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Abstract:
led to the improved productivity of mining activity in open pit mines, the capacity of the mine

While the increased automation levels of production and operation equipment have

transport system has become a bottleneck. The optimisation of the mine transport system is of great
practical significance to reduce the production and operation cost and improve the production and
organizational efficiency of mines. In this paper, we first formulate a multiobjective optimisation
problem for mine railway scheduling by introducing a set of mathematical constraints. As the
problem is NP-hard, we then devise a mixed integer programming-based solution to solve this
problem and develop an online framework accordingly. We finally conduct test cases to evaluate the
performance of the proposed solution. Experimental results demonstrate that the proposed solution
is efficient and able to generate a train schedule in a real-time manner.

Keywords: mine railway; train scheduling; mixed integer programming; intelligent transportation
system

1. Introduction

Open pit mines have a large, complex system, and the optimisation of their railroad
transportation system is an important part of it. The optimisation of the railroad trans-
portation system can play a crucial role in reducing production and operation costs, as
well as in improving the production and organisational efficiency of mines. In recent
years, the mining industry has been continuously improving its production and operation
equipment, leading to increased automation levels and improved productivity. However,
despite these advancements, the bottleneck problems of the mine transport system have
started to emerge, particularly with regard to the traditional routing optimisation planning
models and algorithms that rely on a static road network analysis method.

Much research work, including mixed integer programming and dynamic program-
ming, has been conducted to solve urban railroad transportation optimisation problems
in the literature [1-6]. Compared with urban railway networks, mine railway networks
have a limited amount of tracks, most of which are bidirectional single tracks. This leads to
some particular problems, as follows.

®  Track allocation: Given most tracks are bidirectional single tracks, the transportation
capacity is limited by the number of receiving and departure tracks, the number of
siding/meetpoints, and the length of single tracks. Moreover, the capacity is also
restricted by track maintenance.

¢  Train conflict: For a bidirectional single-track, there are mainly two conflicts between
trains. First, a predefined time difference is necessary to ensure safe operation when
trains running in the same direction. Secondly, trains in opposite directions cannot be
in the same segment at any time.

Given the problems stated above, the mine railroad scheduling problem is a complex
optimisation problem, and the results under different decisions are far from each other.
With the purpose of the less running time for all trains and maximizing the total amount of
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rolling stock, this paper proposes an integrated model by which to optimize train timetable
and track allocation. The main contributions of this paper are listed as follows.

¢ We first formulate a multiobjective optimisation problem for mine railway scheduling
by introducing a set of mathematical constraints.

*  Asthe problem is NP-hard, we then devise a MIP-based solution to solve this problem
in a real-time manner.

*  We finally conduct test cases to demonstrate the validity and effectiveness of the solution.

In the following sections, Section 2 presents a review on the railway scheduling and
train timetabling problems. Section 3 introduces the system model and describes the mining
railroad optimisation problem. Section 4 provides the mathematical formulation for the
objective and the set of constraints. Section 5 presents a description of all the modules that
constitute the developed solution, in order for all the readers to get an understanding of
the entire process. Section 6 presents a summary of the result for the tests carried out to
evaluate the proposed solution. Section 7 is dedicated to the conclusions.

2. Related Works

An enormous number of studies have been conducted on railway scheduling and train
timetabling problems [7-12]. The research work can be classified into three main categories:
the train scheduling and rescheduling problem, the periodic and nonperiodic timetabling
problem, and the passenger train and freight train timetabling problem [13].

