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Abstract— Greedy Forwarding algorithm is a widely-used 

routing algorithm for wireless networks. However, it can fail if 
the wireless network topologies contain voids, where a packet 
cannot be moved closer to destination. Since Yao graph and Theta 
graph are two types of geometric graphs exploited to construct 
wireless network topologies, this paper firstly studied whether 
these two types of graphs can contain voids, showing that when 
the number of cones in a Yao graph or Theta graph is less than 
six, Yao graph and Theta graph can have voids, and when the 
number of cones equals or exceeds six, Yao graph and Theta 
graph are free of voids. Secondly, this paper experimented on how 
well Greedy Forwarding is supported on Yao graphs and Theta 
graphs in terms of stretch, i.e., the ratio between the path length 
found by Greedy Forwarding and the shortest path length in a 
graph. The experiments also included comparison with the stretch 
on Delaunay triangulation, another well-known geometric graph 
exploited in constructing wireless networks. Overall, our 
experiments revealed several interesting results. 

Index Terms— geometric routing, greedy forwarding, void, Yao 
graph, Theta graph, Delaunay triangulation. 

I. INTRODUCTION 
In the study of geometric (or geographic) routing [1] 

problems, a wireless network is modelled by a geometric graph 
G(V, E), in which each node in V is assigned a pair of (x, y)-
coordinates, and each edge in E represents a connection 
between two nodes and has a weight equal to the Euclidean 
distance between these two nodes. An important routing 
algorithm under the above geometric graph model is the Greedy 
Forwarding algorithm [2]: when a node u forwards a packet 
with destination node t, u sends this packet to its neighbor that 
has the smallest Euclidean distance to t. Here, two nodes u and 
v are said to be each other’s neighbor if and only if the edge uv 
is present in the graph.  

However, Greedy Forwarding does not succeed on a graph 
that contains the void [2], in which for a certain destination t, a 
node does not have a neighbor with a smaller distance to t than 
its own distance to t. Thus, whether a geometric graph contains 
voids becomes an important property to study. To the 
convenience of study, we formally define the concept void-free 
as follows. Let d(a, b) denote the Euclidean distance between 
node a and node b; if for any node pair (u, v) in a geometric 
graph G, u always has a neighbor w such that d(w, v) < d(u, v), 
G is said to be void-free.  

The void-free property has been studied for several types of 
geometric graphs used in wireless networks such as Relative 
Neighborhood Graph [3], Gabriel Graph [4], and Delaunay 
Triangulation [5]. Specifically, counter-examples are given to 
show that Relative Neighborhood Graphs and Gabriel Graphs 
are not void-free for certain node sets in [6]; and Delaunay 
Triangulations are shown to be void-free on any node set on the 
plane in [7]. However, for Yao graphs [8] and Theta graphs (or 
Θ-graphs) [9], which are also leveraged in several works [10-
13] to construct network topologies, no results exist on the 
void-free property yet.  

The importance of Yao graph and Theta graph mainly lie in 
the wireless networks that use directional antennas. In such 
networks, each wireless node is equipped with multiple 
directional antennas and each directional antenna’s coverage 
area is roughly a cone/sector with certain angle [14]. As seen 
below, the construction of Yao graph and Theta graph are also 
based on cones. For later reference in this paper, the definitions 
of Yao graph and Theta graph are stated below.  

Given a set V of nodes on the plane, the directed Yao graph 
with an integer parameter k (k ≥ 2) on V is obtained as follows. 
For each node u ∈ V, starting from a given direction (e.g., the 
direction of positive y-axis), draw k equally-spaced rays l1, l2, 
…, lk originating from u in clockwise order (see Fig. 1 (a) 
below). These rays divide the plane into k cones, denoted by 
c(u, 1), c(u, 2), …, c(u, k) respectively in clockwise order. To 
avoid overlapping at boundaries, it is required that the area of 
c(u, i), where i=1, …, k,  excludes the ray li % k but includes the 
ray l(i+1) % k. In each cone of u, construct a directed edge from u 
to its closest node by Euclidean distance in that cone. Ties are 
broken arbitrarily. These directed edges will form the edge set 
of the directed Yao graph on V. The undirected Yao graph (or 
simply Yao graph) on V is obtained by ignoring the directions 

 
                   (a)                                            (b) 

Fig. 1.  Cones and an example of Yao graph for k=5. 
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of the edges. Note that if both edge uv and vu are in the directed 
Yao graph, only one edge uv exists in the Yao graph. Fig. 1 (b) 
gives an example of Yao graph with k=5. 

