
1

Robust Localization Using Time Difference of
Arrivals

Xiufang Shi, Student Member, IEEE, Brian. D. O. Anderson, Life Fellow, IEEE, Guoqiang Mao, Senior
Member, IEEE, Zaiyue Yang, Member, IEEE, Jiming Chen, Senior Member, IEEE, and Zihuai Lin, Senior

Member, IEEE

Abstract—We investigate a localization problem using time
difference of arrival (TDOA) measurements with unknown and
bounded measurement errors. Different from most existing algo-
rithms, we consider the minimization of the worst-case position
estimation error to improve the robustness of the algorithm. The
localization problem is formulated as a non-convex optimization
problem. We adopt semidefinite relaxation (SDR) to relax the
original problem into a convex optimization problem, which can
be solved using semidefinite programming (SDP). Simulation
results show that our proposed algorithm has lower worst-case
position estimation error than other existing algorithms.

Index Terms—Time difference of arrival, worst-case estimation
error, Chebyshev Center, semidefinite program

I. INTRODUCTION

DUE to the significance of location information in many
applications, localization has become an important topic

in the research of wireless sensor networks (WSNs). Generally
speaking, a target can be localized by fusing location related
measurements, e.g., received signal strength (RSS) [1], [2],
angle of arrival (AOA) [1], [2], time of arrival (TOA) [2], [3],
time difference of arrival (TDOA) [1], [2], [4], [5], etc. Each
kind of measurement method has its strength and weakness
in terms of measurement acquisition, measurement accuracy,
robustness to environment, etc. In this paper, we consider the
use of TDOA measurements for target localization, which has
been extensively used.

Many localization algorithms have been developed using
TDOA measurements in recent years. One classic algorithm
is the linear least squares (LS) method [2], [6]. Through
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preprocessing of TDOA measurements, a set of linear e-
quations can be obtained. Apart from the unknown target’s
position, these equations also include an unknown distance
between the target and the reference node, which is related to
the target’s position. A closed-form solution can be obtained
by the standard linear LS estimator without considering the
relationship between the target’s position and this reference
distance. To incorporate the constraint on the relationship
between the target’s position and the reference distance, the
localization problem is usually formulated as an optimization
problem that, however, is not convex in general. Doğançay and
Hashemi-Sakhtsari [7] proposed an iterative Gauss-Newton
algorithm based on a constrained weighted LS criterion, which
may create local minima. To deal with the non-convexity of
the problem, a common technique is semidefinite relaxation
(SDR). Xu et al. [8] proposed two robust algorithms to mini-
mize the maximum error between the squares of propagation
times. These two algorithms transform the original nonconvex
problem into two semidefinite programs (SDP) by SDR. Yang
et al. [5] also proposed an SDP-based localization algorithm
to minimize the sum of the squared error between the TDOA
measurements and the TDOA estimates obtained from estimat-
ed target position. Their algorithm utilizes all pairwise TDOA
measurements, i.e., N(N − 1) pairs of TDOA measurements
for N sensors. It removes the constraint between the target’s
position and the reference distance at the expense of higher
computational complexity.

In some applications, a lower worst-case estimation error
is preferred. For instance, in vehicular applications, a lower
worst-case estimation error can help to decrease collisions
between vehicles [9]. To the best of our knowledge, there
is no work in the literature considering the minimization of
the worst-case position estimation error. Motivated by the
above observation, we will deign a localization algorithm using
TDOA measurements to minimize the worst-case position
estimation error. The main contributions of this paper are
summarized as follows:

1) We formulate the localization problem as an optimiza-
tion problem to minimize the worst-case position esti-
mation error using TDOA measurements with unknown
and bounded measurement errors.

2) Through SDR, we transform the original nonconvex
optimization problem into a solvable SDP problem.

3) Extensive simulations show that the maximum position
estimation error of the proposed algorithm is smaller
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than other existing methods, especially when the mea-
surement error is large.

The remainder of this paper is organized as follows. Section
II gives the problem formulation. Section III intrduces the pro-
posed localization algorithm. Simulation results are presented
in Section IV. Conclusions are drawn in Section V.