Train scheduling is an offline problem that determines the arrival and departure
times for trains at each station before the schedule is executed, e.g., [14-18]. With a
planned schedule, rescheduling is a real-time problem that aims to determine detailed
train movements and timetables to minimize train deviations, e.g., [19-22]. Sanat et al. [17]
studied a train scheduling problem in a large national railway network, and presented two
flexible heuristics based on a mixed integer program formulation for local optimisation
to improve infrastructure utilization. Wang et al. [18] studied the integration of train
scheduling and rolling stock circulation planning under time-varying passenger demand for
an urban rail transit line and proposed three approaches to solve the resulting multiobjective
mixed-integer nonlinear programming problem to deliver both an irregular train schedule
(i.e., departure and arrival times of all train services) and a rolling stock circulation plan
(including entering/exiting depot operations of rolling stocks and connections between
train services) simultaneously. Bersani et al. [14] formalized demand-oriented scheduling
and rescheduling models in order to propose a dynamic timetable, and proposed a min—
max method with which to address operational constraints related to train capacity, train
speed limits, train transfers, possible conflict in the track section use, with the main objective
to minimize the travel time. Wang et al. [20] proposed a train rescheduling optimisation
model in the case of the vehicle breakdown on a metro line. Efficient rescheduling strategies
including flexible short-turning and adding backup trains in particular are formulated
into the model. Zhu and Goverde [22] proposed a timetable rescheduling model to handle
unexpected disruptions, where flexible stopping (i.e. skipping stops and adding stops) and
flexible short-turning (i.e. full choice of short-turn stations) are innovatively integrated
with three other dispatching measures: retiming, reordering, and cancelling.

Periodic timetabling requires that most or all train paths repeat in time with a certain
period (e.g., 12 h), e.g., [23-27]. However, as it becomes difficult to obtain effective periodic
schedules when dealing with interruptions or conflicts (e.g., track maintenance), a nonperi-
odic timetable becomes more appropriate, e.g., [28,29]. Huang et al. [23] integrated stop
planning, service planning, and scheduling in a periodic timetabling problem and mod-
elled it as a mixed integer linear programming formulation to minimize the average travel
delay of passengers. They then developed a genetic algorithm supported by a schedul-
ing heuristic to solve the problem for better scalability and efficiency. Polinder et al. [24]
considered a robust periodic timetabling problem—the problem of designing a periodic
timetable that can easily be adjusted in case of small periodic disturbances—and developed
a solution method for a parameterised class of uncertainty regions. Sparing et al. [25]
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used the minimum cycle time of the periodic timetable as an indicator for stability, and
defined an optimization problem with this minimum cycle time as the objective function
to be minimized. They then proposed an optimization method to find a feasible periodic
timetable that also ensures maximum stability for heterogeneous railway networks, which
is capable of handling flexible train orders, running and dwell times, and overtaking loca-
tions. Schiewe et al. [26] studied a periodic timetabling problem in public transportation
planning, and developed an exact preprocessing method for reducing the problem size and
a heuristic reduction approach in which only a subset of the passengers is considered. It
provides upper and lower bounds on the objective value, such that it can be adjusted with
respect to quality and computation time.

Because railways provide both passenger and freight services, there are naturally
passenger train and freight train timetabling problems, e.g., [30-36]. Mu and Dessouky [33]
introduced two mathematical formulations to cope with the rapidly increasing freight
demand for railway transportation, and presented several heuristics that can significantly
reduce the solution time of the exact method carried out by CPLEX, yet produce a sat-
isfactory solution quality. BeSinovi¢ et al. [31] introduced the integrated passenger and
freight train timetable adjustment problem which handles both passenger as well as freight
trains and developed a mixed integer linear programming model to simultaneously retime,
reroute, and cancel trains in the network. Sato et al. [35] studied freight train locomotive
rescheduling when dealing with a disrupted situation in the daily operations in Japan,
and solved the problem by changing the assignment of the locomotives to all the trains
and considering their periodic inspections. Ozturk et al. [34] considered a new concept
for freight transport within the borders of a city with an urban rail transit system, and
presented a decision support framework for the problem of urban freight movement by
rail together with mathematical methods for the optimal distribution of goods. Given a
transportation network with fixed routes for passenger trains and a set of freight trains
(requests), Borndorfer et al. [30] addressed a freight train routing problem, and calculated
a feasible route for each freight train, such that the sum of all expected delays and all
running times is minimal. Ursavas and Zhu [36] studied decision-making problems that
railway infrastructure managers face in a rail network with dedicated tracks and shared-use
corridors, and analyzed the consolidation strategy for shared-use corridors, where the track
serves passenger and freight.

