2mn)c×l, if d2mn ≤ G

dmax, if d2mn > G
(8)

Here, c is the number of sensor measurements, l denotes

the number of tracks (or vehicles), and G is the associa-

tion threshold. Only measurements within this threshold are

considered for association. A large constant dmax indicates

that a measurement is outside the track’s threshold. Since

the square of the Mahalanobis distance follows a chi-square

distribution, with degrees of freedom based on the state

vector’s dimension, the threshold G is defined according to

the chi-square distribution’s probability table. For associating

multiple measurements with vehicles, the Hungarian algo-

rithm is employed due to its efficiency and effectiveness in

solving the assignment problem. It ensures a globally optimal

solution with polynomial time complexity, making it suitable

for real-time applications. Measurements not associated are

used to initialize new tracks, while successfully associated

measurements update existing vehicle states.

2) Data Association with Magnetic Sensor: As discussed

in Section II, a magnetic sensor measurement is triggered by

a passing vehicle, recording the measurement timestamp and

the location of the sensor. Assuming that after the estimation

time epoch tk, a magnetic sensor j generates a measurement

with a timestamp tbj and the x coordinate denoted by

xb
j . Define σn,x and σn,vas the standard deviations of the

position and velocity estimates of vehicle n in the x direc-

tion, respectively. It follows that σn,x =
√

Pk|k(1, 1) and

σn,v =
√
Pk|k(3, 3) where Pk|k is the process covariance

matrix of vehicle n at time tk.

The estimated time for a vehicle n to arrive at the magnetic

sensor j is

t̂j,n = tk +
xb
j − p̂x,n

v̂x,n
(9)

where p̂x,n and v̂x,n are the estimated x coordinate and

estimated speed along the x axis of vehicle n at time tk,

respectively. Without causing confusion and for ease of

expression, we drop the subscript k from p̂x,n and v̂x,n and

assume that the states of all active vehicles have been brought

up to time tk. Obviously, Equation (9) is an approximation

only. Use tj,n, px,n and vx,n to denote the true values of

t̂j,n, p̂x,n and v̂x,n respectively. It can be shown that

xb
j = px,n+

∫ tj,n
tk

vx,n(t)dt

tj,n − tk
(tj.n − tk) = px,n+v̄j,n (tj,n − tk)

(10)

where vx,n(t) is the instantaneous speed at time t and v̄j,n �
∫ tj,n
tk

vx,n(t)dt

tj,n−tk
is the time-averaged speed during [tk, tj,n). It

follows from (10) that a more accurate approximation for

t̂j,n can be obtained from a first-order Taylor expansion:

t̂j,n ≈ tk +
xb
j − p̂x,n

v̄j,n

≈ tk +
xb
j − p̂x,n

v̂x,n
− xb

j − p̂x,n

(v̂x,n)
2 �vx,n (11)

where �vx,n = v̄j,n − v̂x,n. It can be further shown that

V ar

(
xb
j−p̂x,n

(v̂x,n)
2 �vx,n

)
≈

(σn,x)
2+(Δxj,n)

2

(v̂x,n)4
(σn,v)

2 where

Δxj,n = xb
j − p̂x,n. Let

σj,n =

√
(σj,x)2 + (Δxj,n)2

(v̂x,n)2
σn,v (12)

Based on the above analysis, we present the data associa-

tion algorithm for magnetic sensor measurements. During the

track initialization stage, the estimates of vehicle states may

contain large errors. Therefore, it is more prudent to use the

maximum and the minimum speed to form the association

gate: [tk +
Δxj,n

vmax
− εt,j , t̂j +

Δxj,n

vmin
+ εt,j ], where vmax and

vmin are respectively the maximum and the minimum speeds

in a particular environment which can often be empirically

determined, e.g., from the speed limit. The term εt,j accounts

for the difference between the local time of smart stud j and

the true time. Due to synchronization error, the smart studs

may have a time drift of up to 50ms. When the vehicle state

estimates have converged, a much reduced associate gate is

used: [tk+
Δxj,n

v̂x,n
−Knσj,n−εt,j , tk+

Δxj,n

v̂x,n
+Knσj,n+εt,j ]

