
How Well Do Yao Graph and Theta Graph Support
Greedy Forwarding?

Weisheng Si 1, Quincy Tse 1,3, Guoqiang Mao 2,4, Albert Zomaya 3

School of Computing, Engineering and Mathematics, University of Western Sydney, Australia 1

School of Computing and Communications, University of Technology Sydney, Australia 2
School of IT, University of Sydney, Australia 3

National ICT Australia Ltd., Australia 4
w.si@uws.edu.au, guoqiang.mao@uts.edu.au, (quincy.tse, albert.zomaya)@sydney.edu.au

Abstract— Greedy Forwarding algorithm is a widely-used

routing algorithm for wireless networks. However, it can fail if
the wireless network topologies contain voids, where a packet
cannot be moved closer to destination. Since Yao graph and Theta
graph are two types of geometric graphs exploited to construct
wireless network topologies, this paper firstly studied whether
these two types of graphs can contain voids, showing that when
the number of cones in a Yao graph or Theta graph is less than
six, Yao graph and Theta graph can have voids, and when the
number of cones equals or exceeds six, Yao graph and Theta
graph are free of voids. Secondly, this paper experimented on how
well Greedy Forwarding is supported on Yao graphs and Theta
graphs in terms of stretch, i.e., the ratio between the path length
found by Greedy Forwarding and the shortest path length in a
graph. The experiments also included comparison with the stretch
on Delaunay triangulation, another well-known geometric graph
exploited in constructing wireless networks. Overall, our
experiments revealed several interesting results.

Index Terms— geometric routing, greedy forwarding, void, Yao
graph, Theta graph, Delaunay triangulation.

I. INTRODUCTION
In the study of geometric (or geographic) routing [1]

problems, a wireless network is modelled by a geometric graph
G(V, E), in which each node in V is assigned a pair of (x, y)-
coordinates, and each edge in E represents a connection
between two nodes and has a weight equal to the Euclidean
distance between these two nodes. An important routing
algorithm under the above geometric graph model is the Greedy
Forwarding algorithm [2]: when a node u forwards a packet
with destination node t, u sends this packet to its neighbor that
has the smallest Euclidean distance to t. Here, two nodes u and
v are said to be each other’s neighbor if and only if the edge uv
is present in the graph.

However, Greedy Forwarding does not succeed on a graph
that contains the void [2], in which for a certain destination t, a
node does not have a neighbor with a smaller distance to t than
its own distance to t. Thus, whether a geometric graph contains
voids becomes an important property to study. To the
convenience of study, we formally define the concept void-free
as follows. Let d(a, b) denote the Euclidean distance between
node a and node b; if for any node pair (u, v) in a geometric
graph G, u always has a neighbor w such that d(w, v) < d(u, v),
G is said to be void-free.

The void-free property has been studied for several types of
geometric graphs used in wireless networks such as Relative
Neighborhood Graph [3], Gabriel Graph [4], and Delaunay
Triangulation [5]. Specifically, counter-examples are given to
show that Relative Neighborhood Graphs and Gabriel Graphs
are not void-free for certain node sets in [6]; and Delaunay
Triangulations are shown to be void-free on any node set on the
plane in [7]. However, for Yao graphs [8] and Theta graphs (or
Θ-graphs) [9], which are also leveraged in several works [10-
13] to construct network topologies, no results exist on the
void-free property yet.

The importance of Yao graph and Theta graph mainly lie in
the wireless networks that use directional antennas. In such
networks, each wireless node is equipped with multiple
directional antennas and each directional antenna’s coverage
area is roughly a cone/sector with certain angle [14]. As seen
below, the construction of Yao graph and Theta graph are also
based on cones. For later reference in this paper, the definitions
of Yao graph and Theta graph are stated below.

