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h i g h l i g h t s

• When cone number is less than 6, Yao or Theta graph is not void-free on certain node sets in the plane.
• When cone number is larger than or equal to 6, both Yao and Theta graphs are void-free on any node set in the plane.
• Greedy Forwarding performs better on Yao or Theta graphs with even cone numbers than those with odd cone numbers.
• Six is probably the most suitable cone number for Yao and Theta graphs as network topologies.
• We contributed our software for graph construction to CGAL (http://www.cgal.org).
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a b s t r a c t

Greedy Forwarding algorithm is an important geometric routing algorithm for wireless networks.
However, it can fail if the network topologies contain voids, in which a packet cannot be moved closer to
destination. Since Yao and Theta graphs are two types of geometric graphs exploited to construct wireless
network topologies, this paper first gives theoretical results on whether these two types of graphs can
contain voids with respect to their cone numbers. Then, this paper examines the performance of Greedy
Forwarding on Yao and Theta graphs in terms of stretch (the ratio between the path length found by
Greedy Forwarding and the shortest path length from a source to a destination). Both worst-case and
average-case stretches are studied. For the worst case, this paper shows that the stretches of Greedy
Forwarding onbothYao andTheta graphs donot have a constant upper bound (i.e., not competitive) in hop
metric. For the average case, this paper studies the stretch experimentally by running Greedy Forwarding
on a large number of Yao and Theta graphswith randomly generated node sets. The average-case stretches
in both hop and Euclidean metrics are measured, and several interesting findings are revealed.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

When studying geometric (or geographic) routing algo-
rithms [20] in wireless networks, the network topology is usually
modeled by a geometric graph G (V, E), in which each node in
V is assigned a pair of (x, y)-coordinates, and each edge in E
represents a connection between twonodes andhas aweight equal
to the Euclidean distance between these two nodes. An important
routing algorithm under this geometric graph model is the Greedy
Forwarding (also known as Greedy Routing) algorithm [11]: when
a node u forwards a packet with destination node t, u sends this
packet to its neighbor that has the smallest Euclidean distance to t.
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Here, two nodes u and v are said to be each other’s neighbor if the
edge uv is present in the graph.

However, Greedy Forwarding (GF) does not succeed on a graph
that contains void [11,14], in which for a destination t, a node
does not have a neighbor with a smaller distance to t than its
own distance to t. Thus, whether a geometric graph contains void
becomes an important property to study. For the convenience of
discussion, we formally define the concept void-free as follows. Let
d (a, b) denote the Euclidean distance between node a and node b;
if for any node pair (u, v) in a geometric graph G, u always has a
neighbor w such that d (w, v) < d(u, v),G is said to be void-free.

The void-free property has been studied for several types of
geometric graphs used in wireless networks such as Relative
Neighborhood Graph [33], Gabriel Graph [17], and Delaunay Tri-
angulation [2]. Specifically, Relative Neighborhood Graphs and
Gabriel Graphs have been shown not void-free for certain node
sets [27]; and Delaunay Triangulations have been shown void-free
on any node set on the plane [8]. However, for Yao graphs [38]
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Fig. 1. Cones and an example of Yao graph for k = 5.

and Theta graphs (or Θ-graphs) [12], which are also leveraged in
several works [21,23,25,32] to construct network topologies, no
results exist on the void-free property yet. Moreover, how well GF
performs on Yao and Theta graphs in terms of stretch [15] has not
been studied to date.

The importance of Yao and Theta graphs mainly lie in the
wireless networks (e.g., wireless mesh networks) that use direc-
tional antennas. In such networks, each wireless node is equipped
with multiple directional antennas and each directional antenna’s
coverage area is roughly a cone with certain angle [39]. Note that
the term cone in the literature of Yao and Theta graphs [12,38]
means a sector (i.e., a two dimensional concept). Considering di-
rectional antennas, this paper does not assume the Unit Disk Graph
(UDG) model [36] commonly used in wireless networks. In the
UDG model, each node’s coverage area is a unit disk, thus greatly
limiting the link length possible. Instead, this paper assumes that
each directional antenna on a wireless node can adjust its power
to achieve desired link length, which allows us to study the com-
plete Yao and Theta graphs without the link length constraint.
This assumption is reasonable because in the real-world wireless
networks, we can deploy wireless nodes in a way such that the
links needed among them are realizable.