Similar to Yao graph, the undirected Theta graph (or simply 
Theta graph) is also obtained by letting each node u ∈ V select a 
‘closest’ node in each of its cones to establish an edge. The only 
difference is that ‘closest’ in Theta graph means the smallest 
projection distance onto the bisector of that cone, not the direct 
Euclidean distance. For instance, in Fig. 2, node u’s ‘closest’ 
node will be node b. For convenience, we denote Yao graph and 
Theta graph with parameter k as Yk and Θk hereafter. 

 
Fig. 2. The bisector in a cone of a Theta graph. 

Note that this paper focuses on the study of undirected Yao 
and Theta graphs, since a link is typically bidirectional in 
wireless networks. That is, this paper assumes that if node u 
selects node v as its neighbor under the Yao/Theta graph 
definition, node v can send message back to node u even though 
v may not select node u as its neighbor under the Yao/Theta 
graph definition. The rationale for this assumption is that the 
multiple directional antennas of a node will cover the entire 
surrounding of this node and if node u selects node v as 
neighbor under the Yao/Theta graph definition, one of v’s 
directional antenna can reach u as well.  

In brief, this paper made both theoretical and empirical 
contributions. Theoretically, this paper proved the following 
results. 

• When 2 ≤ k ≤ 5, Yk and Θk are shown to be not void-free for 
certain node sets on the plane. 

• When k ≥ 6, Yk and Θk are shown to be void-free for any 
node set on the plane. 

Empirically, this paper is the first to conduct experiments on 
the stretches [15] (detailed in Section IV) of Greedy Forwarding 
on Yao and Theta graphs, and also compare the results with 
another well-known graph Delaunay triangulation (DT) [5]. The 
experiments mainly showed the follows. 

• In both hop and Euclidean stretches, the Greedy 
Forwarding algorithm performs well on both Yao and 
Theta graphs, and slightly better on Yao graphs than on 
Theta graphs.  

• In both hop and Euclidean stretches, on both Yao and 
Theta graphs, the Greedy Forwarding algorithm performs 
generally better when k is even than when k is odd, and 
performs even better when k is a multiple of six. 

• The Greedy Forwarding algorithm performs worse in 
Euclidean stretch on Yao and Theta graphs than on DTs, 
but better in hop stretch. 

    The rest of this paper is organized as follows. Section II 
shows by counter-examples that Yk and Θk may not be void-free 
when 2 ≤ k ≤ 5; Section III proves that Yk and Θk are always 
void-free when k ≥ 6; Section IV presents our experimental 
studies; Section V concludes this paper. 

II. COUNTER EXAMPLES WHEN 2 ≤ K ≤ 5 

When 2 ≤ k ≤ 5, we give counter-example node sets to show 
that Yk and Θk are not always void-free. For each node set, we 
describe how it is designed and give applicable (x, y)-
coordinates for each node in that set. Using the software 
developed by us for constructing Yao graph and Theta graph (to 
be described in Section IV), we verified that each counter-
example node set given by us indeed gives Yk or Θk that is not 
void-free.  

Below, we first present counter-example node sets for Yk in 
the proof of the following proposition. 

Proposition 1. When 2 ≤ k ≤ 5, some node sets exist such that 
Yk on them are not void-free. 

Proof: When 2 ≤ k ≤ 3, we give a counter-example node set V0 
with four nodes u, v, a, and b as shown in Fig. 3, where the 
dotted auxiliary circle Cv is centered at v and has radius d(u, v), 
and the dotted auxiliary lines emanating from each node are 
only drawn for the case of k = 3.  

