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Abstract—Extensive research has been done on studying the
capacity of wireless multi-hop networks. These efforts have led
to many sophisticated and customized analytical studies on the
capacity of particular networks. While most of the analyses
are intellectually challenging, they lack universal properties
that can be extended to study the capacity of a different
network. In this paper, we sift through various capacity-
impacting parameters and present a simple relationship that
can be used to estimate the capacity of both static and
mobile networks. Specifically, we show that the network
capacity is determined by the average number of simultaneous
transmissions, the link capacity and the average number of
transmissions required to deliver a packet to its destination.
Our result is valid for both finite networks and asymptotically
infinite networks. We then use this result to explain and
better understand the insights of some existing results on
the capacity of static networks, mobile networks and hybrid
networks and the multicast capacity. The capacity analysis
using the aforementioned relationship often becomes simpler.
The relationship can be used as a powerful tool to estimate
the capacity of different networks. Our work makes important
contributions towards developing a generic methodology for
network capacity analysis that is applicable to a variety of
different scenarios.

Index Terms—Capacity, mobile networks, wireless networks

I. INTRODUCTION

W IRELESS multi-hop networks, in various forms,
e.g. wireless sensor networks, underwater networks,

vehicular networks, mesh networks and unmanned aerial
vehicle formations, and under various names, e.g. ad-hoc
networks, hybrid networks, delay tolerant networks and
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intermittently connected networks, are being increasingly
used in military and civilian applications.

Studying the capacity of these networks is an important
problem. Since the seminal work of Gupta and Kumar [1],
extensive research has been done in the area. Particularly,
in [1] Gupta and Kumar considered an ad-hoc network
with a total of n nodes uniformly and i.i.d. on an area of
unit size. Furthermore, each node is capable of transmitting
at W bit/s and using a fixed and identical transmission
range. They showed that the transport capacity and the
achievable per-node throughput, when each node randomly
and independently chooses another node in the network as
its destination, are Θ

(
W
√

n
logn

)
and Θ

(
W√

n logn

)
respec-

tively1. When the nodes are optimally and deterministically
placed to maximize throughput, the transport capacity and
the achievable per-node throughput become Θ(W

√
n) and

Θ
(

W√
n

)
respectively. In [2], Franceschetti et al. considered

essentially the same random network as that in [1] except
that nodes in the network are allowed to use two different
transmission ranges. The link capacity between a pair of
directly connected nodes is determined by their SINR
through the Shannon–Hartley theorem. They showed that
by having each source-destination pair transmitting via the
so-called “highway system”, formed by nodes using the
smaller transmission range, the transport capacity and the
per-node throughput can also reach Θ(

√
n) and Θ

(
1√
n

)
respectively even when nodes are randomly deployed.
The existence of such highways was established using
the percolation theory [3]. In [4] Grossglauser and Tse
showed that in mobile networks, by leveraging on the
nodes’ mobility, a per-node throughput of Θ(1) can be

1The following notations are used throughout the paper. For two positive
functions f (x) and h (x):

• f (x) = o (h (x)) iff (if and only if) limx→∞
f(x)
h(x)

= 0;
• f (x) = ω (h (x)) iff h (x) = o (f (x));
• f (x) = Θ (h (x)) iff there exist a sufficiently large x0 and two

positive constants c1 and c2 such that for any x > x0, c1h (x) ≥
f (x) ≥ c2h (x);

• f (x) ∼ h (x) iff limx→∞
f(x)
h(x)

= 1;
• f (x) = O (h (x)) iff there exist a sufficiently large x0 and a

positive constant c such that for any x > x0, f (x) ≤ ch (x);
• f (x) = Ω (h (x)) iff h (x) = O (f (x));
• An event ξ is said to occur almost surely if its probability equals

one;
• An event ξx depending on x is said to occur asymptotically almost

surely (a.a.s.) if its probability tends to one as x → ∞.
The above definition applies whether the argument x is continuous or
discrete, e.g. assuming integer values.
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achieved at the expense of unbounded delay. Their work
[4] has sparked huge interest in studying the capacity-delay
tradeoffs in mobile networks assuming various mobility
models and the obtained results often vary greatly with the
different mobility models being considered, see [5]–[10]
and references therein for examples. In [11], Chen et al.
studied the capacity of wireless networks under a different
traffic distribution. In particular, they considered a set of
n randomly deployed nodes transmitting to single sink
or multiple sinks where the sinks can be either regularly
deployed or randomly deployed. They showed that with
single sink, the transport capacity is given by Θ(W ); with
k sinks, the transport capacity is increased to Θ(kW ) when
k = O(n log n) or Θ(n log nW ) when k = Ω(n log n).
Furthermore, there is also significant amount of work study-
ing the impact of infrastructure nodes [12] and multiple-
access protocols [13] on the capacity and the multicast
capacity [14]. We refer readers to [15] for a comprehensive
review of related work.

The above efforts have led to many sophisticated and
customized analytical studies on the capacity of particular
networks. The obtained results often vary greatly with even
a slight change in the scenario being investigated. While
most of the analyses are intellectually challenging, they
lack universal properties that can be extended to study
the capacity of a different network. In this paper, we sift
through these capacity-impacting parameters, e.g. mobility,
traffic distribution, spatial node distribution, the capability
of nodes to adjust their transmission power, the presence of
infrastructure nodes, multiple-access protocols and schedul-
ing algorithms, and present a simple relationship that can
be used to estimate the capacity of wireless multi-hop
networks. In addition to capacity, delay is also an important
performance metric that has been extensively investigated.
In this paper we focus on the study of capacity. We refer
readers to [5]–[9] for relevant work on delay.

The main contribution of this paper is the development
of a simple relationship for estimating the capacity of
wireless multi-hop networks applicable to various different
scenarios. The following is a detailed summary of our
contributions:

• Considering an arbitrary network, we show that the
network capacity is determined by the link capacity,
the average number of simultaneous transmissions,
and the average number of transmissions required to
deliver a packet to its destination;

• We extend the above relationship for arbitrary net-
works to random networks;

• We apply our new result to determine the asymp-
totic capacity of several typical random networks
considered in the literature [1], [2], [4], [10], [12]–
[14]. The capacity analysis using the aforementioned
relationship often becomes simpler;

• Based on the intuitive understanding gained from our
result, we point out limitations of some existing results
and suggest further improvements;

• Furthermore, using our result, the capacity analysis for
different networks can be transformed into the analysis

of the three key parameters, i.e. the link capacity, the
average number of simultaneous transmissions, and the
average number of transmissions required to deliver a
packet to its destination. Therefore our work makes
important contributions towards developing a generic
methodology for network capacity analysis that is
applicable to a variety of different scenarios.

The rest of the paper is organized as follows: Section
II gives a formal definition of the network models and
notations considered in the paper. Section III gives the main
results in this paper on the capacity of arbitrary networks
and random networks. In Section IV, we demonstrate
wide applications of our result by using it to analyze the
asymptotic capacity of various random networks considered
in the literature [1], [2], [4], [10], [12]–[14]. Finally Section
V concludes this paper.

II. NETWORK MODELS

We consider two classes of networks in this paper:
arbitrary networks and random networks.

A. Arbitrary networks

We use the term arbitrary network to refer to a network
with a total of n nodes arbitrarily and deterministically
(i.e. not randomly) placed in a bounded area A initially.
These nodes may be either stationary or moving following
arbitrary and fixed (i.e. not random) trajectories. A node
may choose an arbitrary and fixed number of other nodes
as its destination(s). In the case that a source node has mul-
tiple destination nodes, the source node may transmit the
same packets to its destinations, viz. multicast, or transmit
different portions of its packets to different destinations,
viz. unicast. Packets are transmitted from a source to its
destination(s) via multiple intermediate relay nodes. Each
node can be either a source, a relay, a destination or a
mixture. It is assumed that there are always packets waiting
at the source nodes to be transmitted, viz. a so-called
saturated traffic scenario is considered.

Let Vn be the node set. Let E be the set of links. The
establishment of a link between a pair of nodes may follow
either the protocol model or the physical model [1]. Our
analysis does not depend on the particular way a link is
established. When nodes are mobile, the link between a
pair of nodes may only exist temporarily and the link set
at a particular time instant t may be more appropriately
denoted by Et to emphasize its temporal dependence. In
this paper, we drop the subscript t for convenience. It is
assumed that there is a spatial and temporal path between
every source and destination pair.