1.1. Definitions of Yao and Theta graphs

Since rigorous definitions of Yao and Theta graphs are needed
by later proofs, we present them here.

Given a set of nodes V on the plane, the directed Yao graph
with k cones (k: denoting the number of cones throughout this
paper, k ≥ 2) on V is obtained as follows. For each node u ∈

V , starting from a given direction (e.g., the direction of positive
y-axis), draw k equally-spaced rays l0, l1, . . . , lk−1 originating from
u in clockwise order (see Fig. 1(a)). These rays divide the plane into
k cones, denoted by c(u, 0), c(u, 1), . . . , c(u, k − 1) respectively in
clockwise order. To prevent the overlapping at boundaries, it is
assumed here that the area of c(u, i), where i = 0, . . . , k − 1,
includes the ray li but excludes the ray l(i+1)% k. In each cone of u,
construct a directed edge from u to its closest node by Euclidean
distance in that cone. Ties are broken arbitrarily. These directed
edges will form the edge set of the directed Yao graph on V.

The undirected Yao graph (or simply Yao graph) on V is obtained
by following the same procedure but ignoring the directions of
edges. Note that if both edge uv and vu are in the directed Yao graph,
only one edge uv exists in the resulting Yao graph, thus removing
duplicate edges. Fig. 1(b) gives an example of Yao graphwith k = 5.

Similar to Yao graph, the undirected Theta graph (or simply Theta
graph) is also obtained by letting each node u ∈ V select a ‘closest’
node in each of its cones to establish an edge. The only difference is
that ‘closest’ in Theta graphmeans the smallest projection distance
onto the bisector of that cone, not the direct Euclidean distance.

Fig. 2. Bisector in a cone of a Theta graph.

For instance, in Fig. 2, node u’s ‘closest’ node will be node b. For
convenience, we denote Yao and Theta graphs with k cones as Yk
and Θk hereafter.

Note that this paper studies undirected Yao and Theta graphs,
since a link is typically bidirectional in wireless networks. That
is, if node u selects node v as its neighbor under the Yao/Theta
graph definition, there will be a bidirectional link between u and v,
even when v does not select u as its neighbor. This complies with
real-world scenarios because the multiple directional antennas of
node v will cover the entire surrounding of node v and if node u
selects node v as neighbor, one of v’s directional antenna can reach
u as well.

1.2. Contributions of this paper

First, for the void-free property of Yao and Theta graphs, this
paper1 shows that:

• When 2≤ k≤ 5, Yk andΘk are not void-free for certain node
sets on the plane.

• When k ≥ 6, Yk and Θk are void-free for any node set on the
plane.

Second, this paper further studies the performance of GF on Yao
and Theta graphs in terms of stretch [15,19,29] (formally defined
in Section 4). Both worst-case and average-case stretches were
studied, and for bothworst and average cases, the study considered
both hop and Euclidean metrics. Note that when the path length
is measured by the number of hops, we obtain the stretch in hop
metric; and when the path length is measured by the sum of the
Euclidean distances of the edges, we obtain the stretch in Euclidean
metric. While hop metric is important for wireless networks, Eu-
clidean metric is important for areas such as transport planning
and robotics where the Euclidean path length is more meaningful
than the number of hops.

Specifically, for the worst-case stretch, this paper proves that a
constant upper bound does not exist for GF on Yao or Theta graph
in hopmetric. Note that in the literature, if the stretch by a routing
algorithm on a type of graph has a constant upper bound, this
routing algorithm is said to be competitive [5] on this type of graph.
Thus, in other words, this paper shows that GF is not competitive
on Yao or Theta graph in hop metric. In Euclidean metric, we
conjecture that GF is competitive on both Yao and Theta graphs.
Unfortunately, we are unable to prove this in this paper.

For the average-case stretches, the results in both hop and
Euclidean metrics were obtained by running GF on a large number
of randomly generated Yao and Theta graphs. Moreover, for com-
parison purpose, we also measured the stretches in both hop and
Euclideanmetrics by GF onDelaunay triangulations (DTs) [2], since
DT is another type of geometric graphs exploited in constructing
wireless networks in several research efforts [22,31,34]. In brief,

1 A preliminary version of this paper [19] appears in IEEE GLOBECOM 2014.
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Fig. 3. Counter example node set V0 on which Yao graphs are not void-free for
k = 2, 3.

we are the first to experiment on the average-case stretches by GF
on Yao and Theta graphs and compare themwith DTs; and our ex-
periments revealed several very interesting findings (summarized
in Section 5.5).