When k = 2 and 3, Y2 and Y3 on V0 are the same and 
depicted by solid lines in Fig. 3. As node a lies outside the 
circle Cv, node u does not have a neighbor with a shorter 
distance to v. So Y2 and Y3 are not void-free on V0. 

 
Fig. 3. The counter-example node set V0 on which Yao graphs are not 

void-free for k = 2, 3.  

When k = 4, we give a counter-example node set V1 with six 
nodes u, v, a, b, c, and d as shown in Fig. 4. In this figure, the 
dotted circle Cv is centered at v and has radius d(u, v). The 
resulting Y4 on V1  is depicted by solid lines. Since nodes a and 
b are outside the circle Cv, node u does not have a neighbor with 

    
Fig. 4. The counter-example node set V1 on which Yao graph is not 

void-free for k = 4. 
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shorter distance to v. So Y4 is not void-free on V1. 

When k = 5, we give a counter-example node set V2 with six 
nodes u, v, a, b, c, and d as shown in Fig. 5. Their positions 
have the following relationship: v is on the ray l2 originating 
from u, so v is located inside c(u, 1); d is located inside c(v, 4); 
b is located inside c(u, 3), c(d, 4), and c(v, 4); c is located inside 
c(u, 2), c(d, 3) and c(v, 3); a, b, and c are outside the circle Cv 
which is centered at v and has radius d(u, v). With this node 
placement, the resulting Y5 on V2  is shown by solid lines in Fig. 
5. As nodes a, b, and c are outside the circle Cv, node u does not 
have a neighbor with a shorter distance to v. So Y5 is not void-
free on V2.                                                                        

     Next, we consider Θk. We verified the following by the 
software developed by us for constructing Yao graph and Theta 
graph: for k = 2, 3, Θk on V0  are the same as Yk on V0; for k = 4, 
Θ4 on V1 is the same as Y4 on V1; and for k = 5, Θ5 on V2 is the 
same as Y5 on V2. Thus, the above node sets V0, V1, and V2 can 
serve as counter examples to make Θk not void-free as well. 
Consequently, we have the following proposition. 

Proposition 2. When 2 ≤ k ≤ 5, some node sets exist such that 
Θk on them are not void-free. 

III. PROOFS FOR VOID-FREE WHEN K ≥ 6 

When k ≥ 6, we show that Yk and Θk are void-free for any 
node set by constructing theoretical proofs. Below, we first 
prove the following proposition for Yk. 

Proposition 3. When k ≥ 6, Yk are void-free for any node set.  

Proof: This proof is done by providing the following method by 
which, for any given node pair u and v in a Yk with k ≥ 6, u can 
always find a neighbor w in Yk such that d(w, v) < d(u, v).  

We will start with node v, which must reside in one cone of u 
(see Fig. 6). According to the definition of Yk, u connects to one 
of its closest neighbors in that cone. Denote this neighbor by w. 
If w is the same node as v, we have d(w, v) = 0 < d(u, v), thus 
finishing the proof.   

If w is a different node from v, we still can show that d(w, v) 
< d(u, v) as follows. If u, w, and v are collinear, w lies inside the 
line segment uv, so we have d(w, v) < d(u, v). Otherwise, we 
can draw a triangle connecting nodes u, w, and v. When k ≥ 6, 
the angle of a cone is no more than π/3. Because w and v cannot 
fall on different boundaries of a cone at the same time (due to 
cone’s definition), we have ∠wuv < π/3 and also ∠uvw + 
∠uwv > 2π/3. Since d(u, w) ≤ d(u, v), we have ∠uvw ≤ ∠uwv. 
Since we already know ∠uvw + ∠uwv > 2π/3, we have ∠uwv 
> π/3. Thus, ∠uwv > ∠wuv. Since a larger side is opposite a 
larger angle in a triangle, we have d(u, v) > d(w, v).                  

 
Fig. 6. Proof for Yao graph for k ≥ 6. 

    Next, we give the proof for Θk in Proposition 4. 

Proposition 4. When k ≥ 6, Θk are void-free for any node set.  

Proof: This proof is also done by providing a method by which 
for any given u, v in a Θk with k ≥ 6, u can always find a 
neighbor w in Θk such that d(w, v) < d(u, v).  