Without loss of generality [1], [4], [10], [12]–[14], we
further assume that each node can transmit at a fixed and
known data rate of W bits per second over a common
wireless channel. Following the same analytical approach
as that in [1], it can be shown that it is immaterial to
our result if the channel is broken into several subchannels
of capacity W1,W2, · · · ,WM bits per second, as long as∑M

m=1 Wm = W . This assumption allows us to ignore
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some physical layer details and focus on the topological
aspects of the network that determine the capacity. Our
result however can be readily extended to incorporate the
situation that each link has a different and known capacity.
We do not consider the impact of erroneous transmissions
in our analysis. Transmission errors will cause a decrease
in the effective link capacity and its impact can be captured
in the parameter W , which is assumed to be known.

Denote the above network by G (Vn, E) and in this
paper, we study the capacity of G (Vn, E).

In the following paragraphs, we give a formal definition
of the capacity of G (Vn, E). Let vi ∈ V be a source
node and let bi,j be the jth bit transmitted from vi to
its destination. Let d (vi, j) be the destination of bi,j . For
unicast transmission, d (vi, j) represents single destination;
for multicast transmission, d (vi, j) represents the set of
all destinations of bi,j . Let Nχ

i,T be the number of bits
transmitted by vi and which reached, i.e. successfully
received by, their respective destinations during a time
interval [0, T ], with T being an arbitrarily large number.
The superscript χ ∈ Φ denotes the spatial and temporal
scheduling algorithm used in the network and Φ denotes
the set of all scheduling algorithms. If the same bit is
transmitted from a source to multiple destinations, e.g.
in the case of multicast, it is counted as one bit in the
calculation of Nχ

i,T .
It is assumed that the network is stable ∀χ ∈ Φ. A

network is called stable if and only if for any fixed n,
assuming that each node has an infinite queue, the queue
length in any intermediate relay node storing packets in
transit does not grow towards infinity as T → ∞, or
equivalently the long-term incoming traffic rate into the
network equals the long-term outgoing traffic rate. It is
further assumed that there is no traffic loss due to queue
overflow.

The transport capacity when using the spatial and tem-
poral scheduling algorithm χ, denoted by ηχ (n), is defined
as:

ηχ (n) ≜ lim
T→∞

∑n
i=1 N

χ
i,T

T
(1)

and the transport capacity of the network is defined as

η (n) ≜ max
χ∈Φ

ηχ (n) (2)

Obviously η (n) ≥ ηχ (n) , ∀χ ∈ Φ.
An important special case occurs when the scheduling

algorithm divides the transport capacity equally among all
source-destination pairs asymptotically over time. Denote
by Φf ⊆ Φ the set of fair scheduling algorithms that
divide the transport capacity equally among all m source-
destination pairs asymptotically over time. The throughput
per source-destination pair is defined as

λm ≜ max
χ∈Φf

ηχ (n)

m
(3)

The above definitions of the transport capacity and
throughput capacity are valid for both finite n and asymp-

totically infinite n.

B. Random networks

In addition to arbitrary networks, random networks have
also been extensively studied in the literature, particularly
the asymptotic properties of random networks as the num-
ber of nodes n approaches infinity [1], [2], [4], [10], [12]–
[14]. By a random network, we mean a network with a
total of n nodes and each node is i.i.d. in a bounded area
A initially following a known distribution. If these nodes
are mobile, their trajectories may also be random and i.i.d.
A link between a pair of nodes in a random network may
be established following either the protocol model or the
physical model [1]. Denote the above random network by
Gn to distinguish it from the arbitrary network considered
in the previous subsection.

Given the randomness involved in the problem statement,
the above definitions of throughput capacity for arbitrary
networks need to be modified to account for “vanishingly
small probabilities” [1]. Particularly, for asymptotic random
networks whose number of nodes n is sufficiently large,
we say that under the spatial and temporal scheduling
algorithm χ, the transport capacity of Gn is ηχ (n) if
and only if ηχ (n) is the maximum transport capacity that
can be achieved asymptotically almost surely (a.a.s.) as
n → ∞ under χ. Given the above modification on ηχ (n),
the transport capacity of an arbitrary network defined in (2)
can still be used for random networks.

The most extensively studied traffic distribution in ran-
dom networks involves each node choosing another node
independently as its destination and the transport capacity
being divided equally among all source-destination pairs.
In that case, the total number of source-destination pairs
equals n and the capacity of the network is often studied
using the metric known as the per-node throughput or the
throughput capacity. Denote by Φf ⊆ Φ the set of fair
scheduling algorithms that divide the transport capacity
equally among all n source-destination pairs asymptotically
over time. The per-node throughput (or throughput capac-
ity) is defined as

λ (n) ≜ max
χ∈Φf

ηχ (n)

n
(4)

Intuitively, a scheduling algorithm χ is fair if it divides
the transport capacity equally among all source-destination
pairs asymptotically over time and also distributes traffic
evenly across A such that there is no traffic hot spot. For
nodes uniformly and i.i.d. on A and each node choosing
another node independently as its destination, which is the
scenario studied in Sections III-B and IV, the technique
is well known to establish the (asymptotic) fairness of a
scheduling algorithm χ, or to construct a (asymptotically)
fair scheduling algorithm. It typically involves partitioning
A into a set of equal-size sub-areas, allocating transmission
opportunities equally among all sub-areas and then demon-
strating that using χ, the number of source-destination
pairs crossing each sub-area varies by at most a constant
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factor. The conclusion readily follows that the throughput
obtainable by each source-destination pair varies by at most
a constant factor and each source-destination pair has access
to throughput of the same order asymptotically, see [2], [16]
for examples. The set of scheduling algorithms analyzed in
Section IV are known to be fair in the sense that a.a.s.,
each source-destination pair can achieve a throughput of
the same order.

Note that the above definitions of transport capacity and
throughput capacity for random networks are consistent
with those in [1], [2], [4], [10], [12]–[14]. Particularly
in [1], a throughput capacity of λ (n) bits per second is
called feasible if there is a spatial and temporal scheme
for scheduling transmissions such that every node can send
λ (n) bits per second on average to its chosen destination
[1]. The throughput capacity of random networks with n
node is of order Θ(f (n)) bits per second if there are
deterministic constants c > 0 and c′ < +∞ such that

lim
n→∞

Pr (λ (n) = cf (n) is feasible) = 1

lim inf
n→∞

Pr (λ (n) = c′f (n) is feasible) < 1

III. CAPACITY OF ARBITRARY AND RANDOM
NETWORKS

In this section, we analyze the capacity of arbitrary
networks and the capacity of random networks respectively.

A. Capacity of Arbitrary Networks

The following theorem on the capacity of arbitrary
networks summarizes a major result of the paper:

Theorem 1. Consider an arbitrary network G (Vn, E).
Let χ be the spatial and temporal scheduling algorithm
used in G (Vn, E). Let kχ (n) be the average number
of transmissions required to deliver a randomly chosen
bit to its destination. Let Y χ (n) be the average number
of simultaneous transmissions in G (Vn, E), the transport
capacity ηχ (n) satisfies:

ηχ (n) =
Y χ (n)W

kχ (n)
(5)

Proof: Recall from Section II that vi ∈ Vn represents
a source node, bi,j represents the jth bit transmitted from
vi to its destination(s), d (vi, j), and Nχ

i,T is the number of
bits successfully transmitted by vi during a time interval
[0, T ].

Let hχ
i,j be the number of transmissions required to

deliver bi,j to its destination (or all destination nodes in
d (vi, j) in the case of multicast) when the spatial and
temporal scheduling algorithm χ ∈ Φ is used. Let Y χ

t (n)
be the number of simultaneous transmissions in the network
G (Vn, E) at time t. It follows from the definitions of kχ (n)
and Y χ (n) that

kχ (n) = lim
T→∞

∑n
i=1

∑Nχ
i,T

j=1 hχ
i,j∑n

i=1 N
χ
i,T

(6)

and

Y χ (n) = lim
T→∞

´ T
0
Y χ
t (n) dt

T
(7)

Let τi,j,l, 1 ≤ l ≤ hi,j be the time required to transmit
bi,j in the lth transmission and assume that the transmitting
node is active during the entire τi,j,l interval. As each node
transmits at the same data rate W , τi,j,l = 1

W .
Given the above definitions, we are now ready to prove

the theorem.
Remark 2. The technique used in the proof is based on first
considering the total transmission time, viz. the amount
of traffic transmitted, measured in bits, multiplied by the
time required to transmit each bit, in the network on the
individual node level by aggregating the transmissions at
different nodes, viz.