Finally, we contributed our software package for constructing
Yao and Theta graphs on a set of nodes to a prestigious open
source library named CGAL (Computational Geometry Algorithm
Library [10]). One significant advantage of our package is that it
supports the exact construction of Yao and Theta graphs, in which
the cone boundaries are calculated by using roots of polynomials,
thus avoiding using the value of π , which cannot be represented
exactly by computers. For how to use our package, please refer to
its user manual at [28].

The rest of this paper is organized as follows. Section 2 shows by
counter examples that Yk andΘk are not void-free when 2≤ k≤ 5;
Section 3 proves that Yk andΘk are void-freewhen k ≥ 6; Section 4
shows by counter examples that GF is not competitive on Yk and
Θk in hopmetric when k ≥ 6; Section 5 presents our experimental
studies on average-case stretches; Section 6 provides a survey of
related work; finally, Section 7 concludes this paper.

2. Counter examples when 2 ≤ k ≤ 5

When 2 ≤ k ≤ 5, we give counter example node sets to show
that Yk and Θk are not always void-free. For each node set, we
describe how it is designed and give (x, y)-coordinates for each
node. We also prove theoretically and verify by our software that
each counter example node set designed by us gives a Yao/Theta
graph that is not void-free.

Below, we first present counter example node sets for Yk (2 ≤

k ≤ 5) within the proof of the following proposition. Then, we
show that these node sets can be applied to Θk (2 ≤ k ≤ 5) as well.

Proposition 1. When 2 ≤ k ≤ 5, some node sets exist such that Yk
on them are not void-free.

Proof. When 2 ≤ k ≤ 3, we give a counter example node set V0
with four nodes u, v, a, and b as shown in Fig. 3, where the dotted
auxiliary circle Cv is centered at v and has radius d (u, v), and the
dotted auxiliary lines emanating from each node are only drawn
for the case of k = 3.

When k = 2 and 3, Y2 and Y3 on V0 are the same and depicted
by solid lines in Fig. 3. As node a lies outside the circle Cv , node u
does not have a neighbor with a shorter distance to v. So Y2 and Y3
are not void-free on V0.

When k = 4, we give a counter example node set V1 with six
nodes u, v, a, b, c, and d as shown in Fig. 4. In this figure, the dotted
circle Cv is centered at v and has radius d (u, v). The resulting Y4
on V1 is depicted by solid lines. Since nodes a and b are outside the

Fig. 4. The counter example node set V1 on which Yao graph is not void-free for
k = 4.

Fig. 5. The counter example node set V2 on which Yao graph is not void-free for
k = 5.

circle Cv , node u does not have a neighbor with a shorter distance
to v. So Y4 is not void-free on V1.

When k = 5, we give a counter example node set V2 with six
nodes u, v, a, b, c, and d as shown in Fig. 5. Their positions have the
following relationship: v is located inside c (u, 1) and very close to
the ray l1 originating from u; d is located inside c (v, 3); b is located
inside c (u, 2), c (d, 3) and c (v, 3); c is located inside c (u, 1), c (d, 2)
and c (v, 2); a, b, and c are outside the circle Cv which is centered
at v and has radius d (u, v). With this node placement, the resulting
Y5 on V2 is shown by solid lines in Fig. 5. As nodes a, b, and c are
outside the circleCv , nodeudoes not have a neighborwith a shorter
distance to v. So Y5 is not void-free on V2. ■

Next, we consider Θk. We verified the following by both man-
ual calculation and our software for constructing Yao and Theta
graphs: for k = 2, 3, Θk on V0 are the same as Yk on V0; for k = 4,
Θ4 on V1 is the same as Y4 on V1; and for k = 5, Θ5 on V2 is the
same as Y5 on V2. Thus, the above node sets V0, V1, and V2 can serve
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Fig. 6. Proof for Yao graph for k ≥ 6.

as counter examples for generating Θk(2 ≤ k ≤ 5) which are not
void-free aswell. Consequently,wehave the followingproposition.

Proposition 2. When 2 ≤ k ≤ 5, some node sets exist such that Θk
on them are not void-free.

