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Abstract—Energy saving is an important design consideration
in wireless sensor networks. In this paper, we analyze the energy
savings that can be achieved in a sensor network where each
sensor is capable of reducing its transmission power from a
maximum power pm, compared with that in a sensor network
where each sensor can only transmit at a constant power level pm.
To achieve a fair comparison, we assume sensors in both types of
sensor networks are connected to the same set of neighbors, i.e. no
connection is lost as a result of a sensor reducing its transmission
power. We further assume that sensors are distributed in a
given area following a Poisson distribution with known node
density and the radio propagation is described by a log-normal
model. Ignoring boundary effect, we establish analytically the
probability for a sensor to achieve an energy saving of at least
h dB. We also obtain the expected percentage of energy savings
which can be substantial. The research reported in the paper
helps to answer questions such as whether the energy savings
achieved by using a sensor with a variable-transmission-power
(and the consequent extension of its lifetime) justify the additional
cost involved in manufacturing it.

Index Terms—sensor network, log-normal shadowing, transmit
power, energy savings

I. INTRODUCTION

Wireless sensor networks have been widely used for mon-
itoring environments and detecting events. A wireless sensor
network consists of a set of sensors equipped with sensing
hardware, and able to communicate with each other via radio
links. Sensors are normally battery-operated. In wireless sen-
sor networks, each sensor plays two important roles. It sends
data it has collected and it acts as a relay to other sensors.
Therefore, failure of some sensors due to exhaustion of battery
power will cause topology change in a network, and in the
worst case, the network will be disconnected prematurely.
Since failed sensors are normally hard to replace, energy
saving becomes an important network design consideration
in wireless sensor networks. One of the common goals in
designing wireless sensor networks is to make sure sensing
and communication tasks can be carried out and in the mean
time the network lifetime is maximized.
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The approaches taken so far by various researchers on
improving energy efficiency have been very diverse [1]. The
studies on energy saving mechanisms cover almost all aspects
of network design, including choices of hardware. There are
also many energy savings mechanisms that are carried out in
higher level aspects of network operation. These include, but
are not limited to, routing protocols, scheduling mechanisms,
and adjustment of transmission power. In [2], the authors
survey the energy-aware routing techniques which are suitable
for wireless sensor networks. These routing protocols use
different approaches to meet the energy constraint in wireless
sensor networks. For example, redundant data are aggregated
to reduce the number of transmissions. There is also an
approach that chooses different paths at different times to
transmit data, instead of using a single optimal path, to
balance energy consumption across all sensors. In [3], the
authors review 15 scheduling mechanisms in wireless sensor
networks. These scheduling mechanisms achieve the objective
of minimizing energy consumption by scheduling sensors into
work/sleep cycles.

In this paper, we study the possible energy savings achieved
through adjustment of transmission power. Deciding a trans-
mission power level is a complicated matter. It not only affects
the amount of energy consumed, but also determines the
establishment of direct links to the nearby nodes, and hence
affects the network topology and the paths that can be used
for routing to the destination. In this paper, we investigate
the possible energy savings that can be achieved in a sensor
network where sensors are allowed to reduce their transmission
power without losing any connections to their neighbor nodes,
via some connection preserving algorithms. More specifically,
we analyze the energy savings that can be achieved in a sensor
network where each sensor is capable of reducing its transmis-
sion power from a maximum power pm, compared with that
in a sensor network where each sensor can only transmit at
a constant power level pm. To achieve a fair comparison, we
assume sensors in both types of sensor networks are connected
to the same set of neighbors, i.e. no connection is lost as a
result of a sensor reducing its transmission power. Reducing
transmission power may have other complicated effects on the



network. For example, on the one hand, it reduces interference
to the transmission of other sensor pairs which is beneficial; on
the other hand, it decreases SNR which consequently increases
packet error rate. We do not consider these effects in the
paper. We further assume that sensors are distributed in a
given area following a Poisson distribution with known node
density and the radio propagation is described by a log-normal
model. Ignoring boundary effect, we establish analytically the
probability for a sensor to achieve an energy saving of at
least h dB. We also obtain the expected percentage of energy
savings. The research reported in the paper helps to answer
questions such as whether the energy savings achieved by
using a sensor with a variable-transmission-power (and the
consequent extension of its lifetime) justify the additional cost
involved in manufacturing it.

The rest of this paper is organized as follows: Section II
introduces related work on energy savings. Section III de-
fines the system model considered in this paper, followed by
section IV which presents the basic theoretical analysis and
derivations. Section V presents further analysis and numerical
data, which isolates key aspects of the average percentage of
energy savings obtained from section IV. Finally, section VI
concludes this paper and discusses possible future work.