Given a set V of nodes on the plane, the directed Yao graph
with an integer parameter k (k ≥ 2) on V is obtained as follows.
For each node u ∈ V, starting from a given direction (e.g., the
direction of positive y-axis), draw k equally-spaced rays l1, l2,
…, lk originating from u in clockwise order (see Fig. 1 (a)
below). These rays divide the plane into k cones, denoted by
c(u, 1), c(u, 2), …, c(u, k) respectively in clockwise order. To
avoid overlapping at boundaries, it is required that the area of
c(u, i), where i=1, …, k, excludes the ray li % k but includes the
ray l(i+1) % k. In each cone of u, construct a directed edge from u
to its closest node by Euclidean distance in that cone. Ties are
broken arbitrarily. These directed edges will form the edge set
of the directed Yao graph on V. The undirected Yao graph (or
simply Yao graph) on V is obtained by ignoring the directions

 (a) (b)

Fig. 1. Cones and an example of Yao graph for k=5.

Globecom 2014 - Ad Hoc and Sensor Networking Symposium

978-1-4799-3512-3/14/$31.00 ©2014 IEEE 76

of the edges. Note that if both edge uv and vu are in the directed
Yao graph, only one edge uv exists in the Yao graph. Fig. 1 (b)
gives an example of Yao graph with k=5.

Similar to Yao graph, the undirected Theta graph (or simply
Theta graph) is also obtained by letting each node u ∈ V select a
‘closest’ node in each of its cones to establish an edge. The only
difference is that ‘closest’ in Theta graph means the smallest
projection distance onto the bisector of that cone, not the direct
Euclidean distance. For instance, in Fig. 2, node u’s ‘closest’
node will be node b. For convenience, we denote Yao graph and
Theta graph with parameter k as Yk and Θk hereafter.

Fig. 2. The bisector in a cone of a Theta graph.

Note that this paper focuses on the study of undirected Yao
and Theta graphs, since a link is typically bidirectional in
wireless networks. That is, this paper assumes that if node u
selects node v as its neighbor under the Yao/Theta graph
definition, node v can send message back to node u even though
v may not select node u as its neighbor under the Yao/Theta
graph definition. The rationale for this assumption is that the
multiple directional antennas of a node will cover the entire
surrounding of this node and if node u selects node v as
neighbor under the Yao/Theta graph definition, one of v’s
directional antenna can reach u as well.

In brief, this paper made both theoretical and empirical
contributions. Theoretically, this paper proved the following
results.

• When 2 ≤ k ≤ 5, Yk and Θk are shown to be not void-free for
certain node sets on the plane.

• When k ≥ 6, Yk and Θk are shown to be void-free for any
node set on the plane.

Empirically, this paper is the first to conduct experiments on
the stretches [15] (detailed in Section IV) of Greedy Forwarding
on Yao and Theta graphs, and also compare the results with
another well-known graph Delaunay triangulation (DT) [5]. The
experiments mainly showed the follows.

• In both hop and Euclidean stretches, the Greedy
Forwarding algorithm performs well on both Yao and
Theta graphs, and slightly better on Yao graphs than on
Theta graphs.

• In both hop and Euclidean stretches, on both Yao and
Theta graphs, the Greedy Forwarding algorithm performs
generally better when k is even than when k is odd, and
performs even better when k is a multiple of six.

• The Greedy Forwarding algorithm performs worse in
Euclidean stretch on Yao and Theta graphs than on DTs,
but better in hop stretch.

 The rest of this paper is organized as follows. Section II
shows by counter-examples that Yk and Θk may not be void-free
when 2 ≤ k ≤ 5; Section III proves that Yk and Θk are always
void-free when k ≥ 6; Section IV presents our experimental
studies; Section V concludes this paper.

II. COUNTER EXAMPLES WHEN 2 ≤ K ≤ 5

When 2 ≤ k ≤ 5, we give counter-example node sets to show
that Yk and Θk are not always void-free. For each node set, we
describe how it is designed and give applicable (x, y)-
coordinates for each node in that set. Using the software
developed by us for constructing Yao graph and Theta graph (to
be described in Section IV), we verified that each counter-
example node set given by us indeed gives Yk or Θk that is not
void-free.

Below, we first present counter-example node sets for Yk in
the proof of the following proposition.

