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On the Properties of One-Dimensional
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Abstract—Many wireless multi-hop networks are deployed
with some infrastructure support. Existing results on ad-hoc
networks are inadequate to fully understand the properties
of those networks. In this paper, we study the properties of
1-D infrastructure-based multi-hop networks. Specifically, we
consider networks with two types of nodes, i.e. ordinary nodes
and powerful nodes. Ordinary nodes are i.i.d. and Poissonly
distributed in a unit interval. Powerful nodes are arbitrarily
distributed within the same unit interval. These powerful nodes
are inter-connected via some backbone infrastructure. The net-
work is said to be connected if each ordinary node is connected
(possibly through a multi-hop path) to at least one of the
powerful nodes. We obtain analytical results for the connectivity
probability and the average number of clusters in the network.
We also prove for the first time that the optimum powerful node
distribution that minimizes the average number of clusters, and
maximizes the asymptotic connectivity probability, is to deploy
these powerful nodes in an equi-distant fashion. These results are
important for the design and deployment of 1-D infrastructure-
based networks.

Index Terms—Wireless networks, 1-D networks, random geo-
metric graph, connectivity, clusters.

I. INTRODUCTION

CONNECTIVITY is one of the most important properties
of a wireless multi-hop network and many network

functions depend on the underlying network to be connected.
A wireless ad-hoc network is said to be connected if there is
a path between any pair of distinct nodes. The connectivity
of wireless ad-hoc networks, i.e. infrastructureless multi-hop
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networks, has been extensively studied and the most well-
known result is given by Gupta and Kumar in [1]. Specifically,
they investigated the critical transmission range required for a
random network with nodes independently, identically (i.i.d.)
and uniformly distributed in a unit disk area in R

2 to be
connected as the number of nodes goes to infinity, under
the unit disk communication model. Besides, there are many
other studies on the connectivity of one or higher dimensional
networks, either analytically or empirically (e.g. see [2], [3],
[4], [5], [6], [7], [8]).

However, the aforementioned studies are only applicable to
ad-hoc networks in which no infrastructure is deployed. Due
to the limitations of ad-hoc networks [9], real networks may
often not be modelable in this way. Several examples can
be found in vehicular ad-hoc networks and wireless sensor
networks (see [10], [11] for more examples). In vehicular
networks, roadside infrastructure plays an important role in
the reliable and timely distribution of important information
to the vehicles on the road [12]. The active research projects
in this field include IntelliDrive [13] in USA and a series
of projects under CAR 2 CAR Communication Consortium
[14] in Europe. In wireless sensor networks, data sinks gather
the useful information collected by the sensors via multi-hop
paths. Then the data sinks may either store the data for later
retrieval, or aggregate and transfer the data immediately via a
backbone network to the remote base station or the Internet.
An example is the sensor network deployed on Great Duck
Island for habitat monitoring [15]. From the above examples,
it can be summarized that an infrastructure-based wireless
multi-hop network has the following characteristics: (a) The
communication between “ordinary” nodes (vehicles / sensors)
and “powerful” nodes (roadside infrastructure / data sinks)
is important for the core functions of the networks to be
carried out properly. (b) The powerful nodes are always inter-
connected, either by wired or wireless links. Their locations
are usually deterministic. (c) The locations of ordinary nodes
are usually random. Based on the above characteristics, ex-
isting studies on the connectivity of ad-hoc networks are
inadequate to understand these networks. Indeed, a novel
conceptual framework is required to investigate the properties
of these networks.

In this paper, we propose a new concept of connectivity
for infrastructure-based wireless multi-hop networks, which
we term type-II connectivity. We say that a network is type-II
connected if every ordinary node in the network is connected
(via one-hop or multi-hop paths) to at least one of a small
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subset of powerful nodes. Type-II connectivity problem is a
broad topic. In this paper we study the type-II connectivity
of 1-D networks. It is expected that the results will be useful
for many real world applications modelable by 1-D networks,
e.g. a vehicular network built along a highway or a sensor
network deployed along the border of a defined region for
intrusion detection. The connectivity probability results can
be used to solve some network design problems. For example,
they provide a guideline of how far away two powerful nodes
can be placed to meet a designated connectivity requirement.
In addition to connectivity probability, we analyze the average
number of clusters. A cluster is defined to be a maximal set
of nodes where there is a (multi-hop) path between any two
nodes in the set. Hence the average number of clusters can be
considered as an alternative measure of network connectivity,
which measures how fragmented a network is if it is not
connected. It tells us how many additional powerful nodes are
required for all ordinary nodes in a network to be connected
to at least one powerful node with high probability. Assuming
these additional powerful nodes are mobile, then there exist a
number of ways [16] that they can connect the ordinary nodes
together to achieve certain purposes such as maximizing the
communication reliability between nodes [17] or balancing
the traffic load among the nodes [18]. Such problems are
important in the network topology control and routing. Based
on the above connectivity and clustering results, we obtain
the optimum powerful node distribution that minimizes the
average number of clusters and maximizes the asymptotic
connectivity probability of the network. Finally we verify the
analytical results with the simulation results.

The rest of this paper is organized as follows: In Section II
we introduce the related work. In Section III we define
the network model. Then we present the analysis of type-
II connectivity probability in Section IV and the average
number of clusters in Section V. In Section VI, we discuss
the optimum distribution of powerful nodes. In Section VII we
further discuss some interesting observations on the network
properties. Finally, Section VIII concludes this paper and
discusses future work.

II. RELATED WORK

Connectivity of 1-D wireless ad-hoc networks has been
extensively studied [2], [5], [6], [7]. However, those results
do not accommodate the incorporation of infrastructure into
the networks. Among the studies, Miorandi and Altman [7]
assumed that there is a pre-determined node located at the
origin. They investigated the probability of other nodes, which
are either arbitrarily or uniformly distributed along a semi-
infinite line, being connected (either directly or via multi-
hop paths) to the node at the origin. A unit disk model
and a Boolean model with random transmission range were
considered. This scenario can be considered as a special case
of type-II connectivity with only one powerful node placed at
the origin. In this paper, we consider multiple powerful nodes
in a network.