These research lines are viewed from different perspectives but are not truly inde-
pendent of each other. For example, passenger train scheduling is usually a periodic
timetabling problem. Li et al. [13] studied a nonperiodic freight train scheduling problem,
in which a schedule is planned for freight trains and can be different during different
periods of the day. The proposed method considers car flow transfer between consecutive
trains and the shipment delivery time requirements. A tabu search algorithm is developed
that extends the applicability of the proposed optimisation method for large-scale problems.
Experiments on real-world instances of the Menghua railway indicate the effectiveness of
the proposed algorithm.

3. Problem Description

Figure 1 shows a sample layout of mining railway network, where trains start from
station A, travel via the tracks, load mine from load-out G, and return back to station A.

The mining railroad optimisation problem is to determine the best feasible timetable
for a set of trains in order to load as many mines as possible. The related constraints
are to satisfy restrictive operational constraints (e.g., track capacity, travel speed, safe
distance, etc.) and to avoid possible conflicts when using each single track.
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Figure 1. Railway network sample.

3.1. System Model

We define a physical network G* = (S, W) with a set of nodes S and a set of links
W. The set S consists of switch stations (S, C S), and load-outs (S; C S) in the physical
network. W = {(i,j)} is the set of links in physical network, where (i, j) stands for link
connecting node i € S to node j € S. The set W consists of mainline tracks (W, C W),
siding tracks (W, C W) and crossovers (W, C W) in the physical network. For each link
(i,7), let
*  d;jbe the capacity of (i, j) where capacity is the maximum number of trains that can
stand on the link (7, j) at any point of time;
*  f(i,j) be the travel time from i to j, where f is the speed profile-based function; and
*  f(j,i) be the travel time from j to i, where f is the speed profile-based function.

In order to model the business operation of mine loading, for each load-outi € Sj, let
P; be the average loading time for a train.

Let Q ={0,1,---,|Q| — 1} be the set of time instants, where time is discretized into
discrete time instants of length g minutes. For instance, if we take g = 5 then a period of 1 h
would be represented by discrete set Q = {0,1,2,---,12} in our model.

3.2. Train Model

Let M = {1,2,--- ,m} be the set of real trains travelling in the physical network G*.
For each train m € M, we will get the following set of inputs.

* loSeq™: Sequence of scheduled load-outs to visit;
*  depTime™: Scheduled departure time; and
* depLoc™: Scheduled departure location.

As we have a cyclical network and the train changes direction (turns back) after going
to a load-out, in order to model this behaviour we will break down the train journey
into different parts. Each part will be represented by a different model train. Thus, if a
train m goes to n load-outs, its whole journey will be represented by a set of 7 + 1 model
trains, called T;,;, where each model train represents a specific segment of train m’s journey.
Accordingly, one business rule will be added so that any model train can depart only after
its predecessor has finished its journey.

For example, considering the case of a train m starting from station A and going to
two load-outs G1 and G2, its journey will be modelled as follows in Table 1.

Table 1. Model train example.

Model Train Departure Node Destination Node Predecessor Train
) A Gl null
tmo Gl G2 Em1
tm3 G2 A tm2

From now on, we will use the term “train” to refer to model train only, unless specified
otherwise. Thus, for each train ¢ € T, we will have the following set of information.
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depQy: Scheduled departure time;

dep;: Scheduled departure location node;

dest;: Final destination node of the train, after which it will disappear from the
network; and

tpre: Predecessor train of train ¢.

