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Abstract—Trilateration-based localization techniques have
been widely used in sensor networks due to their computational
efficiency and distributedness. However in sparse networks or in
the boundary area of networks, trilateration-based techniques
often fail to localize all localizable nodes. Bilateration-based
techniques emerge as a generalization of trilateration techniques
to a broader class of networks. Compared with trilateration-
based techniques, the main benefit of bilateration-based schemes
is that they can localize a higher percentage of nodes while
still maintaining the low computational complexity and dis-
tributedness properties. One potential drawback of bilateration-
based schemes is that the number of estimated possible positions
(hence the memory required to store these positions) may
grow exponentially with the number of nodes in the network.
Despite the empirical observations reported in the literature
that such exponential growth is a rare event, there is a lack
of rigorous analysis quantifying the complexity of bilateration-
based schemes. In this paper, we tackle the challenge by first
characterizing a broad subclass of the set of critical sub-networks
within which the number of possible estimated positions grows
exponentially with the size of these sub-networks. Then using
mathematical techniques from percolation theory, we prove that,
in random geometric networks, with very high probability the
size of these critical sub-networks, which constitute the worst
case for bilateration-based localization, is bounded. Therefore
the complexity of bilateration-based localization technique does
not grow exponentially with the size of the entire network. The
significance of this result is to analytically demonstrate that
bilateration-based techniques not only localize a higher fraction
of nodes than their trilateration counterpart, but also they can be
implemented in a very efficient (low computational cost) manner.

Index Terms—Distributed Localization, Bilateration, Trilater-
ation

I. INTRODUCTION

Range-based localization techniques are being increasingly
used in wireless sensor networks, vehicular networks and
cellular networks etc. to provide important localization in-
formation. In a typical setting, such techniques estimate the
location of each node by using the known positions of a
few nodes (called anchors) and some inter-sensor distance
measurements [11]. The network being considered can usually
modeled by its grounded graph G = (V,E) where for each
node in the network there is a corresponding vertex v in V and
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(u, v) ∈ E if the distance between the nodes corresponding to
u, v is known. The distance between the nodes corresponding
to vertices u, v is shown by d(u, v).

The computational complexity of a range-based localization
algorithm is, in general, exponential in the number of sen-
sor nodes [4]. However for networks with certain topology,
computationally efficient localization algorithm, where the
complexity increases only polynomially with the number of
nodes, can be designed. More specifically, it is well known
that if the grounded graph of a network is trilaterative, i.e. has
a trilateration ordering where the first three vertices induce a
triangle and every other vertex is connected to at least three
nodes preceding it in the ordering, a sequential localization
algorithm [1] known as trilateration can be designed that
localizes nodes sequentially using the previously estimated
positions of nodes ahead in the ordering and distance mea-
surements to these nodes, and with a computational complexity
increasing only polynomially with the number of nodes. The
computational efficiency and distributedness of trilateration-
based localization algorithms have made them the most pop-
ularly used range-based localization algorithms [5], [6], [8]–
[10]. Further, it is known that if a network has three anchors
and the grounded graph of the network is trilaterative, the
network is localizable. A network is said to be localizable if
there is a unique set of node positions that are consistent with
the known positions of anchors and distance measurements.
Note that the ground graph being trilaterative is a sufficient
but not necessary condition for the network to be localizable.
Consequently, trilateration-based localization algorithms often
fail to localize all localizable nodes, particularly in sparse
networks or in the boundary area of networks where there
are comparatively few number of distance measurements.