Dousse et al. have done a study closely related to type-II
connectivity in [19], considering 1-D networks under the unit
disk model. The nodes are assumed to be Poissonly distributed
on a line segment of length L with a known density. Two

base stations are placed at both ends of the line segment.
Based on the above model, they obtained analytically p(x), the
probability that a node at distance x from the left base station
is connected to at least one base station. Based on p(x), the
authors concluded that the existence of base stations improves
the probability that two arbitrary nodes are connected. The
authors considered this line segment as a “reduced” version
of a more generic network with an infinite number of base
stations placed every L units distance on an infinite line. This
work was later extended in [20] to consider 2-D networks but
only simulation results were reported.

The work of Dousse et al. is different from ours in three
aspects. First, Dousse et al. analyzed the probability that a
node at location x is connected to at least one base station,
denoted by p(x), whereas we analyze the probability that all
nodes are connected to at least one powerful node (or base
station), i.e. the network is type-II connected. It is not trivial
to derive the probability that a network is type-II connected
using p(x). The difficulty lies in the fact that the event that
one node located at x is connected to a base station and
the event that another node at y is connected to a base
station are not independent, but correlated in a complicated
way. Therefore, a different technique is used in this paper to
analyze the probability that a network is type-II connected.
Using our technique, p(x) can be readily derived but using
the technique in [19] to derive the probability that a network
is type-II connected appears rather complicated. Second, we
consider the situation that powerful nodes and ordinary nodes
may have different transmission ranges; such an assumption at
least sometimes should better reflect physical reality. Last, we
analyze a number of network properties beyond the mere type-
II connectivity probability. These include the average number
of clusters, which is an important performance indicator, and
the optimal placement of powerful nodes. The results help to
obtain a better understanding of these networks.

More recently, Sou [21] also studied the network connec-
tivity of an infrastructure-based wireless multi-hop networks.
Similar to [19], Sou considered a 1-D vehicular network
where base stations are equally spaced on a road. However
in their paper, all vehicles in a road segment bounded by
two adjacent base stations must be connected to both base
stations. In this paper, we consider each ordinary node is
connected to at least one (but not necessarily both) powerful
node(s). In addition, the powerful nodes are not necessarily
equally spaced in the network. Using the technique used in
this paper, their results can be readily derived. Other work
can also be found in the literature which studied the k-
connectivity problem in vehicular networks (e.g. see [22],
[23], [24]). However, those work considered only inter-vehicle
communications without involving the base stations. Such
assumption simplifies vehicular networks from infrastructure-
based networks to ad hoc networks. As shown in [25], vehicu-
lar networks will involve both vehicle-to-vehicle and vehicle-
to-infrastructure communications. In this paper, we show the
impact of powerful nodes to the network connectivity. The
results will be significantly different if no powerful nodes are
involved in the communications.

Another related problem has been studied in the context
of Multihop Cellular Networks (MCNs) [26]. MCNs combine
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the features of conventional cellular networks and ad-hoc
networks to reduce the required number of base stations
in an area while limiting path vulnerability encountered in
ad-hoc networks. Wu et al. compared the performance of
MCNs with the conventional cellular networks in terms of the
call blocking/dropping probability, throughput and signaling
overhead in their work [27], [28]. In [29], Yanmaz and Tonguz
investigated the impact of number of available relay channels
to the performance of MCNs, such as call blocking/dropping
probability. Given the number of available channels, Liu et
al. [30] suggested a channel allocation and routing strategy
to maximize the cell throughput. In [31], Venkataraman et
al. studied the impact of number of hops to the channel
usage. For a 2-hop network, Venkataraman and Muntean [32]
proposed a resource allocation technique to support high data
rate traffic. Other discussion on the design and implementation
issues of MCNs can also be found in [33], [34], [35]. Even
though the aforementioned work studied MCNs from various
aspects, only few of them investigated the fundamental and
crucial issue of network connectivity, which is the focus of
this paper. Among the studies, the work by Ojha et al. [36]
and Mukherjee et al. [37] are related to network connectivity.
For a network of n uniformly distributed nodes in a circular
area of unit radius, Ojha et al. [36] obtain a lower bound on
the transmission range required for all nodes in the network to
be asymptotically connected to the base station at the center
of the area as n → ∞ under the unit disk model. Under
a more generic assumption of having both base stations and
subscriber stations Poissonly distributed in R

2 and the log-
normal shadowing model, Mukherjee et al. [37] obtain a lower
bound on the probability that an arbitrary subscriber station
cannot reach any base station in at most t hops using the
independence assumption, i.e. the event that one subscriber
station can reach any base station in k hops is independent of
the event that another subscriber station being able to reach
any base station in k hops. While this assumption frequently
simplifies analysis, it is typically not true [38], [39]. In this
paper, we are neither restricted to considering a single base
station nor to limiting the maximum hop count between two
connected nodes. Our analysis also does not rely on the
independence assumption.

III. NETWORK MODEL

Based on the observation in Section I, we define the network
model we consider in this paper as follows.

Definition 1. Denote by G(λ, np;L; ro, rp) a wireless multi-
hop network with two types of nodes: ordinary nodes and
powerful nodes. Ordinary nodes are i.i.d. and Poissonly dis-
tributed with a known density λ in the interval [0, L]. There
are np ≥ 2 powerful nodes in the network, where two of
them are placed at both ends of the interval and the rest are
arbitrarily distributed in the interior of the same interval. A
direct connection between two ordinary nodes (respectively,
between an ordinary node and a powerful node) exists if their
Euclidean distance is smaller than or equal to ro (respectively,
rp); all powerful nodes are assumed to be inter-connected to
each other by default.

An example of our model is illustrated in Fig. 1. [t] In

Fig. 1. An example of a multi-hop network with the mixture of ordinary
nodes and powerful nodes. The distances between successive powerful nodes
are denoted by wi, for 1 ≤ i ≤ np − 1.

the model, the powerful nodes divide the interval [0, L] into
np − 1 sub-intervals and each sub-interval i has length w i for
1 ≤ i ≤ np − 1.