∑n
i=1

∑Nχ
i,T

j=1

∑hχ
i,j

l=1 τi,j,l shown in the
latter equations, and then evaluating the total transmission
time in the network on the network level by considering
the number of simultaneous transmissions in the entire
network, viz.

´ T
0
Y χ
t (n) dt shown in the latter equations.

Obviously, the two values must be equal. On the basis of
this observation, the theorem can be established.

At time T , the total transmission time during [0, T ] is
given by

n∑
i=1

Nχ
i,T∑

j=1

hχ
i,j∑

l=1

τi,j,l + qχT =
1

W

n∑
i=1

Nχ
i,T∑

j=1

hχ
i,j + qχT (8)

where
∑n

i=1

∑Nχ
i,T

j=1

∑hχ
i,j

l=1 τi,j,l accounts for the transmis-
sion time for traffic that has reached its destination and qχT
accounts for the transmission time for traffic still in transit
at time T .

Let pχmax be the maximum length, measured in the num-
ber of hops, of all routes in G (Vn, E) under χ, obviously
pχmax < n. Furthermore, since the network is stable, there
exists a positive constant C1, independent of T , such that
the total amount of traffic in transit is bounded by C1n.
Therefore

qχT ≤ pχmaxC1n

W
<

C1n
2

W
(9)

On the other hand, the total transmission time during
[0, T ] evaluated on the network level equals

´ T
0
Y χ
t (n) dt.

Obviously

n∑
i=1

Nχ
i,T∑

j=1

hχ
i,j∑

l=1

τi,j,l + qχT =

ˆ T

0

Y χ
t (n) dt

When T is sufficiently large and the network is stable,
using (9), the amount of traffic in transit is negligibly
small compared with the amount of traffic that has already
reached its destination. Therefore, the following relation-
ship can be established:

lim
T→∞

∑n
i=1

∑Nχ
i,T

j=1

∑hχ
i,j

l=1 τi,j,l´ T
0
Y χ
t (n) dt

= 1 (10)

Noting that τi,j,l = 1
W , Equation (5) follows readily by

combing (1), (6), (7) and (10).
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Remark 3. Equation (5) can also be obtained using Little’s
formula [17]. Intuitively, defining the system as consisting
of the set of all wireless channels in G (Vn, E), the long-
term average effective arrival rate into the system equals
kχ (n) ηχ (n), the long-term average amount of traffic in the
system equals Y χ (n) and the average time in the system
equals 1

W . Equation (5) then readily follows using Little’s
formula.

Equation (5) is obtained under a very generic setting and
is applicable to networks of any size. It reveals that the
network capacity can be readily determined by evaluating
the average number of simultaneous transmissions Y χ (n),
the average number of transmissions required for reaching
the destinations kχ (n) and the link capacity W . The
two parameters Y χ (n) and kχ (n) are often related. For
example, in a network where each node transmits using
a fixed transmission range r (n), reducing r (n) (while
keeping the network connected) will cause increases in
both Y χ (n) and kχ (n) and the converse. On the other
hand, Y χ (n) and kχ (n) also have their independent sig-
nificance, and can be optimized and studied independently
of each other. For example, an optimally designed routing
algorithm can distribute traffic evenly and avoid creating
bottlenecks which helps to significantly increase Y χ (n) at
the expense of slightly increased kχ (n) only, compared
with the shortest-path routing.

The following corollary is an easy consequence of The-
orem 1:

Corollary 4. Under the same setting as that in Theorem
1,

η (n) = max
χ∈Φ

Y χ (n)W

kχ (n)
≤ maxχ∈Φ Y χ (n)W

minχ∈Φ kχ (n)

Corollary 4 allows the two key parameters that deter-
mining the capacity of G (Vn, E), viz. Y χ (n) and kχ (n)
to be studied separately. Parameter maxχ∈Φ Y χ (n)W is
determined by the maximum number of transmissions that
can be accommodated in the network area. Assuming that
each node transmits using a fixed transmission range r (n),
each transmission will then “consume” a disk area of radius
at least C2r(n)

2 in the sense that two simultaneous active
transmitters must be separated by an Euclidean distance of
at least C2r (n), where C2 > 1 is a constant determined
by the interference model [1]. The problem of finding
the maximum number of simultaneous transmissions, viz.
maxχ∈Φ Y χ (n), can be converted into one that finds the
maximum number of non-overlapping equal-radius circles
that can be packed into A and then studied as a densest
circle packing problem (see [18] for an example). Parameter
Y χ (n) can also be studied as the transmission capacity of
networks [19]. For unicast transmission, kχ (n) becomes
the average number of hops between two randomly chosen
source-destination pairs and has been studied extensively
[20]. As will also be shown in Section IV, Y χ (n) and
kχ (n) can be optimized separately to maximize the net-
work capacity.

B. Capacity of Random Networks

We now consider the capacity of random networks. Note
the connection between random networks and arbitrary
networks that an instance of a random network forms an
arbitrary network. The following result on the capacity of
an arbitrary network can be obtained from Theorem 1.

Corollary 5. Consider a random network Gn. Let χ ∈ Φf

be the spatial and temporal scheduling algorithm used in
Gn. Let kχ (n) be the average number of transmissions
required to deliver a randomly chosen bit to its destination
in an instance of Gn. Let Y χ (n) be the average number
of simultaneous transmissions in an instance of Gn. Both
kχ (n) and Y χ (n) are random numbers associated with
a particular (random) instance of Gn. If there exist two
positive functions f (n) and g (n) such that

Pr

(
lim

n→∞

kχ (n)

f (n)
= 1

)
= 1

and
Pr

(
lim

n→∞

Y χ (n)

g (n)
= 1

)
= 1

the throughput capacity λχ (n) satisfies:

Pr

 lim
n→∞

λχ (n)
g(n)W
nf(n)

= 1

 = 1 (11)

Proof: Using the union bound,

1− Pr

λχ (n)
g(n)W
nf(n)

= 1


≤
(
1− Pr

(
kχ (n)

f (n)
= 1

))
+

(
1− Pr

(
Y χ (n)

g (n)
= 1

))

The result in the corollary readily follows from Theorem
1.

In reality, such two functions f (n) and g (n) required
by Corollary 5 do not necessarily exist or are very dif-
ficult to find. Therefore asymptotic capacity of random
networks is more commonly studied by investigating its
upper and lower bounds. The following two corollaries give
respectively an upper and a lower bound on the asymptotic
capacity of random networks. These two corollaries are
used in Section IV to examine the asymptotic capacity of
random networks.

Corollary 6. Consider a random network Gn. Let χ ∈ Φf

be the spatial and temporal scheduling algorithm used in
Gn. Let f (n) and g (n) be two positive functions such that

lim
n→∞

Pr

(
min
χ∈Φf

kχ (n) ≥ f (n)

)
= 1

and let g (n) be a function of n such that

lim
n→∞

Pr

(
max
χ∈Φf

Y χ (n) ≤ g (n)

)
= 1
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the throughput capacity of Gn satisfies:

lim
n→∞

Pr

(
λ (n) ≤ g (n)W

nf (n)

)
= 1 (12)

Corollary 7. Consider a random network Gn. Let χ ∈ Φf

be the spatial and temporal scheduling algorithm used in
Gn. Let f (n) and g (n) be two positive functions such that

lim
n→∞

Pr (kχ (n) ≤ f (n)) = 1

and
lim
n→∞

Pr (Y χ (n) ≥ g (n)) = 1

the throughput capacity of Gn satisfies:

lim
n→∞

Pr

(
λ (n) ≥ g (n)W

nf (n)

)
= 1, ∀χ ∈ Φf (13)

As implied in Corollaries 4 and 6, finding the throughput
capacity upper bound of Gn is achieved by analyzing the
upper bound of Y χ (n) , ∀χ ∈ Φf , viz. maxχ∈Φf Y χ (n),
and then the lower bound of kχ (n) , ∀χ ∈ Φf ,
viz. minχ∈Φf kχ (n), separately. An upper bound of
maxχ∈Φf Y χ (n) can usually be found by analyzing the
maximum number of simultaneous transmissions that can
be accommodated in A, which is in turn determined by such
parameters like SINR threshold or the transmission range,
independent of χ. A lower bound of minχ∈Φf kχ (n) can
often be found by analyzing the average number of hops be-
tween a randomly chosen source-destination pair along the
shortest path, which is mainly determined by the network
topology and node distribution, and is independent of χ.
Finding the throughput capacity lower bound of Gn often
involves using a constructive technique, i.e. constructing
a particular scheduling algorithm χ ∈ Φf and analyzing
the throughput capacity λχ (n) under χ by analyzing the
associated parameters kχ (n) and Y χ (n).