3. Proofs for void-freeness when k ≥ 6

When k ≥ 6, we show that Yk andΘk are void-free for any node
set. Below, we first prove the following proposition for Yk.

Proposition 3. When k ≥ 6, Y k are void-free for any node set in the
plane.

Proof. This proof is done by providing a method by which, for any
two different nodes u, v in a Yk with k ≥ 6, u can always find a
neighbor w such that d(w, v) < d(u, v).

We will start with node v, which must reside in one cone of u
(see Fig. 6). According to the definition of Yao graph, u connects to
one of its closest neighbors in that cone. We will use this neighbor
connected by u as the node w. Next, we prove that d(w, v) <
d(u, v).

If w is the same node as v, we have d(w, v) = 0 < d(u, v), thus
completing the proof. Otherwise, w is a different node from v. In
this case, if u, w, and v are collinear, then w must strictly lie inside
the line segment uv, since w is the closest node to u in that cone.
Thus, we have d (w, v) < d(u, v). On the other hand, if u, w, and v
are not collinear, we can draw a triangle connecting nodes u,w, and
v. When k ≥ 6, the angle of a cone is no more than π /3. Because
w and v cannot fall on different boundaries of a cone due to the
way a cone is defined in the Section 1.1, we have ̸ wuv < π/3
and also ̸ uvw + ̸ uwv > 2π/3. Since d (u, w) ≤ d(u, v), we have
̸ uvw ≤ ̸ uwv. Since we already know ̸ uvw+ ̸ uwv > 2π/3, we
have ̸ uwv > π/3. Thus, ̸ uwv > ̸ wuv. Since a larger side faces
a larger angle in a triangle, we have d(u, v) > d(w, v). ■

Next, we give the proof for Θk in Proposition 4.

Proposition 4. When k ≥ 6, Θk are void-free for any node set in the
plane.

Proof. This proof is also done by providing a method by which, for
any two different nodes u, v in a Θk with k ≥ 6, u can always find
a neighbor w such that d(w, v) < d(u, v).

Similar to the proof of Proposition 3, node v must reside in one
cone of u. According to the definition of Theta graph, u connects to
one of its neighbors that have the shortest projection distance on
the bisector of that cone. We will use this neighbor connected by u
as the node w. Next, we prove that d(w, v) < d(u, v).

Ifw is the same node as v, we easily have d(w, v) = 0 < d(u, v).
Otherwise, we prove d(w, v) < d(u, v) as follows.

If u, w, and v are collinear, w must strictly lie inside the line
segmentuv, sincewhas the smallest projection distance tou in that
cone. Thus, we have d (w, v) <d (u, v). Otherwise, nodes u, w, and
v form a triangle. There can be two cases regarding the orientation

Fig. 7. Proof for Theta graph for k ≥ 6.

Table 1
Symbols used in this and later sections.

G A graph
s, t Source, destination nodes in G
Γ A geometric routing algorithm
Γ (G, s, t) The length of path found by Γ from s to t in G
SP (G, s, t) The shortest path length from s to t in G
stretchΓ (G, s, t) The stretch byΓ from s to t in G
Γavg (G) The average Γ (G, s, t) of all (s, t) pairs in G
SPavg (G) The average SP (G, s, t) of all (s, t) pairs in G
stretchΓ ,avg (G) The average stretchΓ (G, s, t) of all (s, t) pairs in G
stretchΓ ,max(G) The maximum stretchΓ (G, s, t) of all (s, t) pairs in G
d (s, t) The Euclidean distance between s and t

of this triangle (see Fig. 7): in Case 1, ̸ uwv faces the bisector; in
Case 2, ̸ uwv does not. In the discussion of both cases below, we
denote the projection points of w and v on the bisector w′ and v′

respectively.
In Case 1, when k ≥ 6, the angle between the boundary and the

bisector is nomore thanπ /6. Thuswe have ̸ uww′
≥ π/2−π/6 =

π/3. Since d(u, w′) ≤ d(u, v′), we have ̸ uww′
≤ ̸ uwv. Because

w and v cannot fall on different boundaries of a cone due to the
way a cone is defined in the Section 1.1, we have ̸ wuv<π /3. Thus,
̸ wuv < ̸ uwv. Since a larger side faces a larger angle in a triangle,
we have d (w, v) <d (u, v).