Proposition 1. When 2 ≤ k ≤ 5, some node sets exist such that
Yk on them are not void-free.

Proof: When 2 ≤ k ≤ 3, we give a counter-example node set V0
with four nodes u, v, a, and b as shown in Fig. 3, where the
dotted auxiliary circle Cv is centered at v and has radius d(u, v),
and the dotted auxiliary lines emanating from each node are
only drawn for the case of k = 3.

When k = 2 and 3, Y2 and Y3 on V0 are the same and
depicted by solid lines in Fig. 3. As node a lies outside the
circle Cv, node u does not have a neighbor with a shorter
distance to v. So Y2 and Y3 are not void-free on V0.

Fig. 3. The counter-example node set V0 on which Yao graphs are not

void-free for k = 2, 3.

When k = 4, we give a counter-example node set V1 with six
nodes u, v, a, b, c, and d as shown in Fig. 4. In this figure, the
dotted circle Cv is centered at v and has radius d(u, v). The
resulting Y4 on V1 is depicted by solid lines. Since nodes a and
b are outside the circle Cv, node u does not have a neighbor with

Fig. 4. The counter-example node set V1 on which Yao graph is not

void-free for k = 4.

Globecom 2014 - Ad Hoc and Sensor Networking Symposium

77

shorter distance to v. So Y4 is not void-free on V1.

When k = 5, we give a counter-example node set V2 with six
nodes u, v, a, b, c, and d as shown in Fig. 5. Their positions
have the following relationship: v is on the ray l2 originating
from u, so v is located inside c(u, 1); d is located inside c(v, 4);
b is located inside c(u, 3), c(d, 4), and c(v, 4); c is located inside
c(u, 2), c(d, 3) and c(v, 3); a, b, and c are outside the circle Cv
which is centered at v and has radius d(u, v). With this node
placement, the resulting Y5 on V2 is shown by solid lines in Fig.
5. As nodes a, b, and c are outside the circle Cv, node u does not
have a neighbor with a shorter distance to v. So Y5 is not void-
free on V2.

 Next, we consider Θk. We verified the following by the
software developed by us for constructing Yao graph and Theta
graph: for k = 2, 3, Θk on V0 are the same as Yk on V0; for k = 4,
Θ4 on V1 is the same as Y4 on V1; and for k = 5, Θ5 on V2 is the
same as Y5 on V2. Thus, the above node sets V0, V1, and V2 can
serve as counter examples to make Θk not void-free as well.
Consequently, we have the following proposition.

Proposition 2. When 2 ≤ k ≤ 5, some node sets exist such that
Θk on them are not void-free.

III. PROOFS FOR VOID-FREE WHEN K ≥ 6

When k ≥ 6, we show that Yk and Θk are void-free for any
node set by constructing theoretical proofs. Below, we first
prove the following proposition for Yk.

Proposition 3. When k ≥ 6, Yk are void-free for any node set.

Proof: This proof is done by providing the following method by
which, for any given node pair u and v in a Yk with k ≥ 6, u can
always find a neighbor w in Yk such that d(w, v) < d(u, v).

We will start with node v, which must reside in one cone of u
(see Fig. 6). According to the definition of Yk, u connects to one
of its closest neighbors in that cone. Denote this neighbor by w.
If w is the same node as v, we have d(w, v) = 0 < d(u, v), thus
finishing the proof.

If w is a different node from v, we still can show that d(w, v)
< d(u, v) as follows. If u, w, and v are collinear, w lies inside the
line segment uv, so we have d(w, v) < d(u, v). Otherwise, we
can draw a triangle connecting nodes u, w, and v. When k ≥ 6,
the angle of a cone is no more than π/3. Because w and v cannot
fall on different boundaries of a cone at the same time (due to
cone’s definition), we have ∠wuv < π/3 and also ∠uvw +
∠uwv > 2π/3. Since d(u, w) ≤ d(u, v), we have ∠uvw ≤ ∠uwv.
Since we already know ∠uvw + ∠uwv > 2π/3, we have ∠uwv
> π/3. Thus, ∠uwv > ∠wuv. Since a larger side is opposite a
larger angle in a triangle, we have d(u, v) > d(w, v).