where Kn is a value within [2, 10] and is different for

each vehicle. Parameter Kn is first assigned a larger value,

e.g., 10. Each successful association with vehicle n allows

us to reduce Kn a bit (normally by multiplying Kn by a

constant smaller than 1, e.g., 0.9) till the minimum value of

2 is reached. If a vehicle n is unable to associate with any

measurement, then Kn is multiplied by a constant larger than

1, e.g., 2, until the maximum value of 10 is reached. Such

a procedure allows us to just filter in the “right” vehicles to

associate with a particular measurement. If only one vehicle

“falls” into the association threshold, that vehicle may be

directly assigned to the measurement. However, it is often

the case that multiple vehicles may be possibly associated

with multiple measurements. In this case, the next step is

invoked to resolve the optimum assignment.
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For ease of expression, we use tj,n,min and tj,n,max to

denote the aforementioned minimum and maximum associ-

ation thresholds. Let tj be the measurement timestamp from

magnetic sensor j and t̃j,n = tk+
Δxj,n

v̂x,n
be the predicted time

for vehicle n to arrive at sensor j using the state estimates of

vehicle n. The gain of associating measurement from sensor

j to vehicle n is given by:

aj,n =
max

{
(tj − tj,n,min)

2, (tj − tj,n,max)
2
}

σj,n

− (t̃j,n − tj)
2

σj,n
(13)

The above gain optimally combines the distances from the

association gate boundary and the distance between the

predicted arrival time and the actual measurement times-

tamp, weighed by the uncertainty in vehicle state estimates

captured by σj,n. The optimum data association problem

can then be transformed into the maximization problem and

solved using the auction algorithm [13]. Here, we used

the auction algorithm for magnetic sensor measurements

association due to its suitability for optimizing time-based

cost differences in dynamic scenarios, where the focus is on

efficiency and adaptability.

B. Vehicle State Update

After the data association problem is resolved, we then

consider the update of the vehicle state in this subsection.

1) Sequential State Update with MMW radar measure-
ments: After a new MMW radar measurement is associated

with a track, the vehicle state estimate is performed sequen-

tially, utilizing state prediction (4) and (5) and the subsequent

state update as follows:

K(k) = P (k|k − 1)Hr(k)T

× (
Hr(k)P (k|k − 1)Hr(k)T +Rr(k)

)−1
(14)

x̂(k|k) = x̂(k|k−1)+K(k)(zr(k)−Hr(k)x̂(k|k−1)) (15)

P (k|k) = P (k|k − 1)−K(k)Hr(k)P (k|k − 1) (16)

2) Out-of-Sequence Update of Randomly Delayed Mag-
netic Sensor Measurements: As previously mentioned, mag-

netic sensor measurements are transmitted to the fusion

center via low data rate LoRa connections, which may cause

significant delays, such as 1-2 seconds. In contrast, the

transmission delays of MMW radar measurements are almost

negligible, typically in the order of milliseconds. Conse-

quently, it is common for a magnetic sensor measurement

zb(κ) with a timestamp tκ to arrive after the state has been

updated at tk, where tκ < tk. We can perform in one

step the update with an l-step-lag delayed magnetic sensor

measurements as follow:

The retrodiction of the state to tκ from tk is

x̂(κ|k) = F (κ, k)x̂(k|k) (17)

The covariances associated with the state retrodiction are

calculated as

Pxv(k, κ|k) = Q(k, κ)− P (k|k − l)S∗(k)−1
Q(k, κ) (18)

where the covariance of the equivalent innovation at k in the

Equation (18) can be expressed as:

S∗(k) = P (k|k − l) +R∗(k) (19)

(R∗(k))−1
= (P (k|k))−1 − (P (k|k − l))

−1
(20)

Then the covariance matrix of state retrodiction can be

calculated as

P (κ|k) =F (κ, k)[P (k|k) +Q(k, κ)− Pxv(k, κ|k)
− Pxv(k, κ|k)]TF (κ, k)T

(21)

The covariance of the measurement for retrodicted state

prediction is

S(κ) = Hb(κ)P (κ|k) (Hb(κ)
)T

+Rb(κ) (22)

The covariance between the estimated state at k and the

delayed measurement is calculated as follows

Pxz(k, κ|k) = [P (k|k)− Pxv(k, κ|k)]F (κ, k)T
(
Hb(κ)

)T
(23)

The filter gain used for the update is

K(k, κ) = Pxz(k, κ|k)S(κ)−1 (24)

The update with the l-step-lag delayed magnetic sensor

measurements zb(κ) of most recent state estimate x̂(k|k) is

x̂(k|κ) = x̂(k|k) +K(k, κ)[zb(κ)−Hb(κ)x̂(κ|k)] (25)

The updated covariance at the current estimated time is

P (k|κ) = P (k|k)−Pxz(k, κ|k)S(κ)−1[Pxz(k, κ|k)]T (26)