In Case 2, we have d(u, w) = d(u, w′)/cos(̸ wuw′), and
d(u, v) = d(u, v′)/cos(̸ vuv′). Since d(u, w′) ≤ d(u, v′) and
cos(̸ wuw′) > cos(̸ vuv′), we have d(u, w) < d(u, v). Then,
following the proof in Proposition 3 on the case where u, w and
v form a triangle, we obtain d(w, v) < d(u, v). ■

As a note, the above two proofs for Propositions 3 and 4 do
not need the assumption that no ties exist when a node selects
a ‘closest’ neighbor in a cone in Yao or Theta graph, so these two
proofs still work when a node set contains such ties.

4. Competitiveness of greedy forwarding

The propositions in the previous section imply that GF always
succeed on Yk and Θk when k ≥ 6, which enables us to study the
competitiveness of GF on Yk and Θk when k ≥ 6. Below, we first
give the formal definitions of stretch [15] and competitiveness [5],
which are needed by later proofs. For convenience, the symbols
used in these definitions and later part of the paper are summa-
rized in Table 1.

With the symbols in Table 1, the stretch by a routing algorithm
Γ from s to t in G is defined as:

stretchΓ (G, s, t) =
Γ (G, s, t)
SP(G, s, t)

(1)

Further, stretchΓ ,avg (G) is defined as the average stretchΓ (G, s, t)
of all (s, t) pairs in G; and stretchΓ ,max(G) is defined as the largest
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(a) Delaunay triangulation (DT). (b) Theta graph. (c) Yao graph.

Fig. 8. Examples of DT, Θ6 and Y6 constructed by our software on a 14-node set. Light green lines in (b) and (c) show cone boundaries. (For the colour version of this figure,
the reader is referred to the web version of this article.)

Fig. 9. The counter example node set on which Yao graph is not competitive in hop
metric.

stretchΓ (G, s, t) of all (s, t) pairs in G. If the stretchΓ ,max(G) of every
instanceG of a graph type has a constant upper bound c,Γ is said to
be competitive on this type of graphs and c is called the competitive
ratio [8]. Note that c is a constant here, which is the basic case
of upper bound analysis; the more complex case where the upper
bound can be an expression is beyond the scope of this paper.

With the above said, we prove the following proposition.

Proposition 5. For any k ≥ 6, GF is not competitive on Y k in hop
metric.

Proof. The proof is done by giving a series of counter example Yao
graphs on which GF can have arbitrarily large stretchGF ,max(G) in
hop metric.

Consider a kind of node sets consisting of n + 3 nodes: u, v, w,
a1, a2 . . . , an, in which u, v, a1, a2 . . . , an are placed on a horizontal
line, and w is placed above the line uv and satisfies that ̸ wuv >
π/3 and ̸ wvu > π/3 (see Fig. 9 for an illustration). When k ≥ 6,
the angle of cones is no more than π /3, which enables w to be
the only node in one of cones of u, v, a1, a2 . . . , an respectively,
so the edges uw, vw, a1w, a2w, . . . , anw all exist in the resulting
Yao graph no matter how the cones are oriented. Also, since u, v,
a1, a2 . . . , an are on the same line, the edgesua1, a1a2, . . . , anv exist
in the resulting Yao graph.

On this Yao graph, use GF to find a path from u to v. Since
̸ wuv > π/3 and ̸ wvu > π/3, we have d (w, v) >d (u, v).
Thus, GF will find the path ua1a2 . . . anv that consists of n+1 hops,
while the shortest path isuwv that consists of 2 hops. Therefore, the
maximum stretch of GF on this kind of graphs is (n+1)/2. Sincewe
can increase n arbitrarily, GF is not competitive on Yao graphs. ■

It is easy to verify that the Theta graphs generated by this kind
of node sets are exactly the same as the Yao graphs generated by
them, so we get a similar proposition for Theta graphs as well.

Proposition 6. For any k ≥ 6, GF is not competitive on Θk in hop
metric.

Note that the above kind of node sets is specially designed for
theoretical interest and will not affect the practicality of GF in
general. As seen in later experiments, the average-case stretches
of GF on Yao and Theta graphs is actually only a little more than
one, indicating a very good performance by GF.

5. Stretches in average case

We obtain the average-case stretches of GF on Yao graphs,
Theta graphs, and DTs by experimenting with 1000 graphs and
calculating the average stretchGF , avg (G) of all experimented graphs
G for each graph type.