Fig. 6. Proof for Yao graph for k ≥ 6.

 Next, we give the proof for Θk in Proposition 4.

Proposition 4. When k ≥ 6, Θk are void-free for any node set.

Proof: This proof is also done by providing a method by which
for any given u, v in a Θk with k ≥ 6, u can always find a
neighbor w in Θk such that d(w, v) < d(u, v).

Similar to the proof of Proposition 3, node v must reside in
one cone of u. According to the definition of Θk, u connects to
its neighbor that has the shortest projection distance on the
bisector of that cone. Denote this neighbor by w, and the
projection points of w and v on the bisector by w’ and v’
respectively. If w is the same node as v, we easily have d(w, v)
= 0 < d(u, v). Otherwise, we prove d(w, v) < d(u, v) as follows.

 If u, w, and v are collinear, w lies inside the line segment uv,
so we have d(w, v) < d(u, v). Otherwise, nodes u, w, and v form
a triangle. There can be two cases regarding the orientation of
this triangle (see Fig. 7): in Case 1, ∠uwv faces the bisector; in
Case 2, ∠uwv does not.

For Case 1, when k ≥ 6, the angle between the boundary and

Fig. 5. The counter-example node set V2 on which Yao graph is not

void-free for k = 5.

Fig. 7. Proof for Theta graph for k ≥ 6.

Globecom 2014 - Ad Hoc and Sensor Networking Symposium

78

the bisector is no more than π/6. Thus we have ∠uww’ ≥ π/2 –
π/6 = π/3. Since d(u, w’) ≤ d(u, v’), we have ∠uww’ ≤ ∠uwv.
Because w and v cannot fall on different boundaries of a cone
(due to cone’s definition), we have ∠wuv < π/3. Thus, ∠wuv <
∠uwv. Since a larger side is opposite a larger angle in a
triangle, we have d(w, v) < d(u, v).

For Case 2, first we can easily have d(u, w) < d(u, v). Then,
following the proof for Proposition 3, we can obtain d(w, v) <
d(u, v).

As a note, since the above two proofs for Propositions 3 and
4 do not need the assumption that no ties exist when a node
selects a ‘closest’ neighbor in a cone in Yao graph or Theta
graph, these two proofs still work when a node set can
introduce such ties.

IV. EXPERIMENTAL RESULTS

In the previous sections, we proved that when k ≥ 6, Yk and
Θk are guaranteed to be void-free. However, it is still unclear
how well these two types of graphs support the Greedy
Forwarding algorithm. To evaluate on this aspect, we measured
a metric called stretch [15]. Specifically, the stretch by a
routing algorithm Γ for a source/destination pair (s, t) in a graph
G is defined as:

(1)
),(ttosfrompathshortestofLength

ttosfromΓbyfoundpathofLength
tsforΓby

stretch
=

Further, the average stretch by Γ on G is the average stretch of
all (s, t) pairs in G; the maximum stretch by Γ on G is the largest
stretch of all (s, t) pairs in G. In this paper, we consider Greedy
Forwarding as the routing algorithm.

 Note that, to measure path length, two metrics are commonly
used: number of hops and Euclidean distance. The hop metric is
generally used in wireless networks, since packet forwarding in
each hop involves much more significant transmission delay
and queuing delay than propagation delay, which is trivial due
to the light speed of wireless signal. On the other hand, the
Euclidean metric is generally used in transport networks or
robotics, where the propagation delay becomes significant due
to the low speed of vehicles or robots. To make our work useful
for different areas, we measure the stretches by Greedy
Forwarding in both hop and Euclidean metrics in our
experiments.

 Also, to help explain the results on stretches, we experiment
on the average node degrees (denoted degavg hereafter) in Theta
graphs and Yao graphs as well. Note that, degavg of a graph
equals 2m/n, where m is the number of edges and n is the
number of nodes in this graph.