3.3. Time—Space Network

We here consider a time-space network G = (N, A), where N denotes the node set

and A denotes the arc set. For each node i € N, let Outb; C A be the set of all the outbound
arcs of node 7, and Inb; C A be the set of all the inbound arcs of node i.

Given a physical network G*, we then can construct the time-space network G

as follows:

For each load-out in s € S;, we replace it with two separate node s;;, (entry node) and
Sout (exit node), and add a load-out link (s;;;, Sout) into W. Let W; C W be the set of
load-out links. By splitting the entry and exit point nodes for each load-out, we ensure
that trains are staying at load-out for the required loading time. At the same time, we
replace the related inbound links (i,s) € W to (i, s;;) and the related outbound links
(s,j) € W to (Sout, j)- Accordingly, we have f(i,s;,) = f(i,s), f(j, Sout) = f(j,s), and
f(Sin, Sout) = Ps, where P; indicates the required loading time.

For each link (7, j) € W with capacity d;; > 1, we break down the link into smaller links
by adding [d;; — 1| dummy nodes into S and replacing the link (7,j) with |d;; — 1]

dummy links (with proportional travel time) as well. Note that after this operation,
the capacity of each arc is 1. This operation guarantees that on every arc at any point
of time only one train travels on that arc, which will in turn guarantee that trains
maintain a safe headway separation while travelling in the same direction.

For each siding track (i, j) € Wy, we add a siding node i’ to S and replace the siding
track (i, j) with two separate arcs (i,i') and (7', j). Let Si, C S be the set of siding nodes.
Accordingly, we have f(i,i') = f(i,j) = f(i,j)/2 and f(j,i") = f(,i) = f(j,i)/2.
For each link (7,j) € W, let Iden(i, j) be the set of identical arcs in A.

For each node s € S, we add |Q| corresponding nodes {s’,...,s/2/=1} in N. For
each train t € T, we add corresponding virtual source node s(t) in Ny € N, where sf)
represents the source node where train ¢ departs. We also add one sink s; into N,
where s1 represents the sink node where every train terminates its journey.

For each link (7,j) € W, we add following transit arcs into Iden(i,j) C A:

(%, FH DY, forallk =0,...,|Q| —Land k+ f(i,j) < |Q| —1

and

(j*, &Gy, forallk =0,...,|Q| — Land k+ f(j,i) < |Q| — 1.
For each link (i, i/) € Wy, we then update Iden(i, i/) as follows:
Iden(i,i ) = Iden(i,j) = Iden(i,i ) U Iden(i , j).

For each siding node i € N, we add the following waiting arcs into A;, C A. In this
way, we allow trains to wait/dwell on sidings:

(i*,i**1), forallk=0,...,|Q| —2.

For any load-out s € S; with loop capacity caps, we add (caps — 1) waiting arcs
between (si-‘n, s’gut), forallk =0,...,|Q — 2|. In this way, we allow trains to wait/dwell
in the loops.
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. For each station node i € S;;, we add an arc from that node to the sink, signifying that
this allows train cancellation in case of deadlock (i.e., we can cancel a train with a very
high penalty). Thus, we add these train disappearing arcs into A; C A:

(i%,s1), forallk=0,...,|Q| — 1.

e  For each train t € T, we add an arc from the source to the scheduled starting node of
that train, and we add these starting arcs into A; C A:

(sh, /%), forall k > depQy, and j is the scheduled starting node(i.e., j = depy).

e Inall the above cases, whenever an arc (i,j) € A is added to the time-space network,
we also add this arc to the outbound arc set of node i(i.e., Outb;) and to the inbound
arc set of node j(i.e., Inb;).

4. Mathematical Model

According to the definitions made in the previous section, the objective and the set of
constraints are now presented in a formal manner.