II. RELATED WORK

Energy saving related topics have attracted many studies
over the years. Research in the area has been done from dif-
ferent perspectives [1]. Among them, the widely adopted way
of achieving energy saving is via minimizing the transmission
power. Deng et al. [4] identify the optimal transmission range
that maximizes the ratio of per-hop transmission distance to
the energy consumption. In their paper, nodes are assumed
to be Poissonly distributed over a given region. Ignoring
boundary effect, the authors identify the average distance
progress for each hop, which is defined to be the difference
between the before-hop distance (distance between current
node and the destination node) and after-hop distance (distance
between next node in the path and the destination node).
With taking into account the energy required to both transmit
and receive packets, the authors find the optimal transmission
range that maximizes the ratio of distance progress to energy
consumption.

In [5], Clementi et al. study the problem of minimizing
the transmission power while meeting the requirement that
any pair of nodes in the network is at most k hops away. In
the paper, a finite set of nodes are allowed to transmit using
different transmission ranges. A node is directly connected
to another node if their Euclidean distance is less than the
transmission range. A determinstic path loss model in an ideal
environment (path loss exponent = 2) has been used to relate
the transmission range to the transmission power. The authors
analyze the problem of finding the best set of transmission
ranges where the sum of the transmission power of all nodes
is minimum, at the same time ensuring that any two nodes in
the network are at most k hops away.

In [6], the performance of different dynamic transmission-
power-control algorithms are reported. These algorithms show
that dynamic transmission-power control will reduce power
consumption. The studies are different from our work in a
several aspects: a) The algorithms may increase or decrease
the transmission power to meet some predefined bound for the
number of neighbors of each node; b) In some of the studies,
the establishment of links between two nodes is decided by
the packet reception rate; c) Simulation results are reported
without analytic backing. Indeed, to the best of our knowledge,
there is no analytical result obtained on the possible energy
savings in the scenario mentioned in section I.

In this paper, we assume that wireless nodes are uni-
formly, independently, and identically distributed over a two-
dimensional area. This type of node distribution has been
commonly used in many major studies of some fundamental
network properties, such as connectivity [7], [8] and capacity
[9], [10]. However, instead of following the analysis of these
papers based on a simplistic unit disk channel model, we con-
sider channel model with certain randomness. Consideration
of channel randomness is necessary because the non-negligible
impacts of channel randomness, like log-normal shadowing
and Rayleigh fading, to the network connectivity have been
reported in the recent work [11], [12], [13]. In this paper, the
log-normal model has been selected to carry out the analysis.
However, the work in this paper can be readily extended to
other types of stochastic channel models.

III. SYSTEM MODEL

In this paper we consider that wireless sensors are ran-
domly, independently and identically distributed over a two-
dimensional area according to a Poisson point process. The
node density is known to be λ. Let us denote by Xi the
position of node i. Then we denote by Rij = ‖Xi −Xj‖
the Euclidean distance between a pair of randomly chosen
nodes i and j. Since Rij are also independently and identically
distributed random variables for different pairs of (i, j), we
drop the index ij in the rest of the paper where the indices
are not important.

Node i can directly communicate with node j if the received
power at node j, denoted by Pr, is above a certain known
threshold pth. The relationship between Pr and the Euclidean
distance between nodes i and j, R, follows the log-normal
model [14],

Pr = p0 − 10α log10

R

d0
+N (1)

where Pr is the received power at node j, p0 is the power
at a reference distance d0, α is the path loss exponent, N is
a Gaussian distributed random variable with zero mean and
variance σ2. The random variable N reflects the shadowing
effect in the environment. Both Pr and p0 are in dBm unit.

Initially, node i transmits at the maximum transmission
power pm, which results in a reference power p0 at a
reference distance d0. This leads to the establishment of a
set of direct connections between node i and some other



nodes, i.e. its neighbors. After that, node i is allowed to
reduce its transmission power continuously while maintaining
connections with the same set of neighbors. The assumption
that node i can adjust its power continuously is mainly used to
simplify the later analysis, which does not critically rely on the
assumption. Given the distribution function of energy savings,
which will be derived later, the results can be easily modified
for nodes having a set of discrete transmission power levels.
The difference between the maximum transmission power pm
and the minimum transmission power required for maintaining
connections with the same set of neighbors as those when node
i transmits at the maximum power pm, is in fact the energy that
could be saved by node i without any sacrifice in connections.
The energy savings that can be achieved for a randomly chosen
node is of course a random variable depending both on the
distribution of distances between the node and its neighbors
and on the randomness in the log-normal model. Denote this
random variable by H; in the next section we shall derive the
distribution of H .