Fig. 3. The actual deployment plan and deployment photos of MMW radars
and magnetic sensors in Xianfengding Tunnel, Jiangxi Province, China.
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IV. EXPERIMENTAL EVALUATION

A. Experimental Platform and Experiment Setup

The proposed system has been deployed in a commercial

setting to form part of the advanced traffic and tunnel

management system in Xianfengding Tunnel in Jiangxi

Province, China, as shown in Fig 3. The three-lane tunnel,

spanning approximately 1600 meters, is equipped with nine

MMW radars and over 200 magnetic sensors to detect the

real-time state of vehicles. The MMW radars are from

Hurys Pty Ltd and with a model number DTAM D39-

V. The initial covariance matrix is established as P (0) =
diag[0.012, 0.012, 0.052, 0.012]. The covariance matrix of the

MMW radar measurement noise is primarily determined

by errors in transforming radar measurements from polar

coordinates to Cartesian coordinates and is set to Rr(0) =
diag[0.52, 0.72, 0.052, 0.12]. The covariance of the measure-

ment noise from the magnetic sensor, considering the ranging

error due to timing errors and the geomagnetic measurement

error, is Rb(0) = 25, and the process noise covariance matrix

is Qw(k) = diag[0.75T 2, 0.45T 21.5T, 0.9T ].

B. Experimental Evaluation

In the actual deployment, it is difficult to obtain ground

truth to gauge the accuracy of the state estimation. Follow-

ing common practice in the field, we use the normalized

innovation as a metric to measure the performance [16].

For example, when considering the horizontal position es-

timate, denoting the predicted state by p̂x,n(k|k−1) and the

measurement by zx,n(k) for a vehicle n, we calculate the

normalized innovation of the n-th object over a time window

with NT measurements. It is defined as:

rn =
1

NT

∑
k

(
(p̂x,n(k|k − 1)− zx,n(k))

2

σ2
n,x

) (27)

This value represents the discrepancy between measure-

ment and prediction. This metric is computed first for an ob-

ject, and averaged in a certain time interval. The normalized

innovation also employs the covariance matrices considering

the predicted position uncertainties, σ2
n,x denote the variance

of the prediction position of vehicle n in x direction, which

has been given earlier.

The effectiveness of the proposed algorithm has been

validated through experimental comparisons with state-of-

the-art methods, as shown in Fig . 4. The KF exhibits higher

median normalized innovation values in the x-direction,

reflecting poor performance due to delayed measurements

from the magnetic sensor. In contrast, the proposed algorithm

shows lower maximum error values and more accurate,

stable performance. In the y-direction, vehicle tracking faces

higher uncertainty due to mis-detections from the magnetic

sensor, which is influenced by vehicles in adjacent lanes.

The bottom part of Fig. 4 highlights the significant reduction

in normalized innovation and maximum error using the

proposed method compared to others. The AIF performs sub-

optimally, as its matrix-weighted fusion algorithm struggles

with inaccurate measurements. The KF shows the highest

median value but greater instability due to less accurate

lateral measurements. Both CI and AKF exhibit similar

median and maximum error values, indicating comparable

performance. In contrast, the proposed method demonstrates

the lowest normalized innovation and maximum error values,

confirming its superior stability.

Fig. 4. Comparison of the position normalized innovation for x and y.
Each box plot illustrates the distribution of the data. The box represents
the interquartile range (IQR), which spans from the 25th percentile (lower
quartile) to the 75th percentile (upper quartile), while the red line inside the
box indicates the median value (50th percentile). The green and the blue
dashed lines represent the median and maximum values of the proposed
algorithm. It can be observed that the proposed algorithm exhibits the
smallest maximum error values and minimum median values.

V. CONCLUSIONS

This work proposed a novel centralized asynchronous

fusion method of MMW radars and magnetic sensors for

real-time vehicle tracking. We studied the asynchronous

estimation for discrete-time linear system with aperiodic state

updating rate and nonuniform measurement sampling rate.

A multisensor data association algorithm was designed to

assign MMW radar and magnetic sensor measurements to

specific vehicles. Additionally, the proposed fusion method

was implemented in a real tunnel and helps to establish

a traffic digital twin system for smart tunnel management.

Experimental results demonstrated the effectiveness and cost-

efficiency of the proposed method based on experiments

conducted in Xianfengding Tunnel, Jiangxi, China. Future

research will focus on addressing false or missed detection

caused by sensors on either side being mistakenly triggered

by vehicles in the middle lane and achieving precise lane-

level vehicle tracking.
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