4.1. Attributes

For each (i¥,j') € A and a given train t € T, there exists a cost attribute cfk]., as follows:

x(1—k), vt e TV, ) € A— Aw — Ay — As
ax (|Q| - |k/(60/8)]),Vt € T, V(i 1) € A,
g= P timeyp, if desty =iork=Q,Vte€ T,V(i*,51) € Ay
M, if dest; #i,¥t € T,¥(i,s1) € Ay
B (I —depQy),Vt € T,V(sh, ) € As,

t
Cik

where (i, j') denotes an arc in the time-space network representing possible movement
(of a train) starting from node i at time k and terminating at node j at time /. The cost
ax* (|Q| — [k/(60/g)]) implies that we give weighted penalties for waiting/dwelling,
where « is the constant parameter. The cost § * (I — depQ;) implies the penalty for late
departure, where § is a constant parameter. The cost p * timey,s; implies that we try to route
trains close to the destination. The cost 7 * (I — k) implies that we try to route trains along
the shortest-time path.

4.2. Variables
For each (i¥,j') € Aandagiven train t € T, define the following binary decision variable:

t {1, if train t will travel on arc(i*, j*) during k to 1

x, = .
ikjt 0, otherwise.

4.3. Objective

We here adopt the weighted-sum method to optimize multiple objectives simultane-
ously, where each objective is assigned a weight that represents its relative importance.
The weighted-sum method then finds a single solution that is optimal with respect to the
weighted sum of the objectives. Given the above cost attributes and variables, we then
define the objective as follows:

Min Z Z cfkj, * xfkj,.

teT (ik jHeA

4.4. Constraints

In particular, we formulate the related constraints as follows.
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¢  Flow conservation constraint: These constraints algebraically state that the sum of the
flow through arcs directed toward a node plus that node’s supply, if any, equals the
sum of the flow through arcs directed away from that node plus that node’s demand,
if any. We have
Y oy =LWteT
(sé,j)eOutbsé

Y, x, =1vteT
(i,sl)elnbs1

Y oxi— ¥ ahi=0VieN-N—{s},VteT.
(i,j)€O0utb; (j,i)elnb;

*  Node capacity constraint: This constraint ensures that for each node excluding s;,
trains can be held safely without any collision or deadlock at any time point. We have

Y, ) xi<LVieN-—{s}.

teT (j,i)elnb;

*  Arc capacity constraint: This constraint implies that for any track, load-out in the
network, at any time instant g € Q, there can only be, at maximum, one train traveling
or staying. We have

Y y X < 1,Y9 € QV(i,f) € W.
LT (%' elden(i,j)&{k<q—1,1>¢}

¢  Train departure constraint: This constraint implies that any train ¢ with predecessor
not null, which represents the return trip of a real train, has to depart at the time when
its predecessor train completes its journey. We have

t X = 0,Vq € [depQy, Q], Vt € Tt pre # null.

x p—
shdep] dest]s;

5. Solution

The traditional approach to solve the above MIP problem is to use an offline scenario,
which optimises the train schedule for a predefined time window. However, this approach
is not suitable for the online scenario, where real-time updates are needed to keep up
with the dynamic nature of the entire system. In the online scenario, the solving time
often turns out to be unacceptable. For example, it may take several days to generate a
train schedule for the next 24 h. It is not feasible to wait several days to generate a train
schedule. Therefore, a more efficient solution framework is needed to handle the real-time
requirements of the online scenario. We here propose a solution framework for the online
scenario, which aims to address the limitations of the traditional approach by finding a
balance between computational efficiency and optimisation accuracy.

In particular, we adopt the rolling-window approach. In this approach, a “rolling
window” of time is defined, and the train scheduling problem is modeled as a MIP over
this time horizon. The window is then moved forward in time, and the MIP is solved
again for the new time period, taking into account the updated information. This solution
framework can continuously monitor the train system, incorporate new information, and
generate updated schedules in real time. This helps ensure that the trains are operating
optimally, even in the face of unexpected events or changes.