IV. APPLICATIONS OF THE RELATIONSHIP TO
DETERMINE THE CAPACITY OF RANDOM NETWORKS

In this section, to demonstrate the usage and applicability
of our results developed in Section III, we use these
results to re-derive some well-known results in the literature
obtained for different networks and through the use of some
intellectually challenging and customized techniques [1],
[2], [4], [10], [12]–[14]. Due to the large amount of existing
work in the area, it is not possible for us to include all of
them. Therefore the random networks considered [1], [2],
[4], [10], [12]–[14] are chosen as typical examples only.
We show that the use of our result often lead to simpler
analysis. Furthermore, through the intuitive understanding
revealed in our result on the interactions of these capacity-
impacting parameters, we point out limitations in some
existing results and suggest further improvement.

A. Capacity of static ad-hoc networks with uniform trans-
mission capability

In [1], Gupta and Kumar first considered a random
network with n nodes uniformly and i.i.d. on a unit square

A and each node is capable of transmitting at a fixed rate
of W bit/s using a common channel. Every node chooses
its destination randomly and independently of other nodes
and transmits using a fixed and identical transmission range
r (n). Both the protocol model and the physical model are
considered for modeling the interference. As shown in [1],
results obtained assuming the protocol model can be readily
extended to those assuming the physical model. Therefore,
in this paper, we focus on the protocol model only.

In the protocol model, a direct transmission from a
transmitter vi located at Xi to a receiver vj located at
Xj is successful if the Euclidean distance between vi and
vj is smaller than or equal to r (n) and for every other
node vk simultaneously transmitting over the same channel,
∥Xk −Xj∥ ≥ (1 +△) r (n) where the parameter △ > 0
defines a guard zone which prevents a nearby node from
transmitting on the same channel at the same time and ∥•∥
denotes the Euclidean norm.

Given the above setting, it is straightforward to show
that each transmitter defines a disk with a radius equal
to 1

2△r (n) and centered at itself such that for the set
of concurrent transmitters, their respective associated disks
do not overlap. Therefore, each transmitter located in A

“consumes” a disk of area at least 1
4π
(
1
2△r (n)

)2
=

π
16△

2r2 (n) in A (The worst case happens for a transmitter
located at the corners of A where only one quarter of the
disk falls in A.). It follows that

max
χ∈Φ

Y χ (n) ≤ 1
π
16△2r2 (n)

(14)

We now establish a lower bound of minχ∈Φf kχ (n). Let
A1 be a 1

4 × 1
4 square located at the lower left corner of

A and let A2 be a 1
4 × 1

4 square located at the upper right
corner of A. Using the property that nodes are uniformly
and i.i.d. on A, it can be shown that a.a.s. the expected
fraction of source-destination pairs with the source located
in A1 (or A2) and the destination located in A2 (or A1)
equals 2× 1

16×
1
16 = 1

128 . The minimum Euclidean distance
between these source-destination pairs is

√
2
2 and thus the

minimum number of hops between these source-destination
pairs is

√
2

2r(n) . It is then follows that

lim
n→∞

Pr

(
min
χ∈Φf

kχ (n) ≥
√
2

256
× 1

r (n)

)
= 1 (15)

Note that Φf ⊆ Φ, the following lemma can be obtained
as an easy consequence of Corollary 6, (14) and (15).

Lemma 8. In the random network considered by Gupta and
Kumar [1] and assuming the protocol model, the per-node
throughput satisfies

lim
n→∞

Pr

(
λ (n) ≤ 2048

√
2

π△2
W

1

nr (n)

)
= 1

In Lemma 8, the upper bound of λ (n) is expressed
as a function of the transmission range r (n) and an
increase in r (n) will reduce the upper bound. As the
minimum transmission range required for the network
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to be a.a.s. connected is well known to be r (n) =√
logn+f(n)

πn where f (n) = o (log n) and f (n) → ∞
as n → ∞ [21], the conclusion readily follows that
limn→∞ Pr

(
λ (n) ≤ 2048

√
2

△2 W 1√
πn logn

)
= 1.

We now proceed to obtaining a lower bound of λ (n).
The lower bound is obtained constructively. Specifically,
using the scheduling algorithm χ ∈ Φf presented in [1],
we will analyze the associated kχ (n) and Y χ (n) and then
obtain a lower bound of λχ (n). The lower bound obtained
under a particular scheduling algorithm is of course also a
lower bound of λ (n).

We first recall the scheduling algorithm used in [1]. In
[1], the network area A is partitioned into a set of Voronoi
cells such that every Voronoi cell contains a disk of radius
ρ (n) =

√
100 logn

πn and is contained in a disk of radius
2ρ (n). Packets are relayed sequentially from a node in
a Voronoi cell to another node in an adjacent Voronoi
cell along the Voronoi cells intersecting the direct line
connecting the source and the destination. Denote the above
scheduling scheme by χ.

The following result on a lower bound of Y χ (n) is
required for obtaining the lower bound of λχ (n):

Lemma 9. In the random network considered by Gupta and
Kumar [1] and assuming the protocol model, there exists
a small positive constant c1 such that the average number
of simultaneous transmissions using χ satisfies

lim
n→∞

Pr

(
Y χ (n) ≥ c1

n

log n

)
= 1

Note that each Voronoi cell has an area of at most
400 logn

n . Therefore the total number of Voronoi cells in A
is at least n

400 logn . The result in Lemma 9 follows readily
from [1, Lemma 4.4]2 which states that a.a.s. there exists
a positive constant c2 such that every (1 + c2) slots, each
cell gets at least one slot in which to transmit.

In addition to Lemma 9 , we also need the following
lemma that provides an upper bound of kχ (n).

Lemma 10. Under the same setting as that in Lemma 9,
there exists a positive constant c3 such that

lim
n→∞

Pr

(
kχ (n) ≤ c3

√
n

log n

)
= 1

Proof: In [1, Lemma 4.4], it was shown that for
every line connecting an arbitrary source-destination pair,
denoted by L, and every Voronoi cell V ∈ Γn where Γn

denotes the set of Voronoi cells, there exists a positive
constant c4 such that Pr (L intersect V ) ≤ c4

√
logn
n .

Since each Voronoi cell has an area of at least 100 logn
n ,

the maximum number of Voronoi cells is bounded by
n

100 log n . Denoting by N (L) the expected number of cells
intersected by a randomly chosen source-destination line
and using the union bound, it follows from the above

2Strictly speaking, the result in [1, Lemma 4.4] was derived for nodes
on the surface of a sphere. However the result can be readily modified
for a planar area with due consideration to the boundary effect. Thus we
ignore the difference and use the result directly.

results that N (L) ≤ c4
100

√
n

logn . This result, together
with the result in [1, Lemma 4.8], which shows that
there exists a sequence δ (n) → 0 as n → ∞ such
that Pr (Every cell V ∈ Γn contains at least one node) ≥
1− δ (n), allow us to conclude that there exists a positive
constant c3 = c4

100 such that

lim
n→∞

Pr

(
kχ (n) ≤ c3

√
n

logn

)
= 1

Combing the results in Lemmas 9 and 10, and also using
Corollary 7, the following result can be shown:

Lemma 11. In the random network considered by Gupta
and Kumar [1] and assuming the protocol model, there ex-
ists a positive constant c5 such that the per-node throughput
satisfies

lim
n→∞

Pr

(
λ (n) ≥ c5W

√
1

n log n

)
= 1

Combing Lemmas 8 and 11, conclusion readily follows
that a.a.s. λ (n) = Θ

(
W
√

1
n logn

)
.

In [1], Gupta and Kumar also investigated the capacity
of arbitrary networks and showed that by placing nodes
optimally and deterministically to maximize the capacity,
e.g. on grid points, λ (n) = Θ

(
W
√

1
n

)
. Realizing that

when nodes are optimally placed, a reduced transmission
range of r (n) = Θ

(√
1
n

)
is required for the network to be

connected. Following a similar analysis leading to Lemma
8 and using Theorem 1 and (4), result readily follows that
λ (n) ≤ 2048

√
2

π(1+△)2
W 1

nr(n) and hence λ (n) = O
(
W
√

1
n

)
.