Bilateration-based techniques emerge as a generalization of
trilateration techniques that are applicable to a broader class of
networks. In bilateration-based techniques, a reduced number
of distance measurements is required. Particularly, bilateration-
based techniques can be implemented in the class of bilatera-
tive networks, where a bilaterative network is a network whose
grounded graph has a bilaterative ordering: a vertex ordering
in which the first three vertices induce a triangle and every
other vertex is connected to at least two nodes preceding it
in the ordering. Compared with trilateration-based techniques,
the main benefit of bilateration-based schemes is that they can
localize a higher percentage of nodes while still maintaining
the low computational complexity and distributedness proper-
ties. This benefit is obtained at the expense of an increasing
number of possible estimated positions generated in the course
of implementing the bilateration-based algorithm and hence
a larger amount of memory required to store these possible
estimated positions. More specifically, consider a special case
where a network with n nodes with a bilaterative ordering v1,
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v2,...,vn and each node vi, i > 3, has distance measurements to
exactly two previous nodes in the ordering, i.e. vi−1 and vi−2.
Let v1, v2 and v3 be the anchor nodes. It is easy to establish
that given two distance measurements to v2 and v3 only, v4 has
two possible positions. Subsequently, given the position of v3
and one estimated position of v4, v5 has two possible positions.
Since v4 has two possible positions, v5 has four possible
positions. Continuing the above process iteratively, it can be
established that vi, i > 3, has at least 2i−3 possible positions.
Therefore the number of possible positions in bilateration-
based localization algorithms may possibly increase exponen-
tially with the number of nodes. In reality however, many
possible positions can be eliminated when extra information
is available, e.g. more distance measurements than two are
available, when the sequential localization process meets an
anchor, the information that two nodes are not neighbors of
each other also allows the removal of some possible positions
[4]. In fact, in the practical implementation of bilateration-
based localization algorithms, it was reported empirically that
the maximum number of possible positions that may occur
during the localization process is less than 256 with 99.5%
chance [3].

An accurate analysis on the maximum number of possible
positions that may occur in the course of bilateration-based lo-
calization process is important because it decides the computa-
tional complexity of bilateration-based localization algorithms
which in turn determines whether the benefit of bilateration-
based localization algorithms (localizing more nodes com-
pared with trilateration-based techniques) outweighs its draw-
back (increased computational complexity).

In this paper, we tackle the above challenge by presenting an
analytical study on the maximum number of possible positions
that may occur in the course of bilateration-based localization
process in a class of networks modeled by random geometric
graphs. The main contributions of the paper are:
• First, we define the class of critical topologies, in which

the maximum number of possible positions, that may
occur in the course of bilateration-based localization
process, grows exponentially with the number of nodes
in the graph. Then we characterize a broad subclass
of critical graphs which commonly occur in random
geometric networks.

• Second, by resorting to techniques from percolation the-
ory [2], we show that asymptotically almost surely the
size of sub-networks whose grounded graphs have critical
topologies, is bounded and does not increase with the
number of nodes in the entire network.

• By combining the above two results, we show that
in large networks, the complexity of bilateration-based
localization techniques does not grow exponentially with
the size of the entire network.

The significance of the above results are that they an-
alytically demonstrate that bilateration-based techniques not
only localize a higher fraction of nodes than their trilateration
counterpart, but also they can be implemented in a very effi-
cient (low computational cost) manner. Therefore they provide
strong support for the use of bilateration-based localization
techniques.

The organization of the paper is as follows: Section II
introduces the network model. Section III contains the formal
statement of the problem, the solution analysis and simulation
results. Concluding remarks appear in Section IV.

II. NETWORK MODEL
We consider networks with nodes Poissonly distributed on

a sufficiently large 2D area with density λ. Any two nodes
can directly communicate with each other, hence can measure
their distance, if their true Euclidean distance is smaller than
a given threshold R, known as the transmission range. That
is, the so-called unit disk model is adopted. Because the main
focus of this paper is on studying the maximum number of pos-
sible estimated positions in the bilateration-based localization
process that occur in the entire network, when the network
area is sufficiently large, the impact of boundary effect on
the above maximum value becomes comparatively small and
hence is ignored in the paper.