II. PROBLEM FORMULATION

We consider a target localization problem using TDOA
measurements in 2-dimensional space. The position of the
target, denoted by x = [x, y]T , is unknown. There are N
(N ≥ 4) non-collinear sensors, whose positions are known
as si = [xi, yi]

T , i = 1, · · · , N . We assume the sensors are
synchronized to a common clock. Each sensor can measure
the TOA of the signal transmitted from the target. The TOA
measurement at sensor i is

zi =
1

c
∥ x− si ∥ +t0 + υi (1)

where c is the signal propagation speed, ∥ · ∥ denotes the
Euclidean norm, t0 is the local time at the sensors when the
signal leaves the target, and |υi| ≤ γt is the unknown and
bounded measurement error. We assume the error bound γt
is known a priori. The assumption of bounded measurement
error has been widely applied in many areas [10]–[13]. In
TDOA-based localization, it is common to select one receiver
as a reference node and the TDOA measurements are taken
with respect to this reference node. Here, we take sensor 1
as the reference node; then the TDOA measurement between
sensor i and 1 is

zi1 = zi − z1 =
1

c
∥ x− si ∥ −1

c
∥ x− s1 ∥ +υi1 (2)

where υi1 = υi − υ1 ∈ [−2γt, 2γt].
From the constraints on the TDOA measurements, we can

say that the target lies in the following closed feasible set

Cx = {x : di1 ≤∥ x− si ∥ − ∥ x− s1 ∥≤ di1,

i = 2, · · · , N} (3)

where di1 = c(zi1 − 2γt) and di1 = c(zi1 + 2γt).
Note that in TDOA measurements, the measurement error

bound will be enlarged by subtracting two TOA measurements,
which causes the constraint set Cx to be larger than that
constructed by TOA measurements. Nevertheless, the TDOA
measurement formulation can avoid estimating t0, which is
the reason why we use TDOA measurements but not TOA
measurements.

Since the true position of the target is unknown, we cannot
minimize the position estimation error directly; therefore, we
suggest to minimize the worst-case estimation error over all
the feasible positions. Specifically, let y denote one feasible
point for the target, which satisfies the TDOA measurement
constraints in (3); our problem can be formulated as

min
x̂

{
max
y∈C

∥ y − x̂ ∥
}

(4)

C = {y : di1 ≤∥ y − si ∥ − ∥ y − s1 ∥≤ di1,

i = 2, · · · , N} (5)

where x̂ denotes the position estimate. Such formulation can
guarantee that the localization error is upper bounded by the
minimum worst-case estimation error.

Geometrically, our objective is to find the Chebyshev center
of the feasible set, i.e., the center of the minimum circle
enclosing C [13]. For example, in Fig.1, s1, s2, s3 and s4 are
sensors with known positions, s1 is the reference node. From
each TDOA measurement, we can obtain two hyperbolas, from
which one feasible set for the target can be determined. Since
the sensors are non-collinear, the intersection of all the feasible
sets, i.e., the region surrounded by the bold black curve, is a
bounded set. The minimum circle that encloses this bounded
feasible set is the blue circle. Its center (the red dot) is the
Chebyshev center xCheby , which satisfies

xCheby = argmin
x̂

{
max
y∈C

∥ y − x̂ ∥
}

(6)

Finding the Chebyshev center is an NP-hard problem except
in some special cases [14]. In our problem, because the
feasible set is not convex, it is certainly difficult to obtain
xCheby . We will find a relaxed estimate of the Chebyshev
center in next section.

Chebyx
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2
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3
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Fig. 1. Chebyshev center of the feasible set for the target.

III. THE RELAXED ESTIMATION

In this section, we explain how to find a relaxed estimate of
the Chebyshev center. We first relax the non-convex set into a
convex set, then transform our problem into an SDP problem.

In our 2-dimensional localization problem, a circle that
encloses the feasible set C can be expressed as

C2 = {xc + v| ∥ v ∥= τ} (7)

where v is a 2-dimensional vector, xc and τ are the center
and the radius of this circle, respectively.

Since set C is inside this circle, clearly, the feasible point y
aforementioned is inside this circle, which can be expressed
as follows:

y = xc + u (8)

where u is a 2-dimensional vector, which satisfies

∥ u ∥≤ τ (9)
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We are seeking the minimum circle that encloses C, therefore,
the equivalent problem to (4) is

min
xc,y

τ (10)

s.t. y = xc + u, ∥ u ∥ ≤ τ

di1 ≤∥ y − si ∥ − ∥ y − s1 ∥≤ di1

i = 2, · · · , N (11)

From (11), we can directly obtain

di1+ ∥ y − s1 ∥≤∥ y − si ∥≤ di1+ ∥ y − s1 ∥ (12)

It is straightforward that

(di1+ ∥ y − s1 ∥)2 ≤∥ y − si ∥2≤ (di1+ ∥ y − s1 ∥)2
(13)