Note that in our model the direct connections between nodes
follow the well-known unit disk model (with transmission
ranges ro and rp). In general, we assume that rp ≥ ro.
This assumption is justified because it is often the case that a
powerful node can not only transmit at a larger transmission
power than an ordinary node, it can also be equipped with
more sophisticated antennas, which make it more sensitive to
the transmitted signal from an ordinary node [40].

Consideration of the unit disk model increases the use-
fulness and applicability of our results. First, the analysis
becomes tractable under the unit disk model and all equations
obtained in this paper are closed form equations which offer
better insight into the interactions of various performance-
impacting parameters. As will be shown later, in this paper
we mostly focus on the network with L = 1, i.e. on the unit
interval. Using the space scaling technique [41], the results
for the network on the unit interval can be easily applied to
a network on the interval [0, L] where L �= 1. Second, the
results obtained under the unit disk model provide bounds for
networks under other connection models. For example, con-
sider a real-life scenario (or a connection model other than the
unit disk model) and let ro(respectively, rp) to be the distance
threshold such that any two ordinary nodes (respectively, an
ordinary node and a powerful node) separated by a distance
less than or equal to the threshold are directly connected with
high probability. Then the connectivity probability obtained
under the unit disk model with transmission ranges ro and rp
will provide a lower bound for the connectivity probability
in the real-life scenario (or under other connection model)
[42]. Finally, the qualitative conclusions obtained under the
unit disk model are normally also valid for other connection
models. The examples include the phase transition behavior
of network connectivity [43] and the energy saving achievable
when only requiring most, but not all, nodes in the network
to be connected [44]. In Section VII the simulation results are
obtained under the log-normal model1 and the plots show that
the results obtained under the unit disk model in this paper are
qualitatively applicable to the networks under the log-normal
model.

1The log-normal model is commonly used to model the real world signal
propagation where the transmit power loss increases logarithmically with the
Euclidean distance between two nodes and varies log-normally due to the
shadowing effect caused by the surrounding environment [40]. More details
are included in Section VII.
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IV. TYPE-II CONNECTIVITY PROBABILITY

In this section we investigate the type-II connectivity proba-
bility of a network G(λ, np; 1; ro, rp), i.e. on the unit interval.
Note that the network is said to be type-II connected if
each ordinary node is connected (directly or via a multi-hop
path) to at least one of the powerful nodes. Under the unit
disk model, the connectivity probability can be derived by
first examining each sub-interval bounded by two consecutive
powerful nodes.

Let Ai(wi) be the event that sub-interval i with length wi is
type-II connected under the general assumption that r p ≥ ro. It
is trivial to show that Pr {Ai(wi)}, the probability that Ai(wi)
occurs, is 1 when wi ≤ 2rp. For wi > 2rp, a realization of
a type-II connected sub-interval i for rp ≥ ro remains type-II
connected if and only if after removing an interval of length
rp − ro (and the ordinary nodes within that interval) from
the left end and right end of sub-interval i respectively, the
resulting sub-interval with rp = ro is still type-II connected.
Hence for wi > 2rp,

Pr {Ai(wi)} = Pr {Aeq
i (wi − 2(rp − ro))} (1)

where Aeq
i (x) is the event that sub-interval i with length x

is type-II connected under the situation that rp = ro. In next
sub-section we provide the derivation of Pr {Aeq

i (x)}.
A network is type-II connected if and only if each sub-

interval is type-II connected. Under the unit disk model,
the event that one sub-interval is type-II connected is in-
dependent of the event that another sub-interval is type-II
connected. Hence, the probability that a network with each
sub-interval i having length wi is type-II connected (say, event
B(w1, · · · , wnp−1)) is

Pr
{B(w1, · · · , wnp−1)

}
=

np−1∏
i=1

Pr {Ai(wi)} (2)

Based on Eq. (2), we can state the following theorem.

Theorem 1. Denote by B the event that a random instance of
G(λ, np; 1; ro, rp) is type-II connected. Then the probability
that event B occurs is

Pr {B} =

∫
D

(np−1∏
i=1

Pr {Ai(wi)}
)
f(w)dw (3)

where D = {(w1, · · · , wnp−1) :
∑np−1

i=1 wi = 1}; f(w) =
f(w1, · · · , wnp−1) is the joint probability density function of
the distances between adjacent powerful nodes; Pr {Ai(wi)}
is given in Eq. (1) and Pr {Aeq

i (wi)} is given in Eq. (10).

Using Eq. (3), we can calculate the type-II connectivity
probability of a network with any distribution of powerful
nodes as long as f(w) of that distribution is known. For
example, if the powerful nodes are uniformly distributed, then
f(w) = (np − 2)! [45]. If the powerful nodes are placed in
an equi-distant fashion, then Eq. (3) simplifies into

Pr {B} = [Pr {Ai(w)}]np−1 (4)

with w = 1
np−1 . In the following sub-sections, we derive

Pr {Aeq
i (x)} and its asymptotic approximation.

Fig. 2. An illustration of sub-interval i is type-II connected. Subgraph (a)
shows that all ordinary nodes are connected to both powerful nodes. All
spacings between any two adjacent nodes are not greater than transmission
range r. Subgraph (b) shows an example where there is a big spacing with
length s in the sub-interval, and s > r. All ordinary nodes located to the left
(right) of the big spacing are connected to the left (right) powerful node.

A. Exact probability that a sub-interval is type-II connected
for rp = ro

As mentioned earlier, the result for rp = ro can be used
to obtain the result for the general case where rp ≥ ro.
Let Aeq

i (mi, wi) be the event that sub-interval i with length
0 < wi ≤ 1 is type-II connected given that there are
mi ordinary nodes in the sub-interval. Denote the common
transmission range by r, i.e. r = rp = ro. The derivation of
Pr {Aeq

i (mi, wi)} relies on the following lemma from [46].