We tessellate the entire network area into small grids of
size R√

5
× R√

5
. Note that the size of the grids has been chosen

such that any two nodes located in adjacent grids are directly
connected. Two grids are said to be adjacent if they share
at least one point. Following common terminology used in
discrete percolation theory [2], we also call these grids sites.
A site is said to be occupied if there is at least one node in it;
otherwise the site is said to be empty. Let p be the probability
that a site is occupied, obviously

p = 1− e−λR
2/5

If a site is occupied, we place a vertex in the center of
the site; if a site is empty, no vertex is placed inside the site.
For convenience, from now on, we normalize all distances by
R√
5

such that these grids become unit grids with size 1 × 1.
Denote by (xi, yi) and (xj , yj) the coordinate of two vertices
vi and vj . We place an edge to connect vi and vj if and only
if |xi − xj | ≤ 1 and |yi − yj | ≤ 1. If there exists an edge
between vi and vj , its distance is considered to be known.

The above procedure allows us to construct a discrete
percolation graph out of the earlier random network. Fig.
1 illustrates some fully connected grids and random grids
for examples. In the rest of this paper, we shall analyze the
maximum number of possible estimated positions of the ran-
dom networks by analyzing the maximum number of possible
estimated positions in its associated discrete-percolation graph.
Note that due to the relation between the grid size and the
transmission range, if there are more than one node in a grid,
conclusions can be readily drawn that: a) these nodes are
directly connected to each other (hence their distances are
all known); b) these nodes are directly connected to nodes
in adjacent grids, if exist. Therefore the maximum number
of possible estimated positions of the random networks is
less than that in its associated discrete-percolation graph. We
denote the discrete-percolation graph by G(p).

III. PROBLEM FORMULATION & ANALYSIS
In this section, we give a formal statement of the problem

and present our approach to the problem.
A discrete percolation graph G(p) may have several bi-

laterative components. Since we are interested in only these
components of G(p), whenever we talk about a subgraph
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Figure 1. (a) a fully connected grid; (c) a discrete percolation graph

H = (V,E) of G(p), we implicitly assume H is a bilaterative
component HB = (V,E,B) of G(p) where B is one bilatera-
tion ordering for H (we drop the subscript B and simply write
H = (V,E,B) if the bilateration ordering is clear from the
context). We denote an ordering of n vertices vi, i = 1..n by
< v1, .., vn >. The seed triangle T of a bilateration ordering
B =< v1, ..., vn > is defined as the triangle G({vi|i = 1..3})
. Denote by SB(vi) (or simply S(vi) is B is clear from the
context) the set of finite estimated positions of node vi with
respect to the bilateration ordering B during the localization
process of any bilateration-based localization technique.

We define s∗(H) = maxB∈B(maxvi(|SB(vi)|)), where B
is the set of all bilateration orderings of H (or s∗ if H is
clear from the context), as the maximum number of possible
positions for any node in the grounded graph H taken among
all possible bilateration orderings of H . Given the definition
of s∗(H), the main objective of this paper is then to show
that s∗(G(p)) = O(1) for any bilaterative component of the
discrete percolation graph G(p).

The main idea here is to first identify the class of graphs
(subgraphs H = (V,E) of G(p)) which can result in s∗(H) ∈
Θ(2n) where n = |V | is the number of vertices in H . We
say that a bilaterative graph H is a bad topology (bad graph)
if s∗(H) ∈ Θ(2n). The bilaterative graph H is a critical
topology (critical graph) if s∗(H) = 2n−3. Assuming the
bilateration ordering B =< v1, ..., vn > for a critical topology
H , by starting from v1, v2, v3, each vertex vi, i = 4..n has
twice the number of candidate positions as vi−1.