To obtain a lower bound of λ (n), first it can be shown
that when r (n) = Θ

(√
1
n

)
, a scheduling algorithm χ

can be easily constructed such that Y χ (n) = Θ
(√

1
n

)
and kχ (n) = Θ

(√
1
n

)
(for example an algorithm that

first routes packets along a horizontal line to a node on
the same vertical height as the destination node and then
routes packets along a vertical line to the destination).
Conclusion then follows that λχ (n) = Θ

(
W
√

1
n

)
and

λ (n) = Ω
(
W
√

1
n

)
. Combing the lower and the upper

bound, results follows using Theorem 1 that for an arbitrary
network with optimally placed nodes, λ (n) = Θ

(
W
√

1
n

)
.

The above results on the throughput capacity of arbi-
trary networks and random networks unsurprisingly are
consistent with those in [1]. In addition to the above
rigorous analysis, we also offer the following intuitive
explanation on the capacity results in [1] using the rela-
tionship revealed in Section III. In the network considered
by Gupta and Kumar, each node transmits using a fixed
and identical transmission range r (n). Therefore each
transmission consumes a disk area of radius Θ(r (n)) and
Y (n) = O

(
1

r2(n)

)
. Here we dropped the superscript

χ when we discuss k (n) and Y (n) generally and the
result does not depend on a particular scheduling algo-
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rithm being used. Furthermore, a scheduling algorithm can
be readily constructed that distributes the transmissions
evenly across A such that Y (n) = Θ

(
1

r2(n)

)
. Given

that the average Euclidean distance between a randomly
chosen pair of source-destination nodes equals a constant,
independent of n [22], it can be shown that k (n) =

Θ
(

1
r(n)

)
. Thus result follows that the throughput capacity

λ (n) = Θ
(

W
nr(n)

)
, viz. a smaller transmission range will

result in a larger throughput. The minimum transmission
range required for a random network to be a.a.s. con-

nected is known to be r (n) = Θ

(√
logn
n

)
while the

minimum transmission range required for a network with
optimally and deterministically deployed nodes is known to
be r (n) = Θ

(√
1
n

)
. Accordingly, the throughput capacity

of random networks and arbitrary networks with optimally
placed nodes are Θ

(
W√

n logn

)
and Θ

(
W√
n

)
respectively.

Therefore the 1√
logn

factor is the price in reduction of
network capacity to pay for placing nodes randomly, instead
of optimally.

B. Capacity of static networks with non-uniform transmis-
sion capability

In [2], Franceschetti et al. considered a network with n
nodes uniformly and i.i.d. on a square of

√
n×

√
n. A node

vi can transmit to another node vj directly at a rate of

R (vi, vj) = log

(
1 +

Pl (Xi,Xj)

N0 +
∑

k∈Γi
Pl (Xk, Xj)

)
where Γi denotes the set of indices of nodes that
are simultaneously active as vi, l (Xi, Xj) denotes
the power attenuation function and l (Xi, Xj) =
min

{
1, e−γ∥Xi−Xj∥/ ∥Xi −Xj∥α

}
with γ > 0 or γ = 0

and α > 2, and N0 represents the background noise.
It is assumed that all nodes transmit at the same power
level P . Each node chooses its destination randomly and
independently of other nodes.

Remark 12. Strictly speaking, the results derived in Section
III can only be used when the link capacity W is fixed.
However it is straightforward to extend these results to
study the capacity of the network considered in [2] where
the link capacity depends on its SINR and is a variable.
More specifically, given the two functions g (n) and f (n)
defined in Corollary 6, if a third function h (n) can be found
such that W = O (h (n)), it can be readily shown using
Corollary 6 that λ (n) = O

(
g(n)h(n)
nf(n)

)
. Similarly, given the

two functions g (n) and f (n) defined in Corollary 7, if a
third function h (n) can be found such that W = Ω(h (n)),
then λ (n) = Ω

(
g(n)h(n)
nf(n)

)
.

We first introduce the scheduling algorithm used in
[2]. The network area is partitioned into non-overlapping
squares of size c2, called cells hereinafter. These cells
are grouped into l2 non-overlapping sets of cells where
l = 2 (d+ 1) and within each set, adjacent cells are

separated by an Euclidean distance of (l − 1) c, see Fig.
4 of [2] for an illustration. Parameter d is a positive integer
to be specified later. The time is also divided into l2 time
slots, which are equally distributed among the l2 sets of
cells. Within each time slot, at most one node in a cell
can transmit. Furthermore, nodes located in cells belonging
to the same set can transmit at the same time and nodes
located in cells of different sets should use different time
slots to transmit. The following result was established in
[2] on the transmission rate between a pair of directly
connected transmitter and receiver, which will be used in
the later analysis:

Lemma 13. Using the above scheduling algorithm, for any
integer d > 0, there exists an W (d) > 0 such that a.a.s.,
when a node is scheduled to transmit, the node can transmit
directly to any other node located within an Euclidean
distance of

√
2c (d+ 1) at rate W (d). Furthermore, as d

tends to infinity, we have

W (d) = Ω
(
d−αe−γ

√
2cd
)

Lemma 13 is essentially the same as Theorem 3 in
[2] except that in [2, Theorem 3], it was considered that
W (d) is further multiplied by the fraction of time a cell is
scheduled to be active, i.e. 1/l2, and the data rate is given
in terms of rate per cell whereas in Lemma 13, W (d)
corresponds to the link rate, i.e. W in Theorem 1 and
Corollaries 4, 5, 6 and 7.

In addition to the above result, capacity analysis in [2]
also relies on the use of the percolation theory. More
specifically, the

√
n ×

√
n square is partitioned into L =⌈ √

n

κ log(
√
n)

⌉
non-overlapping horizontal slabs where κ is

a positive constant and each slab is of size
√
n

L ×
√
n. By

symmetry, the
√
n×

√
n square can also be partitioned into

L =

⌈ √
n

κ log(
√
n)

⌉
non-overlapping vertical slabs and each

slab is of size
√
n ×

√
n

L . Using the percolation theory,
it was shown that there exists positive constants c1 and
c2 such that by directly connecting nodes separated by
an Euclidean distance of at most c1 only, a.a.s. there are
at least c2 log (

√
n) disjoint left-to-right (top-to-bottom)

crossing paths within every horizontal (vertical) slab as
n → ∞ [2, Theorem 5]. These crossing paths are termed
“highway” in [2]. Furthermore it was shown that for nodes
not part of the highway, they can access their respective
nearest highway node in single hops of length at most pro-
portional to log (

√
n), i.e. the Euclidean distance between

non-highway nodes and their respective nearest highway
nodes is O (log (

√
n)).

On the basis of the above results, the following schedul-
ing algorithm was used in [2] to deliver a packet from
its source to its destination. The algorithm uses four
separate phases, and in each phase time is divided into
l2 = 4 (d+ 1)

2 slots where the value of d varies in
each phase. The first phase is used by source nodes to
access their nearest highway nodes; in the second phase,
information is transported on the horizontal highways; in
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the third phase information is transported on vertical high-
ways to highway nodes nearest their respective destinations;
and in the fourth phase information is delivered to the
respective destinations. The first and fourth phases use
direct transmissions to deliver information from the source
nodes to the respective highway nodes within Euclidean
distance O (log (

√
n)) away; while the second and third

phases use multiple hops to deliver information hop-by-hop
along the highway and each hop is separated by a maximum
Euclidean distance of c1. Denote the above scheduling
algorithm by ξ. The following result on the throughput
capacity can be established:

Lemma 14. Using the scheduling algorithm ξ, the through-
put capacity in the random networks considered in [2]
satisfies λξ (n) = Ω

(
1√
n

)
.

Proof: Denote the per-node throughput in the four
different phases by λξ

1 (n) , λξ
2 (n), λξ

3 (n) and λξ
4 (n)

respectively. We analyze λξ
1 (n) , λξ

2 (n), λ
ξ
3 (n) and λξ

4 (n)
separately in the following paragraphs to obtain λξ (n)

where λξ (n) = min
{
λξ
1 (n) , λ

ξ
2 (n) , λ

ξ
3 (n) , λ

ξ
4 (n)

}
.

We first analyze the link capacity in phase 1. From
the earlier result that the Euclidean distance between non-
highway nodes and their respective nearest highway nodes
is O (log (

√
n)), there exists a positive constant c3 such that

a.a.s. the Euclidean distance between non-highway nodes
and their respective nearest highway nodes is smaller than
or equal to c3 log n. Choosing the value of d such that d
is the smallest integer satisfying

√
2c (d+ 1) ≥ c3 log n

and using Lemma 13, it follows that each non-highway
node can transmit to its nearest highway node at a rate of
Ω
(
d−αe−γ

√
2cd
)
= Ω

(
(log n)

−α
n−cγ

√
2

2

)
a.a.s. using ξ.