As shown in Figure 2, it runs iteratively. The cycle length is predefined (e.g., every
5 min), which is decided as per the business requirements (e.g., problem size, algorithm
running time, etc.). For each cycle, it contains 4 steps as follows.
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Figure 2. Solution framework.

5.1. Preprocessing

In the preprocessing step, we use the current status as input and formulate the above
MIP problem, in which complexity changes exponentially when variable size varies. To
further reduce the running time, we adopt the following approaches to reduce the variables.

e Initializing variables only for arcs on which train will travel: for each train, we only
consider the reasonable arcs according to its destination. For example, in Figure 3
the train ¢ is heading for load-out A. We then can set all the unreasonable variables
(i.e., those variables associated to the arcs heading for load-out C) to 0.

*  Removing variables corresponding to unrealistic movements: consider the train ¢ in
Figure 4 going towards load-out, which is not allowed to move on track F. We then fix
variables corresponding to such invalid movements to 0.

TN
@ ] @ @ [ @ ] { ®
\ ) //Load-out A
® @ @ @ @ {
\ ~_/Load-out C
« Setting all the related variable to 0 >
Figure 3. Preprocessing sample 1.
@ @ ®
Crossover F .~ lLoad-outD

Figure 4. Preprocessing sample 2.

5.2. Solving MIP

In this step, we solve the formulated MIP problem for the coming scheduling window
via mathematical optimisation solver (e.g., Gurobi, Xpress, Cplex, etc.). The choice of a
proper scheduling window size depends on the specific requirements and constraints of
the problem, as well as the available computational resources. To better utilize the solver,
we also integrate more strategies as follows.
¢ Warm start: supply hints to help the solver find an initial solution, which consists of
pairs of variables and values, known as a warm start. The hints may come from soft
business rules or human experience.
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*  Solver tuning: use offline data to tune the solver, and adopt the solver setting for
the online running. As shown in Table 2 , we tuned parameters for both Gurobi
and Xpress.

Table 2. Solver tuning.

Solver Parameters Tuned

Gurobi Cuts, CutPasses, PrePasses, Method
Xpress CoverCuts, CutStrategy, GomCuts, LNPBest, Presolve, PreProbing, etc.

5.3. Postprocessing

The postprocessing step is a crucial part of the optimisation solution. After getting
the MIP results, we then need to translate the math-style results into a schedule of trains’
movements. This process involves combining individual trains with their related predeces-
sor trains to get complete movements. As shown in Table 1, we need to combine the results
of t;u1, tm2, tm2 to get the schedule of train m.

5.4. Simulation/Execution

In this step, we validate the schedule further through simulation and add more details,
such as maintenance allocation. This step helps ensure that the schedule is accurate and
feasible before it is executed. Finally, we communicate the detailed schedule to the trains,
triggering an actual execution. This involves updating the trains” schedules in real-time
so that they can follow the optimal path and arrive at their destinations as efficiently as
possible. This step is critical for ensuring that the solution is implemented correctly and
that the trains” movements are optimised as planned.

6. Experiments and Results

In this section, we evaluate the performance of the proposed solution.

6.1. Experimental Environment Setting

We here consider the sample network in Figure 1, which has track capacity shown
in Figure 5 and is further revised in Figure 6. As per Section 3.3, we then construct the
time-space network of a 50-min time window in Figure 7, for which the time instant length
is 5 min.

A_B(capacity is 3) B_A(capacity is 3)

\
()

|
{
/“e’ D_F(capacity is 2) \ F_D(capacity is 2)
[ X
| -

—

Figure 5. Physical network with capacity.
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Figure 7. Constructed time-space network.

We then evaluate the proposed solution via the following test cases. From case 1 to
case 4, we vary trains to schedule, generate the train schedule, and demonstrate the solution
in a time—space network.

6.2. Test Case 1

Given a single train info in Table 3, we are able to get the solution in less than one
minute, where the train schedule for train Mtest01 is demonstrated via green-path in
Figure 8.
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Table 3. Case 1: Train information.