Lemma 1 (Lemma 1 in [46]). Let [x, x+y] be a sub-interval
of length y within [0, 1]. Assume two of k given vertices have
been placed at the borders of this sub-interval. Define two
vertices to be neighbors if and only if they are at distance
r or less apart, let Zk,y,r be the event that k − 2 vertices,
corresponding to the remaining vertices and uniformly placed
in [0, 1], are inside [x, x+ y] and “join” the borders, that is,
the k vertices form a connected subgraph of length y; and let
P (k, y, r) = Pr(Zk,y,r). Then for k ≥ 2,

P (k, y, r) =

min(k−1,�y/r�)∑
j=0

(
k − 1

j

)
(−1)j(y − jr)k−2. (5)

A sub-interval is type-II connected if all ordinary nodes
within the sub-interval are connected to at least one of the
two powerful nodes located at both ends of the sub-interval.
Hence, event Aeq

i (mi, wi) occurs with probability

Pr {Aeq
i (mi, wi)} = P (mi + 2, 1, r̂)

+ mi(mi + 1)

∫ 1−r̂

0

P (mi + 1, x̂, r̂) dx̂ (6)

where r̂ = r
wi

is the normalized transmission range, and x̂ =
x
wi

is the normalized distance of x. The two terms on the right
hand side of Eq. (6) represent the two possible cases of the
event, as illustrated in Fig. 2. Fig. 2(a) corresponds to the first
term in Eq. (6), and Fig. 2(b) corresponds to the second term.
[t]

Fig. 2(a) shows a possible case where all mi ordinary nodes
within sub-interval i are connected to both powerful nodes.
That is, none of the mi + 1 spacings between the adjacent
ordinary nodes and the two powerful nodes is larger than r.
In this case, all ordinary nodes and the two powerful nodes
in sub-interval i form a connected “subgraph” of length w i.
From Lemma 1, the probability of this case is P (m i+2, 1, r̂),
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Fig. 3. An illustration of if the big spacing with length s and the ordinary
node attached to the left end of the big spacing are removed (the “remove”
operation) from the sub-interval i (except for the case when the big spacing
is the left most spacing, and then the ordinary node attached to the right of
the big spacing is removed), then the mi − 1 remaining ordinary nodes and
the two powerful nodes form a connected “subgraph” of length x = wi − s.

where mi+2 is the sum of the number of ordinary nodes and
the two powerful nodes.

Fig. 2(b) shows the other possible case where the m i

ordinary nodes inside sub-interval i are connected to either
one of the two powerful nodes but not both. Then among the
mi + 1 spacings between the adjacent nodes, there is exactly
one spacing with length s > r. Suppose temporarily that the
big spacing of length s and the ordinary node attached to the
left end of the big spacing are removed from sub-interval i, as
illustrated in Fig. 3; then the mi−1 remaining ordinary nodes
and the two powerful nodes form a connected “subgraph” of
length x = wi − s. [t] A special case occurs when the big
spacing is the left most spacing in the sub-interval. If this
is the case, then we remove the ordinary node attached to
the right end of the big spacing instead. The probability that
the mi − 1 remaining ordinary nodes and the two powerful
nodes, with the sub-interval having the new length of x, form a
connected interval is given by P (mi+1, x̂, r̂) where x̂ = x

wi
.

Following the convention of [46] that nodes are treated as
distinguishable, the event that a particular node i attached to
the left end of the big spacing is removed together with the big
spacing and the remaining nodes form a connected interval,
and the event that a particular node j attached to the left end
of the big spacing is removed together with the big spacing
and the remaining nodes form a connected interval, are treated
as different events. Therefore, any of the m i ordinary nodes
can be attached to the left end of the big spacing (or attached
to the right end for the special case), and the big spacing
can be any of the mi + 1 spacings in sub-interval i. As a
result, the probability that events like Fig. 2(b) occur is then
mi(mi+1)P (mi+1, x̂, r̂), for x̂ ranging from zero to 1− r̂.
So we obtain the second term in Eq. (6).

After applying Eq. (5) into the second term of Eq. (6), we
can get rid of the integral in the second term by moving the
inner sum outside the integral, with changes to the range of
summation and integral we obtain

mi(mi + 1)

∫ 1−r̂

0

P (mi + 1, x̂, r̂) dx̂

= (mi + 1)

min(mi,�1/r̂�−1)∑
j=0

(
mi

j

)
(−1)j (1− (j + 1)r̂)

mi (7)

Using Eq. (7), and replacing the first term in Eq. (6) by Eq. (5),

we can simplify Eq. (6):

Pr {Aeq
i (mi, wi)}

=

min(mi+1,�wi/r�)∑
j=0

(1 − j)

(
mi + 1

j

)
(−1)j(1− j

r

wi
)mi . (8)

Since all sub-intervals bounded by powerful nodes are non-
overlapping segments with length wi and note that ordinary
nodes are Poissonly distributed, mi is a Poisson random
variables with mean wiλ, and mi and mj are mutually
independent for i �= j. Let Aeq

i (wi) be the event that sub-
interval i with length 0 < wi ≤ 1 is type-II connected. Then,

Pr {Aeq
i (wi)} =

∞∑
mi=0

Pr {Aeq
i (mi, wi)} (wiλ)

mi

mi!
exp(−wiλ)

(9)

=

�wi/r�∑
j=0

(1− j)(−1)j
1

j!
(j + wiλ− jrλ)

× (wiλ− jrλ)j−1 exp(−jrλ) (10)

where from Eq. (9) we first exchange the order of the inner
sum and the outer sum after we substitute Pr {Aeq

i (mi, wi)}
by Eq. (8). Then we substitute

(
mi+1

j

)
= 1

j!
dj

dtj t
mi+1

∣∣∣
t=1

,
move the derivative outside the inner sum, and with some
arithmetic steps we obtain Eq. (10). Note that Eq. (10) is still
valid even when wi ≤ 2r, that is Pr {Aeq

i (wi)} = 1 when
wi ≤ 2r as expected.