IV. ANALYSIS

Select an arbitrary node, say node i. Let the maximum
transmission power be pm such that it results in a received
power of p0 (in the absence of shadowing effect) at reference
distance d0. Let r0 be a sufficiently large positive value such
that the probability that a node, whose Euclidean distance to
node i is larger than r0, is connected to node i can be ignored.
So, we shall only consider nodes whose Euclidean distance to
node i is within r0.

Denote by R the random variable representing the Euclidean
distance between a randomly chosen node j 6= i within the
circular area A centered at node i and with a radius r0, and
node i. Assuming node j is at a known and fixed distance r <
r0 to node i, i.e. R = r, the received power Pr at node j from
node i is Gaussian distributed with mean p0 − 10α log10

r
d0

and variance σ2. Therefore, the conditional probability that
node j receives a power from node i, which transmits at the
maximum power pm, higher than the threshold power level
pth, i.e. node j is connected to node i, given their Euclidean
distance equals to r, is

Pr {Pr ≥ pth | R = r}

=
∫ ∞
pth

1√
2πσ

exp

−
(
Pr − p0 + 10α log10

r
d0

)2

2σ2

 dPr

=
∫ ∞
pth−p0+10α log10

r
d0

1√
2πσ

exp
(
− x2

2σ2

)
dx (2)

Note that when deriving this equation, we have made an
assumption that the power received by a randomly chosen
node when node i is transmitting is independent of the power
received by another randomly chosen node when node i is
transmitting. Equivalently, the random path losses are assumed
to be independent. These assumptions are also used later.

Since nodes are assumed to be Poissonly distributed, and
node j is within the circular area A centered at node i and with

radius r0, the probability density function of R is fR(r) =
2r
r20

, for 0 ≤ r ≤ r0. Combining this with Eq. (2) gives the
probability that an arbitrary node within A is connected to
node i. That is,

Pr {Pr ≥ pth}

=
∫ r0

0

Pr {Pr ≥ pth | R = r} × 2r
r20

dr

=
∫ r0

0

(∫ ∞
pth−p0+10α log10

r
d0

1√
2πσ

exp
(
− x2

2σ2

)
dx

)
×2r
r20

dr (3)

Note that we can further simplify Eq. (3) by changing the
order of double integral. Firstly, the original sample space:{

r ∈ [0, r0]
x ∈ [pth − p0 + 10α log10

r
d0
,∞)

is equivalent to a new sample space, consists of two areas S1

and S2 (as shown in Fig. 1):

S1 =

{
r ∈ [0 , d010

x−pth+p0
10α ]

x ∈ (−∞ , pth − p0 + 10α log10
r0
d0

]

S2 =

{
r ∈ [0 , r0]
x ∈ [pth − p0 + 10α log10

r0
d0
, ∞)

Then, we can change Eq. (3) to:

Pr {Pr ≥ pth}

=
∫ r0

0

∫ ∞
pth−p0+10α log10

r
d0

1√
2πσ

exp
(
− x2

2σ2

)
dx

×2r
r20

dr

=
∫ pth−p0+10α log10

r0
d0

−∞

∫ d010
x−pth+p0

10α

0

2r
r20

dr


× 1√

2πσ
exp

(
− x2

2σ2

)
dx

+
∫ ∞
pth−p0+10α log10

r0
d0

(∫ r0

0

2r
r20

dr
)

1√
2πσ

× exp
(
− x2

2σ2

)
dx

=
∫ pth−p0+10α log10

r0
d0

−∞

(
d2
0

r20
10

x−pth+p0
5α

)
1√
2πσ

× exp
(
− x2

2σ2

)
dx

+
∫ ∞
pth−p0+10α log10

r0
d0

1√
2πσ

exp
(
− x2

2σ2

)
dx

Similarly, the probability that an arbitrarily chosen node in
A is connected to node i with received power at least pth +h



Fig. 1. An area graph displays the region of integration for Eq. (3).

will be

Pr {Pr ≥ pth + h}

=
∫ pth+h−p0+10α log10

r0
d0

−∞

(
d2
0

r20
10

x−pth−h+p0
5α

)
1√
2πσ

× exp
(
− x2

2σ2

)
dx

+
∫ ∞
pth+h−p0+10α log10

r0
d0

1√
2πσ

exp
(
− x2

2σ2

)
dx

Following from the previous results, we can derive the
probability that an arbitrary connected node is connected to
node i with received power greater than pth + h:

Pr {Pr ≥ pth + h | Pr ≥ pth}

=
Pr {Pr ≥ pth + h}

Pr {Pr ≥ pth}

As r0 →∞, the above conditional probability becomes

Pr {Pr ≥ pth + h | Pr ≥ pth}

=

∫∞
−∞

(
d2
010

x−pth−h+p0
5α

)
1√
2πσ

exp
(
− x2

2σ2

)
dx∫∞

−∞

(
d2
010

x−pth+p0
5α

)
1√
2πσ

exp
(
− x2

2σ2

)
dx

=
d2
010

−pth−h+p0
5α exp

(
σ2 log2 10

50α2

)
d2
010

−pth+p0
5α exp

(
σ2 log2 10

50α2

)
= 10

−h
5α

where log(.) is natural logarithm.
Clearly, if the arbitrarily chosen node is connected to node

i and has a received power greater than pth + h, node i is
able to reduce its transmission power by h without losing the
connection to this specific node.

Let N be the number of nodes in A that are connected to
node i. From Mukherjee and Avidor’s recent work [15], we
know that N is a Poissonly distributed random variable with
mean µ = λπr20×Pr {Pr ≥ pth}, where λ is the node density.
This property relies on our previous assumption that power
received at an arbitrary node is independent of power received

at another arbitrary node. So the mean value as r0 →∞ agrees

µ = λπd2
0 exp

(
σ2 log2 10

50α2
+

(p0 − pth) log 10
5α

)
(4)

Given the probability distribution function of random vari-
able N and the equations derived so far, the probability that all
neighbors of node i, are connected with received power greater
than pth + h, can finally be derived. This is the probability
distribution of random variable H defined in section III.
Among all the possible values for N , a special consideration
should be taken for N = 0. That is the case when node i is
an isolated node (no neighbor nodes). We assume no energy
saving can be achieved by node i if it is an isolated node.

Pr {H ≥ h}

=
∞∑
n=1

µn exp (−µ)
n!

(Pr {Pr ≥ pth + h | Pr ≥ pth})n

=
∞∑
n=1

(µ× 10
−h
5α )n exp (−µ)
n!

= exp (−µ)×
[
exp

(
µ10

−h
5α

)
− 1
]

(5)

In the above equation, we consider that if a node has no
neighbor (isolated node), it cannot deliver any energy savings
at all. Therefore in the above equation n starts from 1, instead
of 0. The probability density function of H is then

fH(h) =
d

dh
Pr{H ≤ h}

=
log 10

5α
10

−h
5α µ exp(−µ) exp(µ10

−h
5α ) (6)

From the probability density function of H , we can also
obtain the average percentage of energy saving for a randomly
selected node i. Define pn = pm−h. That is, pn is the trans-
mission power achievable by node i where the connections
to all its neighbors are maintained. Denote by p∗m and p∗n the
corresponding pm and pn in milliwatts instead of dBm. Denote
by h∗ the corresponding h in decimal units. Their relationship
can be explained by the following equation:

p∗n =
p∗m
h∗

Then, we can derive the fraction of energy savings g(h) as

g(h) =
p∗m − p∗n
p∗m

= 1− 1
h∗

= 1− 10−
h
10

Using Eq. (6), the expected fraction of energy savings is,

E[g(h)] =
∫ ∞

0

(1− 10−
h
10 )

log 10
5α

10
−h
5α µ exp(−µ)

× exp(µ10
−h
5α ) dh

= −
∫ 0

1

(1− y α2 )µ exp(−µ) exp(µy) dy

= 1− exp(−µ)− (−µ)−
α
2 exp(−µ)

×[Γ(
α

2
+ 1,−µ)− Γ(

α

2
+ 1)] (7)



where µ is as in Eq. (4), Γ(.) is the Gamma function defined
as

Γ(a) =
∫ ∞

0

ta−1 exp(−t) dt

and Γ(a, z) is the upper incomplete Gamma function defined
as

Γ(a, z) =
∫ ∞
z

ta−1 exp(−t) dt

Eq. (7) indicate that the expected energy savings achievable by
using a sensor with variable transmission power is determined
by the path loss exponent and the average node degree.

V. NUMERICAL EVALUATION

In this section, we evaluate the impact of various parame-
ters, i.e. average node degree µ, variance of shadowing σ2 and
path loss exponent α, on the expected percentage of energy
savings. The variance of shadowing σ2 exerts its impact on
expected percentage of energy savings by affecting the average
node degree µ.

Fig. 2. Impact of path loss exponent α and standard deviation of shadowing
σ on average number of neighbors µ per node density λ.