Now we analyze the number of simultaneous transmis-
sions in phase 1. Note that each highway node is separated
from its nearest highway node by at most an Euclidean
distance c1. Therefore if a node has no other node located
within an Euclidean distance of c1 from itself, that node
must be a non-highway node. Let Nh be the number of
cells where each cell has at least one non-highway node,
let No be the number of cells where each cell has exactly
one non-highway node and let Niso be the number of cells
where each cell has exactly one node and that node has no
other node located within an Euclidean distance of c1 from
itself. It follows from the above observation that

Nh ≥ No ≥ Niso (16)

Now we further analyze the asymptotic property of Niso.
Let Γ denote the set of all cells. Let Ii be an indicator
random variable such that if the ith cell, denoted by Ci,
has exactly one node and that node has no other node
located within an Euclidean distance of c1 from itself,
Ii = 1; otherwise Ii = 0. It follows from the defini-
tion of Niso that Niso =

∑
Ci∈Γ Ii. Using the property

that nodes are uniform and i.i.d., it can be shown that
limn→∞ E (Ii) = p = c2e−c2e−πc21 where c2e−c2 is the
probability that Ci has exactly one node and e−πc21 is
the probability that the node has no other node located

within an Euclidean distance of c1 from itself. Furthermore
V ar (Ii) = E

(
I2i
)
− E2 (Ii) = E (Ii) − E2 (Ii) and

limn→∞ V ar (Ii) = p − p2. Note that Ii and Ij are
asymptotically independent as n → ∞ if the associated
cells Ci and Cj are separated by an Euclidean distance
greater than or equal to 2c1. Denote by Γind a maximal
set of cells where adjacent cells are separated by an
Euclidean distance µ =

⌈
2c1
c

⌉
c. It can be readily shown

that |Γind| ≥
( √

n
µ+c

)2
, where |Γind| denotes the cardinality

of Γind. Therefore using the central limit theorem,

lim
n→∞

Pr

( ∑
Ci∈Γind

Ii ≥
n

(µ+ c)
2 − h (n)

)
= 1

where h (n) is an arbitrary positive function satisfying
h (n) = o (n) and limn→∞ h (n) = ∞. Noting that
Niso =

∑
Ci∈Γ Ii ≥

∑
Ci∈Γind

Ii and using inequality
(16) and the above equation, a.a.s. Nh = Ω(n) as n → ∞.
Using ξ, every l2 = 4 (d+ 1)

2 time slots, each cell gets one
time slot to transmit. Therefore a.a.s. the average number of
simultaneous transmissions in phase 1 equals Ω

(
n

4(d+1)2

)
.

Note that in phase 1, only direct transmission is allowed.
It then follows from Corollary 7 that in the first phase,
each node can have access a per-node throughput of λξ

1 (n)
where

λξ
1 (n) = Ω

(
n

4 (d+ 1)
2

)
×

Ω
(
(log n)

−α
n−cγ

√
2

2

)
n

or equivalently λξ
1 (n) = Ω

(
(log n)

−α−2
n−cγ

√
2

2

)
.

Using a similar analysis, it can be shown that λξ
4 (n) =

Ω
(
(log n)

−α−2
n−cγ

√
2

2

)
.

Now we analyze the throughput capacity in phases 2 and
3. We consider phase 2 first. In phase 2, d is chosen such
that d is the smallest integer satisfying

√
2c (d+ 1) ≥ c1.

It follows from Lemma 13, a.a.s. there exists a positive
constant c4 such that each highway node can transmit at a
rate of at least c4 bits per second, i.e. W > c4 in phase 2.

As introduced earlier, a.a.s. each horizontal slab of size√
n

L ×
√
n has at least c2 log (

√
n) disjoint highways where

L =

⌈ √
n

κ log(
√
n)

⌉
. Two nodes belonging to two disjoint

highways are separated by an Euclidean distance of at least
c1. Therefore the number of disjoint highways that can
cross a cell is at most

⌈
c2

1
4πc

2
1

⌉
. Each horizontal slab has

√
n

L ×
√
n

c2 cells. Thus each horizontal highway crosses at
most

√
n

L ×
√
n

c2 ×
⌈

c2
1
4πc

2
1

⌉
/ (c2 log (

√
n)) = O (

√
n) cells.

A packet moves by at least one cell in each hop. Therefore
the average number of hops traversed by a packet in phase
2 is O (

√
n).

Furthermore, a.a.s. the total number of disjoint horizontal
highways is at least c2L log (

√
n) > c2

κ

√
n and each

horizontal highway crosses at least
√
n
c cells where

√
n

is the minimum length of a left-to-right line in A. The
number of disjoint highways that can cross a cell is at
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most
⌈

c2
1
4πc

2
1

⌉
. Therefore, a.a.s. the number of cells where

each cell contains at least one high-way node is at least
c2
κ

√
n×

√
n
c /
⌈

c2
1
4πc

2
1

⌉
. Using ξ, every l2 = 4 (d+ 1)

2 time
slots, each cell gets one time slot to transmit. It follows that
a.a.s. the average number of simultaneous transmissions
in phase 2 is greater than or equal to c2

κ

√
n ×

√
n
c ×

1
l2 /
⌈

c2
1
4πc

2
1

⌉
= c5n, where c5 = c2

κ × 1
c × 1

l2 /
⌈

c2
1
4πc

2
1

⌉
is

a positive constant independent of n.
It follows from the above analysis and Corollary 7 that

λξ
2 (n) = Ω

(
1√
n

)
By symmetry, λξ

3 (n) = Ω
(

1√
n

)
. By choosing the value

of c such that cγ
√
2
2 < 1

2 , the conclusion in the lemma
readily follows.

Lemma 14 allows us to conclude that the throughput
capacity in the random network considered by Franceschetti
et al. satisfies λ (n) = Ω

(
1√
n

)
, which is consistent with

the result in [2].
In [2], essentially nodes are allowed to use two trans-

mission ranges, viz. a smaller transmission range of Θ(1)
for nodes forming the highways and a larger transmission
range of O (log (

√
n)) for non-highway nodes to access

their respective nearest highway nodes. Most transmissions
are through the highway using the smaller transmission
range while the larger transmission range is only used for
the last mile in phases 1 and 4. It can be shown that phases
1 and 4 do not become the bottleneck in determining the
throughput capacity. Therefore both Y (n) and k (n) are
dominated by the smaller transmission range and accord-
ingly Y (n) = Θ (n), k (n) = Θ (

√
n). Furthermore, as a

consequence of Lemma 13, W = Ω(1). It then readily
follows that λ (n) = Ω

(
1√
n

)
. This higher throughput

capacity, compared with that in [1], is achieved by allowing
nodes to adjust their transmission capabilities as required.

In [13], Chau, Chen and Liew showed that the higher
throughput capacity of λ (n) = Ω

(
1√
n

)
can also be

achieved in large-scale CSMA wireless networks if wireless
nodes performing CSMA operations are allowed to use two
different carrier-sensing ranges. The capacity analysis in
[13] is based on two findings: a) by adjusting the count-
down rate, a tunable parameter in CSMA protocols, of each
node, a distributed and randomized CSMA scheme can
achieve the same capacity as a centralized deterministic
scheduling scheme [23]; b) by using the highway system
defined in [2], a higher throughput capacity of λ (n) =

Ω
(

1√
n

)
can be achieved using a centralized deterministic

scheduling algorithm. Using [13, Lemma 9], which states
that in CSMA schemes, there exists a set of count-down
rates such that the throughput of each and every link is
not smaller than that can be achieved with a centralized
deterministic scheduling scheme, and a similar analysis
above for analyzing the capacity of networks in [2], the
result in [13] can also be obtained using the relationship
established in this paper. Except for some analysis on par-

ticular details of CSMA networks, i.e. hidden node problem
and distributedness of CSMA protocols, the analysis is
similar as the analysis earlier in the section and hence is
omitted in the paper.

Observing that in a large network, a much smaller
transmission range is required to connect most nodes in the
network (i.e. forming a giant component) whereas the larger

transmission range of Θ

(√
logn
n

)
is only required to

connect the few hard-to-reach nodes [24], a routing scheme
can be designed, which achieves a per-node throughput of
λ (n) = Θ

(
1√
n

)
and does not have to use the highway

system, such that a node uses the smaller transmission
ranges for most communications and only uses the larger
transmission if the next-hop node cannot be reached when
using the smaller transmission ranges.