B. Asymptotic probability that a sub-interval is type-II con-
nected for rp = ro

Eq. (10) is in a very complicated form which may prevent
us from obtaining in-depth understanding on the relations
among parameters that determine Pr {Aeq

i (wi)}. In the fol-
lowing we derive a simplified asymptotic approximation for
Pr {Aeq

i (wi)}.
Let ŵ = wi/r be the normalized length of sub-interval i

by r where r = rp = ro as usual; let μ = 2rλ be the average
node degree ignoring border effect; let φ(ŵ) = Pr {Aeq

i (ŵr)}.
Then Eq. (10) implies the following difference-differential
equation.

d2

dŵ2
φ(ŵ) + 2β

d

dŵ
φ(ŵ − 1) + β2φ(ŵ − 2) = 0 (11)

where β = μ
2 exp(−μ

2 ). Using Eq. (11) we can obtain the
Laplace transform of φ(ŵ) as

Φ(s) =
1

s+ β exp(−s)
+

β exp(−s)

(s+ β exp(−s))2
. (12)

As s → 0, exp(−s) ≈ 1−s. Substitute this approximation into
Eq. (12); the inverse Laplace transform of the approximated
equation is then

φ(ŵ) ≈
[

1− 2β

(1− β)2
+

βŵ

(1 − β)3

]
exp(

−βŵ

1− β
) (13)

Fig. 4 shows that Eq. (13) serve as a good approximation for
the exact result in Eq. (10) provided μ ≥ 6, and virtually
all values of ŵ ≥ 2, not just large values of ŵ. [t] Solving
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Fig. 4. The type-II connectivity probability of a sub-interval given different
normalized length of the sub-interval wi/r and the average node degree. The
solid lines are the exact results, and the dashed lines are the asymptotic results.

Eq. (13) for ŵ leads to

ŵ =
{−W−1[−(1− β)2 exp(−(1− 2β))φ(ŵ)]

−(1− 2β)} 1− β

β
(14)

where W−1[.] is the real-valued, non-principal branch of
the LambertW function [47]. Given the required connectivity
probability φ(ŵ), and the value of β, which is related to the
ordinary node density λ and the transmission range r, we can
use Eq. (14) to obtain ŵ, the maximum distance between two
adjacent powerful nodes so that the designated connectivity
probability requirement is fulfilled.

V. AVERAGE NUMBER OF CLUSTERS

Besides connectivity probability, another variable of interest
in a network is the number of clusters in the network. It is
an indicator of how fragmented a network is. In our network
model, all ordinary nodes that are connected to at least one
of the powerful nodes belong to the same cluster. Denote
by “main cluster” the cluster formed by the ordinary nodes
which are connected to at least one powerful node. Other
ordinary nodes which are not connected to any powerful
nodes, if there exist, form one or more “secondary clusters”.
Therefore there is always one main cluster and zero or more
secondary clusters in a network. Note that a network is type-II
connected if and only if there is no secondary cluster in the
network. In this section we investigate the average number of
clusters in a network G(λ, np; 1; ro, rp) where the powerful
nodes are placed in an equi-distant fashion. The reason for
focusing on equi-distant powerful node distribution is that, as
will be shown later, it gives the best performance in terms of
minimizing the average number of clusters and maximizing the
asymptotic type-II connectivity probability. Nevertheless, the
analysis in the previous section has provided the conceptual
basis of how the results can be generalized to having powerful
nodes arbitrarily distributed.

Let Ci(w) be the number of secondary clusters in the sub-
interval i with length w under the general assumption that
rp ≥ ro. Note that w = 1

np−1 for equi-distant powerful node
distribution2. Also note that the ordinary nodes in sub-interval

2We only consider w > 2rp to avoid triviality.

i, which are at most rp−ro Euclidean distance away from the
powerful nodes, belong to the main cluster with probability 1
and any other ordinary nodes which are directly connected
to these ordinary nodes are also directly connected to the
powerful nodes. As a result, the number of secondary clusters
remains the same after we remove an interval of length rp−ro
(and the ordinary nodes within that interval) from the left end
and right end of sub-interval i respectively and then assume
that rp = ro. So, we have Ci(w) = Ceq

i (w−2(rp−ro)) where
Ceq

i (x) is the number of secondary clusters in the sub-interval
with length x under the special assumption that rp = ro.

To obtain Ceq
i (x), let ti(x) be the number of spacings with

length greater than r in sub-interval i of length x where r =
rp = ro as usual. Then Ceq

i (x) and ti(x) have the following
relationship:

Ceq
i (x) =

{
ti(x) − 1 for ti(x) ≥ 1,

0 for ti(x) = 0.
(15)

Assume that there are mi ordinary nodes in sub-interval i of
length x and let 1i,j(x) be an indicator function such that

1i,j(x) =

⎧⎪⎨
⎪⎩
1 if the j-th spacing in sub-interval i

of length x has length greater than r,

0 otherwise

where 1 ≤ j ≤ mi + 1. Then, the expected value of ti(x)
given mi ordinary nodes in sub-interval i with length x is

E[ ti(x)|mi] = E[
∑

1≤j≤mi+1

1i,j(x)|mi]

= (mi + 1)E[1i,j(x)|mi] for any j (16)

= (mi + 1)(1− r

x
)mi (17)

where E [1i,j(x)|mi] is equal to the probability that the j-th
spacing in sub-interval i of length x has length greater than r.
Since this probability is equal to the probability that the m i

ordinary nodes fall into a smaller interval of length 1− r
x in

sub-interval i, we obtain Eq. (17).
Since mi is a Poisson random variable with mean xλ, it

follows immediately that

E [ti(x)] =

∞∑
mi=0

E [ ti(x)|mi]
(xλ)mi

mi!
exp(−xλ)

= (xλ− rλ + 1) exp(−rλ).

From Eq. (15) we have

E [Ceq
i (x)] = E[ti(x)] − 1 + Pr {ti(x) = 0} (18)

=

�x/r�∑
j=2

(−1)j
1

j!
(j + xλ − jrλ)

× (xλ− jrλ)j−1 exp(−jrλ) (19)

where from Eq. (18) to Eq. (19) we apply

Pr {ti(x) = 0} =

�x/r�∑
j=0

(−1)j
1

j!
(j + xλ − jrλ)

× (xλ − jrλ)j−1 exp(−jrλ) (20)
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which is obtained from the first term in Eq. (6) and simplified
using the same procedure resulting in Eq. (10). Finally, let
D(np) be the number of clusters in a network with np

powerful nodes equally spaced and assume rp ≥ ro. Then,

D(np) =

np−1∑
i=1

Ci(w) + 1 (21)

=

np−1∑
i=1

Ceq
i (w − 2(rp − ro)) + 1 (22)

where w = 1
np−1 . That is, we add up the number of secondary

clusters in each sub-interval and one (and the only) main
cluster in the whole network. Based on Eq. (22), we can now
state the following theorem.