Similar to the proof of Proposition 3, node v must reside in 
one cone of u. According to the definition of Θk, u connects to 
its neighbor that has the shortest projection distance on the 
bisector of that cone. Denote this neighbor by w, and the 
projection points of w and v on the bisector by w’ and v’ 
respectively. If w is the same node as v, we easily have d(w, v) 
= 0 < d(u, v). Otherwise, we prove d(w, v) < d(u, v) as follows. 

 If u, w, and v are collinear, w lies inside the line segment uv, 
so we have d(w, v) < d(u, v). Otherwise, nodes u, w, and v form 
a triangle. There can be two cases regarding the orientation of 
this triangle (see Fig. 7): in Case 1, ∠uwv faces the bisector; in 
Case 2, ∠uwv does not.  

For Case 1, when k ≥ 6, the angle between the boundary and 

 
Fig. 5. The counter-example node set V2 on which Yao graph is not 

void-free for k = 5. 

 
Fig. 7. Proof for Theta graph for k ≥ 6. 
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the bisector is no more than π/6. Thus we have ∠uww’  ≥ π/2 – 
π/6 = π/3. Since d(u, w’) ≤ d(u, v’), we have ∠uww’ ≤ ∠uwv. 
Because w and v cannot fall on different boundaries of a cone 
(due to cone’s definition), we have ∠wuv < π/3. Thus, ∠wuv < 
∠uwv. Since a larger side is opposite a larger angle in a 
triangle, we have d(w, v) < d(u, v).  

For Case 2, first we can easily have d(u, w) < d(u, v). Then, 
following the proof for Proposition 3, we can obtain d(w, v) < 
d(u, v).                                                                                

As a note, since the above two proofs for Propositions 3 and 
4 do not need the assumption that no ties exist when a node 
selects a ‘closest’ neighbor in a cone in Yao graph or Theta 
graph, these two proofs still work when a node set can 
introduce such ties. 

IV. EXPERIMENTAL RESULTS 

In the previous sections, we proved that when k ≥ 6, Yk and 
Θk are guaranteed to be void-free. However, it is still unclear 
how well these two types of graphs support the Greedy 
Forwarding algorithm. To evaluate on this aspect, we measured 
a metric called stretch [15]. Specifically, the stretch by a 
routing algorithm Γ for a source/destination pair (s, t) in a graph 
G is defined as: 

(1)
),( ttosfrompathshortestofLength

ttosfromΓbyfoundpathofLength
tsforΓby

stretch
=  

Further, the average stretch by Γ on G is the average stretch of 
all (s, t) pairs in G; the maximum stretch by Γ on G is the largest 
stretch of all (s, t) pairs in G. In this paper, we consider Greedy 
Forwarding as the routing algorithm.  

     Note that, to measure path length, two metrics are commonly 
used: number of hops and Euclidean distance. The hop metric is 
generally used in wireless networks, since packet forwarding in 
each hop involves much more significant transmission delay 
and queuing delay than propagation delay, which is trivial due 
to the light speed of wireless signal. On the other hand, the 
Euclidean metric is generally used in transport networks or 
robotics, where the propagation delay becomes significant due 
to the low speed of vehicles or robots. To make our work useful 
for different areas, we measure the stretches by Greedy 
Forwarding in both hop and Euclidean metrics in our 
experiments.  

    Also, to help explain the results on stretches, we experiment 
on the average node degrees (denoted degavg hereafter) in Theta 
graphs and Yao graphs as well. Note that, degavg of a graph 
equals 2m/n, where m is the number of edges and n is the 
number of nodes in this graph.   

For all the aforementioned aspects of evaluation: stretch of 
Greedy Forwarding and average node degree in Yao graph and 
Theta graph, we add a third graph type Delaunay triangulation 
(DT) [5] as a comparison, since DT is also applied as wireless 
network topologies in some research efforts [16, 17]. In such 
comparisons, we set k=6 for Yao graph and Theta graph, since 6 
is the smallest k that enables those two graphs void-free. 