In any bilateration-based algorithm, the node vi is said to be
finitely localized if 0 < |S(vi)| < ∞ holds (S(vi) is a finite
non-empty set). Initially all S(vi) are set to ∅. The algorithm
starts from the sensors which have at least 2 anchors in their
neighborhood. In the first step, whenever a node vi has at least
two finitely localized (including anchors) neighbors, it finitely
localizes itself (and creates a finite and non-empty set S(vi))
by considering all the combinations of the possible positions
of those neighbors. During the run of the algorithm, whenever
a change happens to S(vi) (being finitely localized, uniquely
localized, etc.), vi notifies its neighbors. In each subsequent
step, whenever the node vi receives a notification from a
neighbor, it checks if that position information is inconsistent
with some of the elements in S(vi). If so, it prunes S(vi) by
removing those inconsistent positions. The process continues
until no inconsistency happens. During the construction of
S(vi) only the consistent position pairs ps, pt of the finitely
localized neighbors vs, vt are used. The two positions ps, pt
of the nodes vs, vt are said to be consistent if for any node
vw whose S(vw) is used to compute both ps, pt (directly or
indirectly), only a single pw ∈ S(vw) is used (see [3] Section
3.1 for further details).

Suppose that HB = (V,E,B) is a bilaterative graph and

H(i) is the bilaterative subgraph of HB induced by the first
i vertices, i.e. v1, . . . , vi in the bilateration ordering B. Also
assume that the positions of v1, v2 and v3 are known to be
p1, p2 and p3 respectively (v1, v2, v3 are anchors). For the
three anchors, S(vi) = {pi}, i = 1..3. Denote by Zi(j, k) =
{(pj , pk)|pj ∈ S(vj), pk ∈ S(vk), (pj , pk) is consistent, 1 ≤
j, k ≤ i} the set of all consistent pairs of candidate positions
of vertices vj , vk, j < k ≤ i and its maximum by z∗i (HB) =
max1≤j<k≤i(|Zi(j, k)|). The next Lemma provides and upper
bound on z∗i (HB) (the details of the proof can be accessed in
[7]):
Lemma 1. Suppose that HB = (V,E,B) is a bilaterative
graph with |V | = n. Then |S(vi)| ≤ 2i−3 and z∗i (HB) ≤ 2i−3

always hold for any 4 ≤ i ≤ n.

Corollary 2. Assume that HB = (V,E,B) is a bilaterative
graph with |V | = n. Then s∗(HB) ≤ 2n−3 always holds.

Corollary 2 implies that among all bilaterative graphs on
n vertices (shown by G), critical topologies are the ones
with maximum possible s∗ and the maximum itself is 2n−3

(max|V (H)|=n,H∈G(s∗(H)) = 2n−3).
Therefore, as the first step towards an analytic study of the

performance of bilateration-based techniques, we first charac-
terize a broad subset of the class of critical topologies. We
then derive an upper bound on the size of such subgraphs of
G(p). Due to tight relation between this bound and s∗(G(p)),
it immediately follows that s∗(G(p)) is also bounded and
provides a rough estimate of s∗(G(p)). This will be done
by computing an upper bound on the cumulative probability
distribution of the length of some maximal critical subgraph
of the random grid G(p) and show that it is bounded by
a constant value. We should mention that it is not only the
maximal critical topologies that can cause s∗(G(p)) ∈ Ω(2n).
There could be some bad topologies which are formed by
concatenating several critical topologies and globally rigid
subgraphs producing larger s∗(G(p)) than the one that could
be estimated by only maximal critical topologies (maximal
TCt subgraphs). It is still an open problem (and subject of
our further studies) to investigate these cases to see if there
are bad topologies producing a bigger value for s∗(G(p)) (its
true value) than the maximal TCt subgraph. Therefore, the
obtained upper bound is rather an approximation of s∗(G(p))
and should be considered as the first step towards analytically
studying the performance of bilateration-based localization
techniques.

A. Characterization of a Subclass of Critical Topologies
We first introduce a class of bilaterative graphs called

twisting chains which will be shown to generate a commonly
occurring subclass of critical topologies.