Theorem 2. For G(λ, np; 1; ro, rp) with powerful nodes
placed in an equi-distant fashion, the expected number of
clusters in the network is then

E [D(np)] = (np − 1)E [Ceq
i (w − 2(rp − ro))] + 1 (23)

where E [Ceq
i (x)] is given in Eq. (19); w = 1

np−1 .

VI. THE OPTIMAL DISTRIBUTION OF POWERFUL NODES

In this section, we prove that the equi-distant placement of
powerful nodes will minimize the average number of clusters
in a network and maximize the asymptotic type-II connectivity
probability.

A. Minimizing the average number of clusters

From Eq. (21), we have the average number of clusters
in a network G(λ, np; 1; ro, rp) given each sub-interval i has
length wi, is

E[D(w1, w2, · · · , wnp−1)] =

np−1∑
i=1

E[Ci(wi)] + 1 (24)

where E[Ci(wi)] is the average number of secondary clusters
in sub-interval i. Finding the optimal powerful node placement
to minimize the average number of clusters can be treated as
a constrained optimization problem:

minimize E[D(w1, w2, · · · , wnp−1)]

subject to
np−1∑
i=1

wi = 1.

In the following we prove that E[Ci(wi)] is a convex function
of wi.

Proof: Recall that for wi > 2rp, we have E[Ci(wi)] =
E[Ceq

i (wi − 2(rp − ro))]. And from Eq. (18) we have,

E[Ceq
i (x)] = (xλ − roλ+ 1)e−roλ − 1 + Pr {ti(x) = 0}

where Pr {ti(x) = 0} is given by Eq. (20). With some arith-
metic steps we can derive the second derivative of E[C eq

i (x)]
and obtain

d2

dx2
E[Ceq

i (x)] =
d2

dx2
Pr {ti(x) = 0}

= (λe−roλ)2 Pr {ti(x− 2ro) = 0} ≥ 0.

Fig. 5. The type-II connectivity probability given different values of λ, np,
and rp = ro = 0.05 under the unit disk model. The solid lines are plotted
using Eq. (4), verified by simulation results obtained from 40000 randomly
generated network topologies.

Hence, the second derivate of E[Ci(wi)] is also greater or
equal to zero for wi > 2rp. It is trivial to show that the
second derivative is zero for wi ≤ 2rp as E[Ci(wi)] = 0 in
that range.

Since E[Ci(wi)] is a convex function, so by Eq. (24),
E[D(w1, w2, · · · , wnp−1)] is also a convex function. Hence
the optimization problem is a convex optimization problem.
It is then straightforward to prove, e.g. using the method of
Lagrange multipliers, that the minimum of the average number
of clusters is achieved when w1 = · · · = wnp−1 = 1

np−1 and
by convexity it is a global minimum.

B. Maximizing the asymptotic type-II connectivity probability

Using Eq. (13) we approximate the type-II connectivity
probability

Pr
{B(w1, · · · , wnp−1)

}
=

np−1∏
i=1

Pr {Ai(wi)} ≈
np−1∏
i=1

φ(xi)

where xi = wi − 2(rp − ro), and

φ(xi) =

{[
1−2β
(1−β)2 + βxi/ro

(1−β)3

]
exp(−βxi/ro

1−β ) if xi > 2ro,

1 otherwise.

Since both expressions 1−2β
(1−β)2 + βxi/ro

(1−β)3 and exp(−βxi/ro
1−β )

are log-concave on xi ≥ 0, and the product of log-concave
functions is a log-concave function [48], we have φ(x i) is
log-concave on xi and Pr

{B(w1, · · · , wnp−1)
}

is also a log-
concave function of the lengths of sub-intervals. Using this
property, it can be readily shown that the maximum of the
probability that the network G(λ, np; 1; ro, rp) is type-II con-
nected is also achieved when powerful nodes are distributed
in an equi-distant fashion.

VII. DISCUSSION

In this section, we investigate the impact of different param-
eters to the performance of a network G(λ, np; 1; ro, rp). Note
that all figures are plotted under the condition that powerful
nodes are placed in an equi-distant fashion.

[t] First, Fig. 5 shows the probability that a network is
connected given different values of λ, np, and rp = ro = 0.05
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Fig. 6. The type-II connectivity probability given different values of the
average node degree μ, np, rp = ro = 0.05, and considering the correlated
log-normal model. The dash lines are plotted using simulation results obtained
from 40000 randomly generated samples.

under the unit disk model. The analytical results are verified
by simulation results obtained from 40000 randomly generated
network topologies34. The number of powerful nodes has been
varied from 2 to 10. With rp = 0.05, the network will
be fully covered by the powerful nodes for n p > 10. It is
shown that an increase in np significantly improves network
connectivity probability. The impact of λ on connectivity is
rather interesting. When λ is small, the network connectivity
probability drops as λ increases. That is because when the
number of ordinary nodes is small, the probability that an
ordinary node is connected to a powerful node via a multi-hop
connection is small and can be almost neglected. Therefore,
one ordinary node has to be close to a powerful node in
order to be connected. Thus, when the number of ordinary
nodes is small, an increase in the number of ordinary nodes
causes a drop in the probability that all ordinary nodes are
connected to at least one nearby powerful node. As the number
of ordinary nodes further increases, the probability that an
ordinary node far away from a powerful node can establish a
multi-hop connection to the powerful node increases, which
consequently causes an increase in the probability of having
a type-II connected network 5.

[t] Note that the properties observed in Fig. 5, i.e. under
the unit disk model, are also observed when the log-normal
shadowing model is considered. In the log-normal shadowing
model, two nodes separated by a Euclidean distance x are
directly connected with probability

g(x) = Q(
10α

σ
log10

x

r
) (25)

3The simulations are conducted using a program written in Java. The
random numbers required in the simulations, e.g. the locations of the ordinary
nodes, are generated using the default pseudorandom number generator
provided by Java.