For all the aforementioned aspects of evaluation: stretch of
Greedy Forwarding and average node degree in Yao graph and
Theta graph, we add a third graph type Delaunay triangulation
(DT) [5] as a comparison, since DT is also applied as wireless
network topologies in some research efforts [16, 17]. In such
comparisons, we set k=6 for Yao graph and Theta graph, since 6
is the smallest k that enables those two graphs void-free.

Below, we first describe our experimental setup, and then
present our results in the following order: average node degree,
stretch of Greedy Forwarding in hop metric, then in Euclidean
metric.

A. Experiments Setup
 We developed software to construct Yao graph, Theta graph
and DT and then calculate on the degavg and stretch of Greedy
Forwarding in these three types of graphs. Our software is
implemented using the Computational Geometry Algorithms
Library (CGAL) [18], which provides us APIs for basic
geometric calculations. Fig. 8 gives an example of DT, Yao
graph and Theta graph with k=6 constructed by our software on
a 14-node set respectively.

 In our experiments, we generated nodes according to
uniform distribution in a disk area. Also, in both experiments on
degavg and stretch, we first fix k to 6 and vary the number of
nodes (denoted by n hereafter) to see the influence of n, and
then we fix n to 800 and vary k to see the influence of k. For
each combination of n and k, we conducted 1000 experiments
with each node placement randomly generated. Then, the
average results of these 1000 experiments are plotted in the
upcoming figures.

B. Average node degree
Fig. 9 plots the degavg’s for DTs, Yao graphs and Theta

graphs with k=6 and n = 100, 200, …, 900 and 1000
respectively. In a DT, we have e = 3n – c – 3, where e is the
number of edges and c is the number of convex hull edges [5].
So we know that degavg of a DT should approach 6 with the
increase of n, which is confirmed in Fig. 9. For Theta graph, the

(a) Delaunay triangulation (DT) (b) Theta graph (c) Yao graph

Fig. 8. Examples of Delaunay triangulation, Theta and Yao graphs with k=6 constructed by our software on a 14-node set.

Globecom 2014 - Ad Hoc and Sensor Networking Symposium

79

following asymptotic result exists on its degavg when n is made
infinite [19]:

(2)
3565.1
3954.1

⋅
⋅

≈
oddiskwhenk
eveniskwhenk

degavg

For Yao graph, [19] states that its degavg is similar to Theta
graph, but the closed form formula of its degavg cannot be
found. According to our observation from Fig. 9, when we fix k
to 6, degavg of Theta graph is roughly the same as Yao graph,
and is about 1.3 times the degavg of DT.

 Fig. 10 plots the degavg’s of Yao graph and Theta graph with
n=800 and k = 6, 7, … , 12 and 13 respectively. We can mainly
see the follows from this figure. First, the degavg’s of Yao graph
and Theta graph are about the same at different k’s. Second, the
data lines of both graphs exhibit a zigzag shape, which
conforms with formula (2) where an even k and an odd k
involve different coefficients. This zigzag of degavg will be used
to explain the zigzag of stretches in the coming figures.

C. Stretch of Greedy Forwarding in hop metric
Fig. 11 plots the average stretch of Greedy Forwarding in

hop metric on graphs with n = 100, 200, …, 900 and 1000
respectively. This figure mainly shows that (1) for the node
numbers experimented, Greedy Forwarding on Yao graph
achieves a slightly smaller stretch than on Theta graph, and (2)
Greedy Forwarding on DTs has a much larger stretch than on
Yao graphs and Theta graphs, since DTs have smaller degavg
than Yao graphs and Theta graphs.

Fig. 12 plots the maximum stretch of Greedy Forwarding in
hop metric when n changes. The maximum stretch is used to
reflect the worst case performance of Greedy Forwarding.
Basically, this figure shows similar performance relationship
among DT, Theta graph and Yao graph in worst case as in
average case in Fig. 11.