Definition 3. A graph H = (V,E) is called a twisting chain
of order t ∈ Z+ (denoted by TCt) if |V | ≥ 3 and the edge
set includes only the following edges:

- (v1, v2) ∈ E.
- ∀vi, i = 3.. |V | : vi is adjacent to vi−1 and exactly one of

{vj |j = (i− 2− t)..i− 2}.
The class of TC0 graphs are simply called chains and

they are the graphs obtained from a single edge ((v1, v2))
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Figure 2. (a) The neighbors of a vertex in the full grid. vi, i = 1..4 are
the corner neighbors and vi = 4..8 are the siblings. (b) An example of a
TC1 graph. Notice the difference with the chains: v7 is adjacent to v4, v6
instead of v5, v6; (c) neighbors of the triangle v1, v2, v3. Only four of them
(gray-colored circles) can be part of a TC1 together with the triangle.

by subsequently adding the new vertex vi+1 to the vertices
vi−1, vi. We also define TC∞ (or simply TC) as a twisting
chain where vi is connected to vi−1 and any single other vertex
preceding it in the bilateration ordering.

Remark 4. If the graph G is a TCt, then it is necessarily a
TCu for any u ≥ t.

The length of a TCt graph (for some t) H = (V,E) is
define as the number of vertices in H . The following lemma
proves that every TCt graph is a critical topology:
Lemma 5. Assume that HB = (V,E,B) a bilaterative graph
with HB ∈ TCt for some t < n − 2 and B =< v1, .., vn >.
Then s∗(HB) = 2n−3 holds, i.e. HB is a critical topology.

Proof: Since HB is a TCt graph, the vertex v4 is
connected to 2 vertices vi, vj , i, j ∈ 1..3. Inductively, given
each pair of (generic) positions (pi, pj) for the vertices
vi, vj , 3 ≤ i ≤ n, j ∈ (i − t − 2)..(i − 1), there are two
possible positions for node vi+1. Form Lemma 1 and by noting
that in any TC0 graph G with n vertices, z∗i (G) = 2i−3, we
conclude that the maximum number of (pi, pj) pairs is 2i−3.
Therefore, S(vi+1) = 2 × 2i−3 = 2i−2 holds which implies
s∗(HB) = 2n−3 and hence HB is a critical topology.

In the following Lemma we prove that in a critical topology
no vertex can be adjacent to more than two vertices preceding
it in the ordering.

Lemma 6. The bilaterative graph HB = (V,E,B) has the
maximum number of candidate positions s∗(HB) = 2n−3

(is a critical topology) only if for each vertex vi ∈ V ,
|N(vi) ∩ {vj |j < i}| = 2 .

Proof: We prove it by contradiction. Assume that HB is
a critical topology and up to the step i− 1, |S(vi−1)| = 2i−4

holds. Also assume that vi is connected to three vertices
vi−1, vj , vk, j < k < i−1 (and possibly others again, but this
is not relevant to the calculations). The vertex vi is connected
to H(i−1) by a trilateration operation. Therefore, for each com-
bination of the positions of vi−1, vj , vk, there is exactly one
position for vi. Define ẑ = maxs,t∈{j,k,i−1}(|Zi−1(s, t)|) as
the maximum number of consistent pairs between vj , vk, vi−1.
According to Lemma 1, ẑ ≤ 2i−4. Therefore, |S(vi)| ≤ 2i−4

holds. Now even if for all i + 1 ≤ j ≤ n steps, a bilat-
eration operation results in doubling the size of each S(vj),
s∗(HB) ≤ 2i−4× 2n−i = 2n−4 < 2n−3 contradicting the fact
that HB is a critical topology.

Lemma 6 intuitively reinforces the fact that TCt graphs
form a fairly broad subclass of critical topologies and hence

are worth to be studied (detailed explanation of this fact can be
found in [7]). Therefore, in the remainder we concentrate on
this subclass of critical topologies. One commonly occurring
class of these bad topologies are TC1 graphs. Figure 2b show
an example of such graphs.

Definition 7. A TCt subgraph C = (VC , EC) of the graph
G = (V,E) with a specific value of t is termed maximal if
there is no vertex u ∈ V such that G(VC ∪{u}) is also a TCt
graph.