4As the numbers of instances of random networks used in the simulations
are very large, the confidence interval is too small to be distinguishable and
hence ignored in this plot and the later plots.

5Note that this phenomenon, i.e. the increase of node density will first
degrade the connectivity probability and then improve it, can also be verified
by examining the first derivative of Pr {B} from Eq. (4) with regards to
λ. In addition, the value of node density which minimizes the connectivity
probability can also be obtained numerically using the classical Newton’s
method.

where Q(y) = 1√
2π

∫∞
y

exp(− z2

2 )dz is the tail probability of
the standard normal distribution, α is the path loss exponent,
σ2 is the shadowing variance, r is the transmission range
ignoring shadowing effect. Refer to [25] for more details of
the log-normal model. In order to further accurately model
the direct connection between nodes, we consider channel
correlation in our simulation. That is, we follow the approach
in [49], [50], [51] and use an exponential model to model
the fading correlations between wireless links. In the model,
the received signals at two nearby nodes from the same
transmitting node are correlated with correlation coefficient

ρ(x) = exp(− x

dcorr
loge 2) (26)

where x is the Euclidean distance between two receiving
nodes, dcorr is the de-correlation distance whose typical value
is 20 meters for the urban environment and is 5 meters for the
indoor environment [50] 6. Fig. 6 is plotted using simulation
results obtained from 40000 randomly generated network
topologies, and following the correlated log-normal model. To
have a fairer comparison between different shadowing effect
assumptions, we adjust the density λ of ordinary nodes in
each simulation so that the average node degree μ of an
arbitrary ordinary node is preserved under different path loss
exponent α and shadowing variance σ 2 settings. Ignoring the
border effect, we have μ = 2λro exp(

1
2 [

σ
10α loge 10]

2). The
steps to derive the equation are omitted here but a similar
calculation can be found for two-dimensional plane in [52].
When σ = 0, the log-normal model reduces to the unit disk
model and we have μ = 2λro. As a result, Fig. 5 can be
directly compared with Fig. 6 as the former is also plotted
with the average node degree ranges from 0 to 8. Fig. 5
and 6 together show that the impact of the powerful nodes
on the type-II connectivity probability under the correlated
log-normal model has quantitatively little difference to the
impact of the powerful nodes under the unit disk model. They
are effectively the same from the qualitative point of view.
Further, an increase in shadowing variance σ 2 will improve
the connectivity probability even if the node density has been
reduced to preserve the same average node degree. The better
type-II connectivity probability observed under the log-normal
model is consistent with the results in ad-hoc networks without
infrastructure support (e.g. see [3], [53]).

Next we investigate the impact of λ and np on the average
number of clusters under the unit disk model. The analytical
formula Eq. (23) are verified by simulations obtained from
40000 randomly generated network topologies. [t] Fig. 7
shows virtually an exact match of Eq. (23) with the simulation
results. In addition, the curves in the figure also agree with
the curves in Fig. 5 and show that the connectivity probability

6This is the well-known Gudmundson model. It works well for 2-D
networks but it may not be able to accurately model some situations in 1-D
networks. Particularly, consider a big obstacle located between a powerful
node and two ordinary nodes in proximity where the radio signals between
the powerful node and the ordinary nodes cannot propagate across. One
ordinary node cannot receive the signals from the powerful node implies that
the other ordinary node also cannot receive the signals either. That is, two
nodes “hiding” behind a big obstacle in a 1-D network are highly correlated
compared to the 2-D case. Gudmundson model is less suitable in modeling
such situation. Nevertheless, Gudmundson model is still used in this paper
due to its popularity in the literature.
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Fig. 7. The average number of clusters given different values of λ, np,
and rp = ro = 0.05 under the unit disk model. The solid lines are plotted
using Eq. (23), verified by simulation results obtained from 40000 randomly
generated network topologies.

reaches its minimum when the average number of clusters
is maximized; conversely, the connectivity probability ap-
proaches one when the average number of clusters approaches
one.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a concept termed type-II connec-
tivity to investigate the connectivity problem of infrastructure-
based wireless multi-hop networks. Analytical results for the
connectivity probability and the average number of clusters
were obtained for 1-D networks with arbitrarily distributed
powerful nodes and Poissonly distributed ordinary nodes
which communicate following the unit disk model. First, the
result proves that an increase in the number of powerful
nodes in a network always has a positive impact on the
connectivity probability and the average number of clusters.
On the other hand, an increase in the number of ordinary
nodes first degrade the connectivity probability. However, once
the number of ordinary nodes increases beyond a certain
value, the connectivity probability improves as the number of
ordinary nodes further increases. Second, we proved that equi-
distant placement of powerful nodes will minimize the average
number of clusters and maximize the type-II connectivity
probability of a network. Finally, simulation results showed
that the qualitative conclusions obtained under the unit disk
model are also valid for other connection models, taking the
log-normal model as a specific example.

Several issues remain for future work. Extending the results
beyond one dimension is clearly desirable. Apart from that,
in this paper we consider the unit disk model. In future, we
may replace the unit disk model with a more realistic/generic
random connection model. Furthermore, we assume that the
ordinary nodes are Poissonly distributed. Other types of node
distribution can be considered in the future. In addition, the
impact of node mobility and work/sleep cycle on type-II
connectivity may be studied.
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Electron. Commun. (AEÜ), vol. 64, no. 12, pp. 1207–1210, 2010.

[32] H. Venkataraman and G. M. Muntean, “Dynamic time slot partitioning
for multimedia transmission in two-hop cellular networks,” IEEE Trans.
Mobile Comput., vol. 10, no. 4, pp. 532–543, 2011.

[33] L. Le and E. Hossain, “Multihop cellular networks: Potential gains, re-
search challenges, and a resource allocation framework,” IEEE Commun.
Mag., vol. 45, no. 9, pp. 66–73, 2007.