Fig. 13 plots the average stretch of Greedy Forwarding in
hop metric when k changes. This figure mainly shows the
following. First, the average hop stretches on both Yao graph
and Theta graph bear a zigzag shape, taking a larger value at an
odd k and a smaller value at an even k. This is largely due to the
zigzag shape of degavg’s of Yao graph and Theta graph as
depicted in Fig. 10. Second, when k equals 6 or 12, Greedy
Forwarding achieves a better hop stretch than other
experimented k’s on both Yao and Theta graphs. This implies
that six is an efficient number for Yao and Theta graphs, and the
underlying reason needs to be further explored.

D. Stretch of Greedy Forwarding in Euclidean metric
Fig. 14 plots the average stretch of Greedy Forwarding in

Euclidean metric on graphs with n = 100, 200, …, 900 and
1000 respectively. This figure shows very different phenomena
from those in hop metric shown in Fig. 11. First, Greedy
Forwarding achieves almost identical average Euclidean stretch
on Yao graph and Theta graph, with sometimes a slightly
smaller stretch on Yao and sometimes a slightly smaller stretch
on Theta, so it is hard to tell on which graph Greedy
Forwarding performs better. Second, though DTs have smaller
degavg’s than Yao and Theta graphs, Greedy Forwarding
achieves better Euclidean stretch on DTs than on Yao and Theta
graphs. This implies the graph structure of DTs has a much
better support on Euclidean stretch than on hop stretch.

Fig. 15 plots the maximum stretch of Greedy Forwarding in
Euclidean metric when n changes. This figure basically shows
the same phenomena as Fig. 14, except that Greedy Forwarding
consistently achieves smaller maximum Euclidean stretches on
Yao graph than on Theta graph, reflecting that Greedy
Forwarding performs more stably on Yao graph than on Theta
graph.

Fig. 16 plots the average stretch of Greedy Forwarding in
Euclidean metric when k changes. This figure shows similar
phenomena as those in hop metric shown in Fig. 13. The
explanation will also resort to the zigzag shape of degavg’s of
Yao graph and Theta graph shown in Fig. 10.

Since this section presented many experimental results, a
detailed summary of these results is provided in the
Conclusions section to enable a quick overview.

V. CONCLUSIONS

Since the Greedy Forwarding algorithm is an important
routing algorithm used in wireless networks, this paper studied
how well Yao graph and Theta graph support Greedy
Forwarding, and presented both theoretical and empirical
results. Theoretically, this paper proved that (1) when the
number of cones is less than 6, Yao graphs or Theta graphs are
not void-free on some node sets on the plane, and (2) when the
number of cones equals or exceeds 6, Yao graphs and Theta
graphs are void-free for any node set on the plane.
Experimentally, this paper mainly showed the following results.

• The Greedy Forwarding algorithm performs well on both
Yao and Theta graphs, with average stretch less than 1.14 in
both hop and Euclidean metrics on all experimented
parameters in this paper.

Fig. 9. Average node degrees with different n’s and k=6.

Fig. 10. Average node degrees with different k’s and n=800.

Globecom 2014 - Ad Hoc and Sensor Networking Symposium

80

• In hop metric, Greedy Forwarding achieves slightly smaller
stretches in both average and worst cases on Yao graphs
than on Theta graphs. Moreover, both Yao and Theta graphs
with k=6 give smaller stretches in both average and worst
cases than DTs.

• In Euclidean metric, Greedy Forwarding achieves slightly
smaller stretch in worst case on Yao graph than on Theta
graph. In average case, it is hard to tell which graph
performs better. Surprisingly, though Yao graph and Theta
graph with k=6 have larger degavg’s than DTs, both of them
incur larger stretches than DTs, reflecting that DTs are very
suitable in finding short paths in Euclidean metric.

• In both hop and Euclidean metrics, for both Yao and Theta
graphs, Greedy Forwarding generally has smaller average
stretches when k is even than when k is odd; especially
when k is a multiple of six, Greedy Forwarding sees the
smallest average stretches, showing that six is an efficient
number for Yao and Theta graphs.

REFERENCES
[1] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger, "Geometric ad-hoc

routing: of theory and practice," in ACM PODC, pp. 63--72, 2003.
[2] D. Chen and P. K. Varshney, "A Survey Of Void Handling Techniques

For Geographic Routing In Wireless Networks," IEEE Communications
Surveys & Tutorials, vol. 9, pp. 50-67, 2007.