Remark 1: Since y represents any feasible value of x, we
have

di1+ ∥ y − s1 ∥
= c(zi1 − 2γt)+ ∥ y − s1 ∥
=∥ x− si ∥ − ∥ x− s1 ∥ +cυi1 − 2cγt+ ∥ x− s1 ∥
=∥ x− si ∥ +cυi1 − 2cγt (14)

It is possible that di1+ ∥ y − s1 ∥< 0. It only occurs when
∥ x− si ∥ is very small or γt is very large. In practice, the
sensor-target distance is usually larger than the measurement
error bound, therefore, the probability of occurrence of di1+ ∥
y − s1 ∥< 0 is small and negligible.

Let d1 =∥ y − s1 ∥, ∆ = yTy and ds = d21; then the
inequality constraint (13) can be written as

∆− 2sTi y − ds − 2di1d1 + sTi si − di1
2 ≥ 0 (15)

∆− 2sTi y − ds − 2di1d1 + sTi si − di1
2 ≤ 0 (16)

Then the problem (10) can be written as

min
xc,y,∆,d1,ds

τ

s.t. y = xc + u, ∥ u ∥ ≤ τ

∆− 2sTi y − ds − 2di1d1 + sTi si − di1
2 ≥ 0

∆− 2sTi y − ds − 2di1d1 + sTi si − di1
2 ≤ 0

i = 2, · · · , N
ds = ∆− 2sT1 y + sT1 s1

∆ = yTy, ds = d21 (17)

The equality constraints ∆ = yTy and ds = d21 are not
affine, which means the constraint set is a non-convex set. The
problem (17) cannot therefore be directly solved by convex
optimization methods. We make the following relaxation:

∆ ≥ yTy, ds ≥ d21 (18)

To distinguish the relaxed ∆ and ds from the original ones,
we use ∆r and dsr to denote the relaxed ∆ and ds. As is well-
known, the above constraints can be written into the following
linear forms[

I2 y
yT ∆r

]
≽ 0,

[
1 d1
d1 dsr

]
≽ 0 (19)

where I2 denotes a 2×2 identity matrix. The relaxed problem
becomes

min
xc,y,∆r,d1,dsr

τ

s.t. y = xc + u, ∥ u ∥ ≤ τ

∆r − 2sTi y − dsr − 2di1d1 + sTi si − di1
2 ≥ 0

∆r − 2sTi y − dsr − 2di1d1 + sTi si − di1
2 ≤ 0

i = 2, · · · , N
dsr = ∆r − 2sT1 y + sT1 s1[

I2 y
yT ∆r

]
≽ 0,

[
1 d1
d1 dsr

]
≽ 0 (20)

Furthermore, the constraint ∥ u ∥ ≤ τ can be expressed in a
linear form [

τI2 u
uT τ

]
≽ 0, τ ≥ 0 (21)

Our problem becomes a standard SDP:

min
xc,y,∆r,d1,dsr

τ

s.t. y = xc + u[
τI2 u
uT τ

]
≽ 0, τ ≥ 0

∆r − 2sTi y − dsr − 2di1d1 + sTi si − di1
2 ≥ 0

∆r − 2sTi y − dsr − 2di1d1 + sTi si − di1
2 ≤ 0

i = 2, · · · , N
dsr = ∆r − 2sT1 y + sT1 s1[

I2 y
yT ∆r

]
≽ 0,

[
1 d1
d1 dsr

]
≽ 0 (22)

The above SDP can be solved by many existing SDP solvers,
e.g., SeDuMi [15], etc.

IV. SIMULATION RESULTS

In the simulations, we compare the performance of our
proposed algorithm, denoted by SDP-Cheby, with other algo-
rithms: 1) the classic LS algorithm in [2]; 2) SDPO and SDPI
in [8], which minimize the maximum matching error between
the TDOA measurements by solving two SDP problems; 3)
Algorithm in [5], denoted by SDP-AP, which combines all the
pairwise TDOA measurements to minimize the error between
TDOA measurements and TDOA estimates; SDP-AP also uses
SDR to relax the localization problem into an SDP problem.