[34] B. Can, M. Portalski, H. S. D. Lebreton, S. Frattasi, and H. A.
Suraweera, “Implementation issues for OFDM-based multihop cellular
networks,” IEEE Commun. Mag., vol. 45, no. 9, pp. 74–81, 2007.

[35] J. He, K. Yang, K. Guild, and H.-H. Chen, “Application of IEEE 802.16
mesh networks as the backhaul of multihop cellular networks,” IEEE
Commun. Mag., vol. 45, no. 9, pp. 82–90, 2007.

[36] R. S. Ojha, G. Kannan, S. N. Merchant, and U. B. Desai, “On optimal
transmission range for multihop cellular networks,” in IEEE Global
Commun. Conf. (GLOBECOM), 2008, pp. 1–5.

[37] S. Mukherjee, D. Avidor, and K. Hartman, “Connectivity, power, and
energy in a multihop cellular-packet system,” IEEE Trans. Veh. Technol.,
vol. 56, no. 2, pp. 818–836, 2007.

[38] X. Ta, G. Mao, and B. D. O. Anderson, “Evaluation of the probability of
k-hop connection in homogeneous wireless sensor networks,” in IEEE
Global Commun. Conf. (GLOBECOM), 2007, pp. 1279–1284.

[39] G. Mao and B. D. O. Anderson, “On the asymptotic connectivity
of random networks under the random connection model,” in IEEE
International Conf. Comput. Commun. (INFOCOM), 2011, pp. 631–
639.

[40] T. S. Rappaport, Wireless Communications : Principles and Practice,
2nd ed. Prentice Hall PTR, 2002.

[41] R. Meester and R. Roy, Continuum Percolation. Cambridge University
Press, 1996.

[42] P. Santi and D. M. Blough, “The critical transmitting range for connec-
tivity in sparse wireless ad hoc networks,” IEEE Trans. Mobile Comput.,
vol. 2, no. 1, pp. 25–39, 2003.

[43] X. Ta, G. Mao, and B. D. Anderson, “Phase transition width of
connectivity of wireless multi-hop networks in shadowing environment,”
in IEEE Global Commun. Conf. (GLOBECOM), 2009, pp. 1–6.

[44] ——, “On the giant component of wireless multi-hop networks in the
presence of shadowing,” IEEE Trans. Veh. Technol., vol. 58, no. 9, pp.
5152–1563, 2009.

[45] H. A. David, Order Statistics. NY: Wiley, 1970.
[46] E. Godehardt and J. Jaworski, “On the connectivity of a random interval

graph,” Random Structures Algorithms, vol. 9, no. 1-2, pp. 137–161,
1996.

[47] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and
D. E. Knuth, “On the lambert w function,” Advances Computational
Mathematics, vol. 5, no. 1, pp. 329–359, 1996.

[48] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Uni-
versity Press, 2004.

[49] M. Gudmundson, “Correlation model for shadow fading in mobile radio
systems,” Electron. Lett., vol. 27, no. 23, pp. 2145–2146, 1991.

[50] K. Yamamoto, A. Kusuda, and S. Yoshida, “Impact of shadowing corre-
lation on coverage of multihop cellular systems,” in IEEE International
Conf. Commun. (ICC), vol. 10, 2006, pp. 4538–4542.

[51] A. Ghasemi and E. S. Sousa, “Asymptotic performance of collabora-
tive spectrum sensing under correlated log-normal shadowing,” IEEE
Commun. Lett., vol. 11, no. 1, pp. 34–36, 2007.

[52] S. C. Ng, G. Mao, and B. D. O. Anderson, “Energy savings achievable
in connection preserving energy saving algorithms,” in IEEE Wireless
Commun. Netw. Conf. (WCNC), 2009, pp. 1–6.

[53] D. Miorandi, E. Alman, and G. Alfano, “The impact of channel ran-

domness on coverage and connectivity of ad hoc and sensor networks,”
IEEE Trans. Wireless Commun., vol. 7, no. 3, pp. 1062–1072, 2008.

Seh Chun NG received his BEng degree in In-
formation Technology & Telecommunication from
University of Adelaide, Australia, in 2000. He re-
ceived his MSc degree in Information Technology
from Malaysia University of Science and Technol-
ogy (MUST), Malaysia in 2006 and is currently
a Ph.D. Candidate in the School of Electrical and
Information Engineering at University of Sydney. He
is also with National ICT Australia (NICTA). His
research interests is in wireless multi-hop networks,
graph theory and queueing theory.

Guoqiang MAO received the Bachelor degree in
electrical engineering, the Master degree in engi-
neering and PhD in telecommunications engineering
in 1995, 1998 and 2002 from Hubei Polytechnic
University, South East University and Edith Cowan
University respectively. He joined the School of
Electrical and Information Engineering, the Uni-
versity of Sydney in December 2002 where he
is a Senior Lecturer now. He has published over
ninety papers in journals and refereed conference
proceedings. He has served as a program committee

member in a number of international conferences and am an Associate Editor
of the IEEE Transactions on Vehicular Technology. His research interests
include intelligent transport systems and vehicular networks, wireless multi-
hop networks, sensor networks, wireless localization techniques, cooperative
communications, and graph theory and its application in networking. He is a
Senior Member of IEEE.

Brian ANDERSON was born in Sydney, Australia,
and received his undergraduate education at the
University of Sydney, with majors in pure mathe-
matics and electrical engineering. He subsequently
obtained a PhD degree in electrical engineering from
Stanford University. Following completion of his
education, he worked in industry in Silicon Valley
and served as a faculty member in the Department
of Electrical Engineering at Stanford. He was Pro-
fessor of Electrical Engineering at the University
of Newcastle, Australia from 1967 until 1981 and

is now a Distinguished Professor at the Australian National University
and Distinguished Researcher in National ICT Australia Ltd. His interests
are in control and signal processing. He is a Fellow of the IEEE, Royal
Society London, Australian Academy of Science, Australian Academy of
Technological Sciences and Engineering, Honorary Fellow of the Institution
of Engineers, Australia, and Foreign Associate of the US National Academy
of Engineering. He holds doctorates (honoris causa) from the Université
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