C. Capacity of mobile ad-hoc networks

In [4], Grossglauser and Tse considered mobile ad hoc
networks consisting of n nodes uniformly and i.i.d. on a
unit square A initially. Nodes are mobile and the spatial
distribution of nodes is stationary and ergodic with station-
ary distribution uniform on A. The trajectories of nodes
are i.i.d. Each node chooses its destination randomly and
independently of other nodes. At time t, a node vi can
transmit directly to another node vj at rate W if the SINR
at vj is above a prescribed threshold β:

Pi (t) γij (t)

N0 +
1
L

∑
k∈Γi(t)

Pk (t) γkj (t)
> β

where N0 is the background noise power, L is the process-
ing gain, Γi (t) is the set of nodes, not including vi itself,
simultaneously transmitting with vi at time t and Pi (t) is
the transmitting power of vi at time t. The transmitting
power Pi (t) is determined by the scheduling algorithm
and is chosen to be a constant independent of n. For a
narrowband system L = 1. Parameter γij (t) is the channel
gain and is given by γij (t) = ∥Xi (t)−Xj (t)∥−α where
Xi (t) represents the location of vi at time t and α is a
parameter greater than 2.

A two-hop relaying strategy is adopted. In the first phase,
a source transmits a packet to a nearby node (acting as a
relay). As the source moves around, different packets are
transmitted to different relay nodes. In the second phase,
either the source or a relay transmits the packet to the
destination when it is close to the destination and is sched-
uled to transmit to the destination. Within each time slot,
the set of concurrent transmissions are scheduled randomly
and independently of transmissions in the previous time
slot. More specifically, a parameter θ ∈ (0, 0.5), called the
transmitter density, is fixed first. nS = θn number of nodes
are randomly designated as transmitters and the remaining
nodes are designated as potential receivers. Denote the set
of potential receivers by Rt. Each transmitter transmits its
packets to its nearest neighbor among all nodes in Rt.
Among all the nS sender-receiver pairs, only those whose
SINR is above β are retained. Denote the number of such
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pairs by Nt. Note that the set of transmitter-receiver pairs
is random in each time slot (thus Nt is a random integer)
and depends on the time varying locations of nodes. Denote
the above scheduling algorithm by χ.

From the above description of the scheduling algorithm
χ, obviously 1 ≤ kχ (n) ≤ 2. Furthermore, it can be shown
[4, Theorem III-4] that Y χ (n) = E (Nt) and that there
exists a positive constant c such that

lim
n→∞

Pr

(
Y χ (n)

n
≥ c

)
= 1 (17)

The following result on the asymptotical throughput capac-
ity of the random mobile ad hoc networks considered in [4]
readily follows:

Lemma 15. In the random mobile ad hoc network consid-
ered by Grossglauser and Tse [4], a.a.s. λ (n) = Θ (1).

Proof: We first consider an upper bound of λ (n). It
can be easily shown that minχ∈Φf kχ (n) = Ω (1) and
maxχ∈Φf Y χ (n) = O (n). It then follows using Corollary
6 that λ (n) = O (1).

Now we consider the lower bound. Using the two-phase
scheduling algorithm χ introduced above, 1 ≤ kχ (n) ≤ 2.
Using the above result, (17) and Corollary 7, conclusion
readily follows that limn→∞ Pr

(
λ (n) ≥ c

2W
)
= 1 where

W is a constant independent of n.
The capacity result in [4] and the use of the two hop

relaying strategy can be intuitively explained as follows.
Obviously the two-hop relaying strategy helps to cap kχ (n)
at 2. Compared with a one-hop strategy where a source is
only allowed to transmit when it is close to its destination,
the two-hop relaying strategy also helps to spread the
traffic stream between a source-destination pair to a large
number of intermediate relay nodes such that in steady
state, the packets of every source node will be distributed
across all the nodes in the network. This arrangement
ensures that every node in the network will have packets
buffered for every other node. Therefore a node always
has a packet to send when a transmission opportunity is
available. Thus the role of the two-hop relaying strategy,
compared with a one-hop strategy is to maximize Y χ (n)
such that Y χ (n) = Θ (n) [4] at the expense of a slightly
increased kχ (n). A lower bound on λ (n) readily results
using Y χ (n) = Θ (n), kχ (n) ≤ 2 and Corollary 7.
An upper bound on λ (n) can be easily obtained using
Corollary 6. Therefore conclusions readily follows for
λ (n). Capacity of mobile ad-hoc networks assuming other
mobility models and routing strategies [10] can also be
obtained analogously.

Given the insight revealed in Theorem 1 and Corollaries
4, 5, 6 and 7, it can be readily shown that in a network with
a different traffic model than that in [4], e.g. each node has
an infinite stream of packets for every other node in the
network, a one-hop strategy can also achieve a transport
capacity of η (n) = Θ (n). Therefore the insight revealed in
Theorem 1 and Corollaries 4, 5, 6 and 7 helps to design the
optimum routing strategy for different scenarios of mobile
ad-hoc networks.

D. Multicast capacity

In the previous three subsections, we have used Theorem
1 and Corollaries 4, 5, 6 and 7 established in Section III
to analyze the capacity of the random static and mobile
networks considered in [1], [2], [4]. An upper bound on
the throughput capacity can often be readily obtained using
Corollary 6. For the lower bound, the procedure generally
involves using existing results and scheduling algorithms
already established in [1], [2], [4] to obtain kχ (n) and
Y χ (n), and then using Corollary 7 to obtain the through-
put capacity lower bound. The use of Theorem 1 and
Corollaries 4, 5, 6 and 7 often results in simpler analysis.
Similar methods can also be used to obtain the multicast
capacity and capacity of hybrid networks considered in this
subsection and the next subsection. To avoid repetition and
to focus on the main ideas, in this subsection and the next
subsection, we choose to give an intuitive explanation of
the results on the multicast capacity and capacity of hybrid
networks only using Theorem 1 and Corollaries 4, 5, 6 and
7.

In [14], Li considered the multicast capacity of a network
with n nodes uniformly and i.i.d. on a a × a square,
denoted by A. It is assumed that all nodes have the same

transmission range r (n) = Θ

(√
logn
n

)
and are capable

of transmitting at W bits per second over a common
channel. Furthermore, a protocol interference model is
assumed and two concurrent transmitters must be separated
by an Euclidean distance of at least (1 +△) r (n). A subset
S ⊆ Vn of ns = |S| nodes are randomly chosen to serve
as the source nodes of ns multicast sessions where ns is
assumed to be sufficiently large. Each node vi ∈ S chooses
a set of l − 1 points randomly and independently from A
and multicast its data to the nearest node of each point.
Denote by Φf the set of scheduling algorithm that allocate
the transport capacity equally among all multicast sessions.
Denote by ηχ (n) the maximum transport capacity that can
be achieved a.a.s. using χ. The multicast capacity η (n)
is the maximum transport capacity that can be achieved
a.a.s. for all χ ∈ Φf : η (n) = maxχ∈Φf ηχ (n). Note that
a bit multicast to l − 1 destinations is counted as a single
bit in the calculation of the multicast transport capacity.
Therefore our definition of transport capacity in Section II
is consistent with the definition of the multicast transport
capacity in [14] and the results established in Section III
can be used directly here.

We first consider the situation that l = O
(

n
logn

)
. We

will obtain an upper bound on the multicast transport
capacity. It can be readily shown that maxχ∈Φf Y χ (n) =

O
(

1
r2(n)

)
. Furthermore, it can be shown that a.a.s. any

multicast tree spanning l nodes that are randomly placed
in A has a total edge length of at least ca

√
l [14,

Lemma 9] where c is a positive constant. It follows that
minχ∈Φf kχ (n) = Ω

(
ca

√
l

r(n) W
)

. Therefore, as an easy

consequence of Corollary 6, η (n) = O
(

1
r(n)

√
l
W
)

=

O
(

W√
l

√
n

logn

)
.
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To obtain a lower bound on the multicast transport
capacity, a scheduling algorithm χ is constructed (see [14]
for a detailed description of the scheduling algorithm χ).
More specifically, A is partitioned into non-overlapping
squares and each square is of size r(n)√

5
× r(n)√

5
. Calling

these squares cells, the total number of cells equals 5a2

r2(n) .
Furthermore, nodes located in adjacent cells are directly
connected, where two cells are adjacent if they have at
least one point in common. Using the property that nodes
are uniformly and i.i.d., a.a.s. every cell has at least one
node [14, Lemma 18]. Dividing time into time slots of equal
length, it can be shown that there exists a positive integer
c1, independent of n, such that every 1

c1
time slots, every

cell gets at least one time slot to transit. Using the above
results, a.a.s. Y χ (n) ≥ 5a2

c1r2(n)
.