In the examples of our simulation, there are 8 sensors in a
2D area. The locations of the sensors are

s1 = [40, 40]T , s2 = [40,−40]T , s3 = [−40, 40]T ,

s4 = [−40,−40]T , s5 = [40, 0]T , s6 = [0, 40]T ,

s7 = [−40, 0]T , s8 = [0,−40]T

We mainly compare the root mean square errors (RMSEs)
and the maximum position errors (MPEs) of the localization
algorithms. We use SeDuMi as the SDP solver in the im-
plementation of the localization algorithms. In the following
examples, for simplicity, the measurement error is converted
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TABLE I
ROBUSTNESS TO THE SOURCE LOCATION

SDPO SDPI SDP-AP LS SDP-Cheby
RMSE(Inside the convex hull) 2.5325 2.4159 1.8812 2.1300 1.6296

RMSE(Outside the convex hull) 16.3611 13.2851 10.3627 11.7446 18.9258
MPE(Inside the convex hull) 18.4129 13.5262 10.9544 12.1807 6.8291

MPE(Outside the convex hull) 178.8428 84.3838 71.9970 74.9970 64.8029

from time domain into distance domain, which means that, the
measurement error bound in the simulations is the distance
error bound, i.e. γ = cγt. The actual measurement error is
determined in accordance with a uniform distribution or Gaus-
sian distribution, but our localization algorithm runs under the
assumption that the error is limited by a fixed known bound.

Example 1. In this example, the position of the target is
x = [20, 10]T , which is inside the convex hull of the sensors.
The measurement error is uniformly distributed. Fig.2(a) com-
pares the RMSEs of the localization algorithms under different
error bounds. Except for SDPO, RMSEs of all other four
algorithms are very close. RMSEs of our proposed SDP-Cheby
are slightly higher than LS, and lower than SDPO, SDPI and
SDP-AP. By comparing the MPEs of different algorithms, as
shown in Fig. 2(b), we can see that SDP-Cheby yields the
lowest MPE.

Example 2. In this example, let the target be random-
ly placed at 200 different locations in a square area of
[−100, 100]2, among which, 100 locations are inside the
convex hull of the sensors, and the other 100 locations are
outside the convex hull of the sensors. The measurement error
is uniformly distributed with measurement error bound γ = 3.
At each location, the target’s location is estimated by 50 Monte
Carlo trials. Table I shows the localization results, including
both RMSEs and MPEs. The simulation results reveal, as
expected, that when the target is located inside the convex
hull of the sensors, the localization performance is much better
than that when the target is located outside the convex hull of
the sensors. By comparing RMSEs of different algorithms,
we can find that RMSE of SDP-Cheby is the smallest when
the target is inside the convex hull of the sensors; however,
RMSE of SDP-Cheby becomes the largest one when the target
is outside the convex hull of the sensors. On the other hand,
by comparing MPEs of different algorithms, we can find that
MPE of SDP-Cheby is smaller than that of other algorithms
both inside and outside the convex hull.

Example 3. In this example, the position of the target is
x = [20, 10]T , which is inside the convex hull of the sensors.
The measurement error is Gaussian distributed with zero-
mean. The error bound is set as γ = 3σ, where σ is the stan-
dard deviation of the Gaussian distributed measurement error.
Fig.3(a) compares the RMSEs of the localization algorithms
as σ varies. We can see the RMSEs of SDP-Cheby are higher
than SDPI, SDP-AP and LS, and are lower than SDPO. On the
other hand, by comparing the MPEs of different algorithms, as
shown in Fig. 3(b), we can see that the MPEs of SDP-Cheby

are lower than other algorithms. 1 2
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Fig. 2. Localization performance comparison of SDP-Cheby, SDPO, SDPI,
SDP-AP and LS under uniformly distributed measurement errors when the
target is inside the convex hull of the sensors.
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Fig. 3. Localization performance comparison of SDP-Cheby, SDPO, SDPI,
SDP-AP and LS under Gaussian distributed measurement errors when the
target is inside the convex hull of the sensors. The error bound is γ = 3σ.

V. CONCLUSION

In this paper, we investigate a single target localization prob-
lem using TDOA measurements with unknown and bound-
ed measurement errors. We consider the minimization of
the worst-case position estimation error, and formulate our
problem as a non-convex optimization problem to find the
Chebyshev center of the target’s feasible set. Through SDR,
we transform this non-convex optimization problem into a
solvable SDP problem, and obtain a relaxed estimate of the
Chebyshev center. Simulation results show that although the
RMSEs of our proposed algorithm are higher than other
algorithms in many cases, the MPEs of our proposed algorithm
are lower than other algorithms. That is to say, our algorithm
achieves the best worst-case location estimation error.

1One might consider use of CDFs to compare performance, but the
differences are not as striking as with RMSE and MPE.

2Further simulations reveal that the proposed method is robust to inaccurate
measurement error bounds.
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