B. Maximal TC1 Subgraphs: Cumulative Distribution Func-
tion

In the discrete percolation model G(p) almost all oc-
currences of maximal TCt subgraphs of G(p) are actually
TC1(refer to [7] for details of the proof). Therefore, it suffices
to concentrate on maximal TC1 subgraphs of G(p) and derive
a rough bound on the cumulative distribution of their lengths.
To be able to better study TC1 subgraphs, we investigate how
such topologies can grow inductively from a triangle (which
is the basis of any bilaterative graph).

As is depicted in Figure 2c, any triangle in the ran-
dom grid consists of two orthogonal sides and one chord.
Among the vertices in the neighborhood of the triangle
T = G({v1, v2, v3}) there are only four (out of 12) neighbors
which can be a candidate for the fourth node in the bilateration
ordering (the shaded nodes in Figure 2c). Notice that the vertex
u cannot be the fourth vertex as it is connected to 3 vertices
in the ordering and therefore in any realization of the graph
|S(u)| = |S(v3)| will hold. Therefore, the TC1 graphs can
only grow from one of their orthogonal sides and not from
the chord. Also notice that to extend the TC1 graph from T ,
on each side of the triangle (e.g. v1, v2) at most one of the two
neighboring vertices can exist (either v4,1 or v4,2 but not both
of them), i.e. if they exist simultaneously one of them will be
adjacent to 3 vertices preceding it in the ordering violating the
definition of TC1 graphs (the growing process will stop).

The next vertex in the ordering (for example v4,1) also
defines a triangle with neighboring vertices in the triangle
(v1, v2). As can be seen in Figure 2c, one of the orthogonal
sides of this new triangle is in common with T . Therefore,
there is only one side in this triangle from which the TC1

graph can grow. By a proper reordering, the same extension
is possible from the other side of T which implies that the
number of sides a TC1 graph can grow from remains fixed (2
as in the initial triangle). We call these extendible sides as the
ends of the TC1 graph.

There are two events that stop a TC1 graph from being
further extended: (a) first (as mentioned before) is when the
next vertex to join the graph is connected to it by 3 edges; (b)
none of the two possible neighbors of any of the two ends
exist. According to Definition 7, this subgraph of G(p) is
a maximal TC1 sub-graph as it is not possible to extend it
further.

Based on the above observations we compute an upper
bound on the cumulative distribution function (CDF) of the
length of maximal TC1 subgraphs in G(p). Let us denote the
maximal TC1sub-graph of G including an arbitrary site O,
by C(O). We are interested in computing an upper bound on
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Prp(|C(O)| ≥ l) for different values of l. In this notation p is
the parameter determining the CDF. First we need to compute
the probability of the existence of a triangle including O, i.e.
Prp(|C(O)| ≥ 3).

1) CDF of a triangle on O: Assume that N(O) is the
set of vertices in the neighborhood of O excluding O itself.
We define Ai, i = 0, ..., 8 as the event that the number of
neighbors of O is exactly i (Ai ≡ |N(O)| = i). For ease
of notations let us denote the event of having at least a
triangle containing O, by B ≡ |C(O)| ≥ 3. It is obvious that
Prp(B) =

∑8
i=0 Pp(B|Ai)× Pp(Ai). We have Pp(B|A0) =

Pp(B|A1) = 0 as for having the desired triangle, O must have
at least two neighbors.

Figure 2a shows the neighborhood of node O. If |N(O)| ≥
5, then at least a pair of those vertices are adjacent which
together with the vertex O form a triangle implying that
Prp(B|Ai, i = 5..8) = 1. The probability of having exactly i
vertices in N(O) is obtained from a binomial distribution with
success probability p (since the occurrence of each vertex is
independent of the others and is with probability p). Therefore,

Prp(Ai) = (
8
i

)pi(1− p)8−i.