Eq. (7) shows that the expected percentage of energy savings
depends only on the average number of neighbors µ (also
known as the average node degree) and the path loss exponent
α. However, from Eq. (4) we know that the average node
degree is not only directly proportional to the node density
λ, but also related to two environment parameters: the path
loss exponent α, and the shadowing variance σ2. Fig. 2 shows
the impact of these environment parameters on the average
node degree. Since the average node degree µ is known to be
directly proportional to the node density λ, we choose to plot
the ratio µ/λ as z-axis to remove the impact of λ from the
plot. The result shows that shadowing has a positive impact
on the average node degree, i.e. a larger shadowing variance
leads to a higher average node degree, whereas a larger path
loss exponent has a negative impact on it. The changes in the
average node degree due to different σ are small, compared
with the significant impact from α, especially for lower values
of α.

Fig. 3. Expected percentage of energy savings with different µ, where α
between 2 to 5. Reference [14] suggests that α = 2 represents free space
environment, α ∈ [2, 3] represents different indoor environment, and α ∈
[3, 5] represents shadowed urban area.

Considering the previous analysis in Eq. (7), it is obvious
that different values of α will significantly affect the expected
percentage of energy savings of a wireless sensor. Different
values of α represents different environments that the wireless
sensors are deployed. Reference [14] suggests that normally
α = 2 is used to represent a free space environment, α ∈
[2, 3] represents different indoor environment, and α ∈ [3, 5]
represents shadowed urban area. Fig. 3 demonstrates the
expected percentage of energy savings for different values of
α corresponding to these environments. It shows that sensors
in a larger α value environment generally experience higher
expected percentages of energy savings. This suggests that
higher energy savings are to be expected in the obstructed
environment.

Fig. 3 shows the expected percentage of energy savings
increases with µ when the values of µ is small; it peaks at
a certain value of µ and the value of µ that maximizes the
expected percentage of energy savings varies slightly with α;
finally the expected percentage of energy savings drops with
µ when the value of µ is large. The expected percentage of
energy savings decreases with µ when the value of µ is large
because it is harder to gain energy savings when each sensor
gets connected to a large number of neighbors. On the other
hand, the expected percentage of energy savings also drops
at a very small value of node degree. This phenomenon is
mainly caused by the increase in probability that a node will
become isolated in the network. Such probability is given by
Pr{a node is isolated} = exp(−µ). Therefore, a decrease in
the average node degree will result in an increase in probability
of a node becoming isolated. An isolated node will not yield
any energy saving.

Another interesting result from Fig. 3 is that there is always
an optimal point for each curve in the plot. That is, in each
environment which is characterized by the value of the path
loss exponent α, there is an optimal average node degree µ
that leads to the maximum energy savings. Fig. 4 and Fig. 5



Fig. 4. Maximum expected percentage of energy savings (i.e. the optimal
point of each line in Fig. 3) with α ∈ [2, 10].

Fig. 5. The corresponding average node degree where the maximum expected
percentage of energy savings can be obtained, for α ∈ [2, 10].

show the maximum expected percentage of energy savings that
can be achieved for each value of α, and the combination of α
and µ that lead to the maximum energy savings respectively.
Fig. 4 shows that on average, at least 30% of energy savings
is achievable for sensors with variable-transmission-power at
most environmental conditions. This result shows that sensors
with variable-transmission-power will significantly outperform
sensors with constant-transmission-power in terms of energy
efficiency and sensor lifetime. Fig. 5 shows that the range
of average node degree to achieve the maximum expected
percentage of energy savings is narrow (from 1.8 to 2.41).
Hence, keeping the average node degree approximately at 2
will gain near to optimal performance on energy savings.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have studied the achievable energy savings
in a sensor network where the sensors are capable of reducing
their transmission power while maintaining the connections
to their neighbors. The wireless channel is modeled by the
log-normal model. In general, the sensors with variable-

transmission-power will gain significant energy savings, es-
pecially in an environment with a high path loss exponent.

The results obtained in this study are of practical value.
Firstly, the analytical results show that sensors with variable-
transmission-power can deliver significant energy savings,
which possibly justifies their use in a real network. Secondly,
the results also suggest that a near-to-optimal average energy
saving is obtainable by a sensor network if the average node
degree is kept approximately to 2.

Our existing work analyzes the achievable energy savings
under the condition that no connection is lost as a result of
reducing transmission power. That means that the network
topology is maintained during the course of reducing transmis-
sion power. However, this does not necessarily need to be the
case. In the future, we will extend current work to examine the
achievable energy savings where the reduction of transmission
power is allowed to change the network topology, as long as
the network still preserves some network properties, such as
connectivity or k-connectivity.
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