Train Name Departure Node Departure Time Destination Node
Mtest01 A 0 G

Figure 8. Case 1: Train schedule.

6.3. Test Case 2

We have two trains to schedule in Table 4, where train Mtest01 goes toward load-
out G and train Mtest02 returns from load-out G. We are able to get the solution in less
than one minute, where the train schedule for train Mtest01/Mtest02 is demonstrated via
green-path/blue-path, respectively, in Figure 9.

Table 4. Case 2: Train information.

Train Name Departure Node Departure Time Destination Node
Mtest01 A 0 G
Mtest02 G 0 B

Figure 9. Case 2: Train schedule.

6.4. Test Case 3

We have three trains to schedule in Table 5. Both train Mtest01 and Mtest03 go toward
load-out G from different start stations. Train Mtest02 goes back from load-out G with a
departure time constraint. We are able to get the solution in less than one minute, and the
train schedule is demonstrated in Figure 10. In particular, the schedules for trains Mtest01,
Mtest02, and Mtest03 are demonstrated by the green path, blue path, and orange path,
respectively. The detailed train schedules are listed in Table 6.
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Table 5. Case 3: Train information.

Train Name Departure Node Departure Time Destination Node
Mtest01 A 0 G
Mtest02 G 10 B
Mtest(03 B 0 G

Figure 10. Case 3: Train schedule.

Table 6. Case 3: Train schedule.

Time-Train Mtest01 Mtest02 Mtest03

0 B
5
10
15
20
25
30
35
40

Om™Tm
T O
OO ITmHIN

>Nolw)

6.5. Test Case 4

Given the three sets of trains information in Table 7, both train Mtest01 and Mtest03
go toward load-out G with the same start station; train Mtest02 goes back from load-out
G with departure time constraint. Similar to case 3, we are able to get the solution in less
than one minute, and demonstrate the train schedule in Figure 11, where the schedules for
trains Mtest01, Mtest02, and Mtest03 are shown via the green path, blue-path, and orange
path, respectively. The detailed train schedules are listed in Table 8.

Table 7. Case 4: Train information.

Train Name Departure Node Departure Time Destination Node
Mtest01 A 0 G
Mtest02 G 10 B

Mtest03 A 0 G
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Figure 11. Case 4: Train schedule.

Table 8. Case 4: Train Schedule.

Time-Train Mtest01 Mtest02 Mtest03

0 A

5 E A

10 H G E

15 F H D

20 G F E

25 H

30 D F

35 C G

40 B

Overall, from test case 1 to 4, it is shown that with more trains gradually added, we
are able to route trains properly.

7. Conclusions

This work studied an online mining railway optimisation problem. We first formulated
the problem as a mixed integer programming problem and developed a novel online
solution to address it. The solution was then evaluated through various test cases, which
showed its effectiveness in solving the problem. It is worth mentioning that this model
serves as an initial integrated optimisation model for the scheduling of mine railways
and the allocation of station tracks. However, it still has limitations and room for further
improvement. One limitation is that the scheduling window size needs to be carefully
chosen, as choosing too large a window can result in computational complexity, while
choosing too small a window can limit the ability to incorporate long-term scheduling
decisions. Another limitation is that the proposed solution may not be suitable for very
fast-paced real-time scenarios in which there is a need to make scheduling decisions on a
second-to-second basis, as the time required to generate a schedule may be too long for the
required response time.

Given the promising results of this study, further research will focus on the following
several aspects:

*  to consider more practical constraints, such as ensuring that the first-come-first-serve
policy is upheld near load-out areas, which will increase the real-world applicability
of the solution and make it more useful for mining companies; and

*  todevelop an effective heuristic algorithm to increase the efficiency of the solution. By
improving the computational efficiency of the algorithm, this will make the solution
more suitable for large-scale, real-world applications.
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