The probability Prp(B|Ai, i = 2..4) is not as straight-
forward to compute as there are some configurations with
2 ≤ |N(O)| ≤ 4 which cannot form a triangle with vertex
O. In the sequel we consider each case separately:
• Exactly 2 neighbors. Generally there are (

8
2

) = 28 pos-

sible choices for picking two neighbors of O. However,
as Figure 2a shows, only 12 choices of the vertex pairs

out of (
8
2

) lead to an edge forming a triangle together

with O. Therefore, we conclude that P (B|A2) = 12
28 .

• Exactly 3 neighbors. The total number of choices to select

3 vertices out of the 8 possible neighbors of O is (
8
3

) =

56. To form a triangle together with O, it suffices for
the choice of three vertices to have at least two of them
adjacent. It is simpler to count the number of choices

where all three vertices are non-adjacent: (a) (
4
3

) = 4

possible choices for when all the three vertices are on the
corners of the neighborhood; (b) 4 possible configurations
when two of the vertices are at the corners and 1 is a
sibling. All other choices result in configurations where at
least two of the vertices are adjacent. This means that, out
of the 56 choices, 56− 8 = 48 configurations can induce
a triangle including O and hence Prp(B|A3) = 48

56 .

• Exactly 4 neighbors. In this case there are (
8
4

) = 70

distinct choices of the vertices. It is easy to see that the
only possible configuration which does not induce any
edge is when the 4 vertices are the 4 corner neighbors of
O. This implies Prp(B|A4) = 69

70 .
Putting all these together, we conclude that the probability

of having a triangle (Prp(|C(O)| ≥ 3)) on the vertex O is:
Prp(|C(O)| ≥ 3) = 12p2(1− p)6 + 48p3(1− p)5

+69p4(1− p)4 +
∑8
i=5

(
8
i

)
pi(1− p)i

Figure 3. Analytical bound on CDF of maximal TC1 subgraphs of length
at least l for different values of l when p = p∗ = 0.5315

2) CDF of the length of maximal TC1 subgraphs: So
far we have computed the probability of having a triangle
including an arbitrary vertex O. Now we use that result to
derive an upper bound on Prp(|C(O)| ≥ l) in G(p) for
l > 3. We do this by recursively deriving an upper bound
on Prp(|C(O)| ≥ i) having Prp(|C(O)| ≥ i+ 1).

Denote the event that there is a TC1 subgraph of length at
least i which includes vertex O by Ai (Ai ≡ |C(O)| ≥ i)
and the graph itself by Gi. As we know any TC1 graph of
length l ≥ 3 can be further extended from at most two ends.
According to Figure 2c there are at most 4 possible nodes
that can form the extension with the current TC1 subgraph
(v4,i, i = 1..4). It is not hard to see that Prp(Ai+1) =
Prp(Ai+1|Ai)× Prp(Ai) holds.

We denote the upper bound on Prp(Ai) by qp(i) and
compute it recursively. First notice that for i = 3 Subsection
III-B1 gives the exact value for Prp(A3), the probability that
there exists a triangle including vertex O. We set qp(3) =
Prp(A3). Since Prp(Ai+1) = Prp(Ai) × Prp(Ai+1|Ai)
holds, we can write qp(i + 1) = qp(i) × qp(i + 1, i) where
qp(i + 1, i) is an upper bound on Prp(Ai+1|Ai). The upper
bound qp(i+ 1, i) can be easily obtained by noting that there
are at most 4 vertices that can potentially be the i + 1-th
vertex in the extended TC1 graph. Since in Figure 2c either
v4,1 or v4,2 (also one of v4,3, v4,4) can exist but not both of
them, the probability that Gi is not extendible from any side
is (1 − 2p(1 − p))2. Based on this we define qp(i + 1, i) as
the probability that Gi is extendible from at least one side:

qp(i+ 1, i) = Qp = 1− (1− 2p(1− p))2

Note that this upper bound is independent of i. Hence
we have qp(i + 1) = qp(i) × Qp as the upper bound on
Prp(Ai+1).By recursion we are able compute the upper bound
on Prp(Al):