[3] G. T. Toussaint, "The relative neighborhood graph of a finite planar set,"
Pattern Recognition, vol. 12, pp. 261-268, 1980.

[4] K. R. Gabriel and R. R. Sokal, "A new statistical approach to geographic
variation analysis," Systematic Zoology, vol. 18, pp. 259-278, 1969.

[5] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars, Computational
geometry: algorithms and applications, 3rd ed. New York: Springer-
Verlag, 2008.

[6] W. Si, B. Scholz, J. Gudmundsson, G. Mao, R. Boreli, and A. Y. Zomaya,
"On Graphs Supporting Greedy Forwarding for Directional Wireless

Networks," in IEEE International Conference on Communications (ICC),
2012.

[7] P. Bose and P. Morin, "Online Routing in Triangulations," Siam Journal
of Computing, vol. 33, pp. 937-951, 2004.

[8] A. C. Yao, "On constructing minimum spanning trees in k-dimensional
spaces and related problems," SIAM Journal on Computing, 1982.

[9] K. Clarkson, "Approximation algorithms for shortest path motion
planning," in ACM Symposium on Theory of Computing, pp. 56-65, 1987.

[10] F. Li, Z. Chen, and Y. Wang, "Localized Topologies with Bounded Node
Degree for Three Dimensional Wireless Sensor Networks," in
International Conference on Mobile Ad-hoc and Sensor Networks (MSN),
2011.

[11] S. Poduri, S. Pattem, B. Krishnamachari, and G. S. Sukhatme, "Using
Local Geometry for Tunable Topology Control in Sensor Networks,"
IEEE Transactions on Mobile Computing, vol. 8, pp. 218-230, 2009.

[12] W.-Z. Song, Y. Wang, X.-Y. Li, and O. Frieder, "Localized algorithms for
energy efficient topology in wireless ad hoc networks," in ACM Int.
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc),
2004.

[13] X.-Y. Li, W.-Z. Song, and W. Wang, "A unified energy-efficient topology
for unicast and broadcast," in ACM Int. Conference on Mobile Computing
and Networking (MobiCom), 2005.

[14] Z. Yu, J. Teng, X. Bai, D. Xuan, and W. Jia, "Connected coverage in
wireless networks with directional antennas," in IEEE INFOCOM pp.
2264-2272, 2011.

[15] R. Flury, S. V. Pemmaraju, and R. Wattenhofer, "Greedy Routing with
Bounded Stretch," in IEEE INFOCOM, pp. 1737-1745, 2009.

[16] X.-Y. Li, G. Calinescu, P.-J. Wan, and Y. Wang, "Localized Delaunay
Triangulation with Applications in Wireless Ad Hoc Networks," IEEE
Transactions on Parallel and Distributed Systems, vol. 14, pp. 1035-1047,
2003.

[17] W. Si and A. Y. Zomaya, "New Memoryless Online Routing Algorithms
for Delaunay Triangulations," IEEE Transactions on Parallel and
Distributed Systems, vol. 23, pp. 1520-1527, 2012.

[18] CGAL, Computational Geometry Algorithms Library,
http://www.cgal.org/, 2013.

[19] P. Morin and S. Verdonschot, "On the average number of edges in Theta
graphs " in SIAM Meeting on Analytic Algorithmics & Combinatorics
(ANALCO), pp. 1-20, 2014.

Fig. 11. Average stretch in hop with different n’s

and k=6.
Fig. 12. Maximum stretch in hop with different

n’s and k=6.
Fig. 13. Average stretch in hop with different k’s

and n=800.

Fig. 14. Average stretch in Euclidean with

different n’s and k=6.
Fig. 15. Maximum stretch in Euclidean with

different n’s and k=6.
Fig. 16. Average stretch in Euclidean with

different k’s and n=800.

Globecom 2014 - Ad Hoc and Sensor Networking Symposium

81