Below, we first describe our experimental setup, and then 
present our results in the following order: average node degree, 
stretch of Greedy Forwarding in hop metric, then in Euclidean 
metric. 

A. Experiments Setup 
     We developed software to construct Yao graph, Theta graph 
and DT and then calculate on the degavg and stretch of Greedy 
Forwarding in these three types of graphs. Our software is 
implemented using the Computational Geometry Algorithms 
Library (CGAL) [18], which provides us APIs for basic 
geometric calculations. Fig. 8 gives an example of DT, Yao 
graph and Theta graph with k=6 constructed by our software on 
a 14-node set respectively. 

     In our experiments, we generated nodes according to 
uniform distribution in a disk area. Also, in both experiments on 
degavg and stretch, we first fix k to 6 and vary the number of 
nodes (denoted by n hereafter) to see the influence of n, and 
then we fix n to 800 and vary k to see the influence of k. For 
each combination of n and k, we conducted 1000 experiments 
with each node placement randomly generated. Then, the 
average results of these 1000 experiments are plotted in the 
upcoming figures. 

B. Average node degree 
Fig. 9 plots the degavg’s for DTs, Yao graphs and Theta 

graphs with k=6 and n = 100, 200, …, 900 and 1000 
respectively. In a DT, we have e = 3n – c – 3, where e is the 
number of edges and c is the number of convex hull edges [5]. 
So we know that degavg of a DT should approach 6 with the 
increase of n, which is confirmed in Fig. 9. For Theta graph, the 

 
  

(a) Delaunay triangulation (DT) (b) Theta graph (c) Yao graph 

Fig. 8. Examples of Delaunay triangulation, Theta and Yao graphs with k=6 constructed by our software on a 14-node set. 
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following asymptotic result exists on its degavg when n is made 
infinite [19]:  

(2)
3565.1
3954.1





⋅
⋅

≈
oddiskwhenk
eveniskwhenk

degavg
 

For Yao graph, [19] states that its degavg is similar to Theta 
graph, but the closed form formula of its degavg cannot be 
found. According to our observation from Fig. 9, when we fix k 
to 6, degavg of Theta graph is roughly the same as Yao graph, 
and is about 1.3 times the degavg of DT.  

     Fig. 10 plots the degavg’s of Yao graph and Theta graph with 
n=800 and k = 6, 7, … , 12 and 13 respectively. We can mainly 
see the follows from this figure. First, the degavg’s of Yao graph 
and Theta graph are about the same at different k’s. Second, the 
data lines of both graphs exhibit a zigzag shape, which 
conforms with formula (2) where an even k and an odd k 
involve different coefficients. This zigzag of degavg will be used 
to explain the zigzag of stretches in the coming figures.   

C. Stretch of Greedy Forwarding in hop metric 
Fig. 11 plots the average stretch of Greedy Forwarding in 

hop metric on graphs with n = 100, 200, …, 900 and 1000 
respectively. This figure mainly shows that (1) for the node 
numbers experimented, Greedy Forwarding on Yao graph 
achieves a slightly smaller stretch than on Theta graph, and (2) 
Greedy Forwarding on DTs has a much larger stretch than on 
Yao graphs and Theta graphs, since DTs have smaller degavg 
than Yao graphs and Theta graphs. 

Fig. 12 plots the maximum stretch of Greedy Forwarding in 
hop metric when n changes. The maximum stretch is used to 
reflect the worst case performance of Greedy Forwarding. 
Basically, this figure shows similar performance relationship 
among DT, Theta graph and Yao graph in worst case as in 
average case in Fig. 11. 

Fig. 13 plots the average stretch of Greedy Forwarding in 
hop metric when k changes. This figure mainly shows the 
following. First, the average hop stretches on both Yao graph 
and Theta graph bear a zigzag shape, taking a larger value at an 
odd k and a smaller value at an even k. This is largely due to the 
zigzag shape of degavg’s of Yao graph and Theta graph as 
depicted in Fig. 10. Second, when k equals 6 or 12, Greedy 
Forwarding achieves a better hop stretch than other 
experimented k’s on both Yao and Theta graphs. This implies 
that six is an efficient number for Yao and Theta graphs, and the 
underlying reason needs to be further explored.   