Prp(|C(O)| ≥ l) = Prp(Al) ≤ qp(l)
qp(l) = qp(3)×Ql−3p

(1)

Figure 3 plots qp(l) for a specific value of p = p∗ (p∗

is the value maximizing qp(l) which can be derived from
Equation 1). For example the probability that the maximal
TC1 subgraph in G(p) including an arbitrary vertex O
to be longer than 9, 11, 13, 15, 19 and 27 are respectively
0.2, 0.1, 0.05, 0.03, 0.01, 0.001. This leads to the following
important theorem which summarizes the contribution of the
paper:
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Figure 4. Analytical bound on CDF and the average Cumulative Proportion
of the length of the maximum TC1 subgraphs in G(p) with p = 0.5 for 100
networks.

Theorem 8. Assume that G(p) is a random grid and the length
of its maximum TC1 subgraph is denoted by l(G(p)). Then
l(G(p)) ∈ O(1) with respect to the size of the network.

The maximum TC1 subgraph of G(p) is a good approx-
imation of its longest critical subgraph (as most of critical
subgraphs of G(p) are TCt and with high probability the
maximal TCt subgraph is TC1). Since its length is ∈ O(1),
we conclude that s∗(G(p)) ∈ O(1) also holds (with high
probability) which means that we highly expect the number
of estimated positions for each node to be constant and
independent of the size of the network.

Since Prp(|C(O)| ≥ l) is an upper bound on
Prp(|C(O)| = l), we can also use qp(l) to compute an upper
bound on the average length of the maximal TC1 subgraph
in G(p) containing an arbitrary vertex O according to the
formula E(|C(O)|) ≤ µ̂p(G(p)) =

∑∞
i=0 l × qp(l). With a

simple calculation we can see that this sum is finite and its
maximum over all p is µ̂p∗ = 18.65.

C. Simulation Results
In this section we report on extensive simulations to validate

the above result. We generate 100 discrete percolation graphs
(obtained from a 15 × 15 full grid) and find the length of
the maximal TC1 subgraphs in each. Then we derive the
cumulative proportion (CP) of maximal TC1 subgraphs which
can be compared with the theoretical result in Section III-B.
Figure 4 plots the average CP of the maximal TC1 subgraph
of the generated networks for p = 0.5.

As shown in the figure, the probability of having a maximal
TC1 subgraph of length greater than 13 is around %2. As
can be seen the analytical result obtained in Subsection III-B2
(Figure 3) is an upper bound on the probability of long
maximal TC1 subgraphs.

IV. CONCLUSION

In this paper we studied the performance of the class of
computationally efficient localization techniques known as
bilateration-based localization techniques. Despite their advan-
tage in localizing a high portion of the nodes, compared with
their trilateration-based counterparts, in these techniques the
number of estimated possible positions (and hence the memory
required to store those positions) may grow exponentially
with the number of nodes in the network. However, empirical
observations reported in the literature that such exponential

growth is a rare even though there was a lack of rigor-
ous analysis quantifying the complexity of bilateration-based
schemes. We tackled this challenge by characterizing a broad
subset of the class of critical sub-networks within which the
number of possible estimated positions grows exponentially
with the size of these sub-networks. We proved that in random
geometric networks, with very high probability, the size of
these critical sub-networks is bounded. The significance of
this result is to analytically demonstrate the computational
efficiency of bilateration-based techniques in comparison with
the trilateration-based counterparts while being able to localize
a higher fraction of nodes.

This work forms the first steps to use techniques from
percolation theory to analytically characterize the performance
of localization algorithms. Although we have characterized
the critical topologies which cause the maximum number of
estimated positions among all graphs with the same size,
there are still some sub-networks of low probability whose
maximum number of estimated positions can be exponential
with respect to their size. One possible future direction of this
work would be to further analytically study all bad topologies
which could result in a memory blow-up.
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