Choosing one node from each cell, it can be shown that
these nodes form a connected component, termed connected
dominating set. All other nodes are directly connected to at
least one node in the connected dominating set. Multicast
traffic is routed using the connected dominating set. Using
the result that for an arbitrary cell, a.a.s., the probability
that a randomly chosen multicast flow is routed via the
cell is at most c2

√
lr (n) /a [14, Lemma 20], a.a.s. the

number of cells crossed by a randomly chosen multicast
flow is at most c2

√
lr(n)
a × 5a2

r2(n) = 5c2a
√
l

r(n) . Therefore

a.a.s. kχ (n) = O
( √

l
r(n)

)
and ηχ (n) = Ω

(
1

r(n)
√
l
W
)
=

Ω
(

W√
l

√
n

logn

)
.

Combing the upper and lower bounds on the transport ca-
pacity, conclusion can be obtained that when l = O

(
n

logn

)
,

a.a.s. η (n) = Θ
(

W√
l

√
n

logn

)
.

When l = Ω
(

n
logn

)
, the situation becomes slightly

different. More specifically, the density of the multicast
destination nodes becomes high enough such that the prob-
ability that a single transmission will deliver the packet to
more than one multicast destination nodes becomes high.
In fact, using the above connected dominating set, it can
be shown that a.a.s. the number of transmissions required
to deliver a packet to all nodes (hence the l − 1 multicast
destination nodes) is at most 5a2

r2(n) , which is independent

of l. Consequently k (n) = Θ
(

1
r2(n)

)
. Conclusion then

readily follows that when l = Ω
(

n
logn

)
, η (n) = Θ (W ).

E. Capacity of hybrid networks

Now we consider the impact of infrastructure nodes on
network capacity. In addition to n ordinary nodes uniformly
and i.i.d. on a unit square A, a set of M infrastructure
nodes are regularly or randomly placed in the same area
A where M ≤ n. These infrastructure nodes act as
relay nodes only and do not generate their own traffic.
Following the same setting as that in [12], it is assumed
that the infrastructure nodes have the same transmission
range r (n) = Θ

(√
logn
n

)
and link capacity W when they

communicate with the ordinary nodes and these infrastruc-
ture nodes are inter-connected via a backbone network with
much higher capacity. Furthermore a protocol interference
model is adopted.

The routing algorithm used in the above network [12]
has been optimized such that these infrastructure nodes do
not become the bottleneck, which may be possibly caused
by a poorly designed routing algorithm diverting excessive
amount of traffic to the infrastructure nodes.

First consider the case when M = o
(

1
r2(n)

)
=

o
(

n
logn

)
. In this situation, the number of transmissions

involving an infrastructure node as a transmitter or receiver
is small and has little impact on Y (n), which has been
shown in previous subsections to be Θ

(
1

r2(n)

)
. Further-

more, it can be shown that the average Euclidean distance
between a randomly chosen pair of infrastructure nodes
is Θ(1) [22]. That is, a packet transmitted between two
infrastructure nodes moves by an Euclidean distance of
Θ(1) whereas a packet transmitted by a pair of directly
connected ordinary nodes moves by an Euclidean distance
of Θ(r (n)). Therefore a transmission between two in-
frastructure nodes is equivalent to Θ

(
1

r(n)

)
transmissions

between ordinary nodes and the equivalent average num-
ber of simultaneous ordinary node transmissions equals
Θ
((

1
r2(n) −M

)
+ M

r(n)

)
= Θ

(
1

r2(n) +
M
r(n)

)
. It follows

using a similar procedure outlined in Section IV-A that

η (n) = Θ


(

1
r2(n) +

M
r(n)

)
W

1
r(n)

 = Θ

((√
n

log n
+M

)
W

)

Therefore when M = o
(√

n
logn

)
, the infrastructure nodes

have little impact on the order of η (n); when M =

Ω
(√

n
logn

)
(and M = o

(
n

logn

)
), the infrastructure nodes

start to have dominant impact on the network capacity
and the above equation on the transport capacity reduces
to η (n) = Θ (MW ). Noting that the fundamental reason
why infrastructure nodes improve capacity is that they help
a pair of ordinary nodes separated by a large Euclidean
distance to leapfrog some very long hops, thereby reducing
k (n). Therefore the same result in the above equation
can also be obtained by analyzing the reduction in k (n)
directly. The analysis is albeit more complicated.

When M = Ω
(

n
logn

)
, assuming that the transmission

range stays the same as when M = o
(

n
logn

)
at r (n) =

Θ

(√
logn
n

)
, the number of simultaneous active infrastruc-

ture nodes becomes limited by the transmission range. More
specifically, only Θ

(
1

r2(n)

)
= Θ

(
n

logn

)
infrastructure

nodes can be active simultaneously. Furthermore, a.a.s.
each ordinary node can access its nearest infrastructure
node in Θ(1) hops. Following a similar analysis as that in
the last paragraph, it can be shown that η (n) = Θ

(
nW
logn

)
when M = Ω

(
n

logn

)
.

The above results are consistent with the results in [12].
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However we further note that when M = Ω
(

n
logn

)
,

a smaller transmission range of r (n) = Θ
(

1√
M

)
is

sufficient for an ordinary node to reach its nearest in-
frastructure node and hence achieving connectivity. A
smaller transmission range helps to increase Y (n) and
it has been shown previously that Y (n) = Θ

(
1

r2(n)

)
,

while k (n) = Θ (1). Therefore the achievable transport
capacity using the smaller transmission range is η (n) =

Θ (MW ) = Ω
(

nW
logn

)
, which is better than the result

η (n) = Θ
(

nW
logn

)
in [12]. Moreover, different from the

conclusion in [12] suggesting that when M = Ω
(

n
logn

)
,

further investment in infrastructure nodes will not lead
to improvement in capacity, our result suggests that even
when M = Ω

(
n

logn

)
, capacity still keeps increasing

linearly with M . This capacity improvement is achieved
by reducing the transmission range with the increase in M .

V. CONCLUSION AND FURTHER WORK

In this paper, we show that the network capacity can
be determined by estimating the three parameters, viz. the
average number of simultaneous transmissions, the link
capacity and the average number of transmissions required
to deliver a packet to its destination. Our result is valid for
both finite networks and asymptotically infinite networks.
We have demonstrated the usage and the applicability of
our result by using the result to analyze the capacity of a
number of different networks studied in the literature. The
use of our result often simplifies analysis. More importantly,
we showed that the same methodology can be used to
analyze the capacity of networks under different conditions.
Therefore our work makes important contributions towards
developing a generic methodology for network capacity
analysis that is applicable to a variety of different scenarios.
Furthermore, as illustrated in Section IV-E, the simple
capacity-determing relationship revealed in the paper can
be used as a powerful and convenient tool to quickly
estimate the capacity of networks based on an intuitive
understanding of the networks. However we readily ac-
knowledge that the analysis of the three parameters: the
average number of simultaneous transmissions, the link
capacity and the average number of transmissions required
to deliver a packet to its destination, may still need some
customized analysis that takes into account details of a
network different from other networks.

For asymptotically infinite random networks, the use of
our result to estimate the capacity often involves estimating
the capacity upper bound and the capacity lower bound sep-
arately. The capacity upper bound can be readily obtained
by estimating the maximum number of simultaneously
active transmissions satisfying the interference constraints
that can be accommodated in the network area and the
minimum number of transmissions required to deliver a
packet. The capacity lower bound is more difficult to
find. It usually involves constructing a spatial and tem-
poral scheduling algorithm for the particular network and

demonstrating that the network capacity is achievable using
that algorithm. It remains to be investigated on whether
a generic technique can be found such that the capacity
lower bound can be obtained without resorting to designing
customized algorithm for a particular network.

In this paper, we have ignored physical layer details
by assuming that each node is capable of transmitting at
a fixed and identical data rate. This assumption allows
us to focus on the topological aspects of networks that
determine capacity. It remains to be investigated on how to
develop a generic methodology to incorporate the impact
of physical layer techniques, e.g. coding and MIMO, on
capacity. We refer readers to recent work by Jiang et al.
[25], which suggests a possible direction to extend our
result to incorporate physical layer details.
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