D. Stretch of Greedy Forwarding in Euclidean metric 
Fig. 14 plots the average stretch of Greedy Forwarding in 

Euclidean metric on graphs with n = 100, 200, …, 900 and 
1000 respectively. This figure shows very different phenomena 
from those in hop metric shown in Fig. 11. First, Greedy 
Forwarding achieves almost identical average Euclidean stretch 
on Yao graph and Theta graph, with sometimes a slightly 
smaller stretch on Yao and sometimes a slightly smaller stretch 
on Theta, so it is hard to tell on which graph Greedy 
Forwarding performs better. Second, though DTs have smaller 
degavg’s than Yao and Theta graphs, Greedy Forwarding 
achieves better Euclidean stretch on DTs than on Yao and Theta 
graphs. This implies the graph structure of DTs has a much 
better support on Euclidean stretch than on hop stretch. 

Fig. 15 plots the maximum stretch of Greedy Forwarding in 
Euclidean metric when n changes. This figure basically shows 
the same phenomena as Fig. 14, except that Greedy Forwarding 
consistently achieves smaller maximum Euclidean stretches on 
Yao graph than on Theta graph, reflecting that Greedy 
Forwarding performs more stably on Yao graph than on Theta 
graph. 

Fig. 16 plots the average stretch of Greedy Forwarding in 
Euclidean metric when k changes. This figure shows similar 
phenomena as those in hop metric shown in Fig. 13. The 
explanation will also resort to the zigzag shape of degavg’s of 
Yao graph and Theta graph shown in Fig. 10. 

Since this section presented many experimental results, a 
detailed summary of these results is provided in the 
Conclusions section to enable a quick overview. 

V. CONCLUSIONS 

Since the Greedy Forwarding algorithm is an important 
routing algorithm used in wireless networks, this paper studied 
how well Yao graph and Theta graph support Greedy 
Forwarding, and presented both theoretical and empirical 
results. Theoretically, this paper proved that (1) when the 
number of cones is less than 6, Yao graphs or Theta graphs are 
not void-free on some node sets on the plane, and (2) when the 
number of cones equals or exceeds 6, Yao graphs and Theta 
graphs are void-free for any node set on the plane. 
Experimentally, this paper mainly showed the following results.  

• The Greedy Forwarding algorithm performs well on both 
Yao and Theta graphs, with average stretch less than 1.14 in 
both hop and Euclidean metrics on all experimented 
parameters in this paper.  

 
Fig. 9. Average node degrees with different n’s and k=6. 

 
Fig. 10. Average node degrees with different k’s and n=800. 
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• In hop metric, Greedy Forwarding achieves slightly smaller 
stretches in both average and worst cases on Yao graphs 
than on Theta graphs. Moreover, both Yao and Theta graphs 
with k=6 give smaller stretches in both average and worst 
cases than DTs. 

• In Euclidean metric, Greedy Forwarding achieves slightly 
smaller stretch in worst case on Yao graph than on Theta 
graph. In average case, it is hard to tell which graph 
performs better. Surprisingly, though Yao graph and Theta 
graph with k=6 have larger degavg’s than DTs, both of them 
incur larger stretches than DTs, reflecting that DTs are very 
suitable in finding short paths in Euclidean metric.  

• In both hop and Euclidean metrics, for both Yao and Theta 
graphs, Greedy Forwarding generally has smaller average 
stretches when k is even than when k is odd; especially 
when k is a multiple of six, Greedy Forwarding sees the 
smallest average stretches, showing that six is an efficient 
number for Yao and Theta graphs. 
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Fig. 11. Average stretch in hop with different n’s 

and k=6. 
Fig. 12. Maximum stretch in hop with different 

n’s and k=6. 
Fig. 13. Average stretch in hop with different k’s 

and n=800. 

   
Fig. 14. Average stretch in Euclidean with 

different n’s and k=6. 
Fig. 15. Maximum stretch in Euclidean with 

different n’s and k=6. 
Fig. 16. Average stretch in Euclidean with 

different k’s and n=800. 
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