In our experiments, stretches in both hop and Euclideanmetrics
are measured. For convenience, we also call the stretch in hop
metric the hop stretch and the stretch in Euclidean metric the
Euclidean stretch later. Moreover, to help explain the results on
stretches, we experiment on the average node degrees (denoted
Davg hereafter) of all three graph types. SinceDavg reflects how rich
a graph is connected, it will shed some light on the phenomena
exhibited by stretch. Note that, the Davg of a graph equals 2e/n,
where e is the number of edges and n is the number of nodes in
this graph.

Below, we first describe our experimental setup, and then
present our results in the following order: average node degree,
average-case hop stretches, and average-case Euclidean stretches.

5.1. Experiments setup

We developed software to measure and calculate the afore-
mentioned metrics (average node degree, hop stretch, Euclidean
stretch) on Yao graphs, Theta graphs and DTs. Our software is im-
plemented using the Computational Geometry Algorithms Library
(CGAL) [10], which provides basic APIs for geometric calculations.
While CGAL provides the construction package for DTs but not
Yao and Theta graphs, we developed the construction package for
Yao and Theta graphs ourselves, and contributed our package to
CGAL. After five rounds of reviews and revisions, our package is
now integrated into CGAL and available at [28].

When comparing Yao and Theta graphs with DTs, we use k = 6
for Yao and Theta graphs, since six is the smallest k that makes
those two graphs void-free. To provide an intuition to these three
types of graphs (DT, Θ6 and Y6), examples of them constructed by
our software on a 14-node set are illustrated in Fig. 8, inwhich light
green lines are added to show cone boundaries at the nodes where
the resulting Theta graph and Yao graph have different edges. From
this figure, we can observe that (1)Θ6 and Y6 generally have richer
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Fig. 10. Average node degrees with different n’s and k = 6.

Fig. 11. Average node degrees with different k’s and n = 800.

connectivity than a DT, and can be nonplanar graphs (i.e., having
crossing edges); (2) the differences betweenΘ6 and Y6 on the same
set of nodes generally only occur on a small portion of edges.

In our experiments, the nodes are generated according to uni-
form distribution in a square area. Note that the uniform distri-
bution is a common distribution assumed among the research
works [15,21,23,25,32,39] in this area to obtain general results. In
our experiments on aforementioned metrics, we first fix k to 6 and
vary the number of nodes (denoted by n hereafter) to observe the
influence of n, and then we fix n to 800 and vary k to observe the
influence of k. For each combination of n and k, we conducted 1000
experimentswith each node placement randomly generated. Then,
the average results of these 1000 experiments are plotted in the
upcoming figures.

5.2. Average node degrees

Before presenting the empirical results, we first give the known
theoretical results on the Davg in DT, Theta graph and Yao graph.
What is in common among these three graphs is that all their Davg
approach a constant with the increase of the node number in the
graphs.

• In particular, for a DT, we first have the following formula
holds: e = 3n − h − 3 [2] , where e is the number of edges
and h is the number of convex hull edges in this DT. Then,
since Davg = 2e/n, the Davg of a DT approaches 6 with the
increase of n.

Fig. 12. Average hop stretch with different n’s and k = 6.

• For Theta graph, Morin and Verdonschot proved the fol-
lowing two asymptotic formulae when n approaches infi-
nite [24]. These two formulae establish the approximate
linear relationship between Davg and k, showing that Davg
approaches a constant for a fixed k. Moreover, they inter-
estingly reveal that the coefficient for an even k is larger
than that for an odd k. Since in the Theta graph definition
presented in Section 1.1, the only way that makes Davg less
than 2k is the removal of duplicate edges, this difference
between even and odd k’s reflects that an even k sees less
duplicate edges than an odd k in Theta graph.

Davg ≈ (2 − π
√
3/9) · k ≈ 1.40 · k for an even k ≥ 4 (2)

Davg ≤ (2 − 2 arctan(
1
3
)) · k ≈ 1.36 · k for an odd k ≥ 5 (3)

• For Yao graph, Morin and Verdonschot [24] showed that its
Davg is similar to that of Theta graph, butwere unable to give
the closed-form expression.

Our experiments aim to confirm and demonstrate the above
theoretical results, especially for Yao graph in which the Davg has
no known closed-form expression. Specifically, Fig. 10 plots the
Davg for DT, Θ6 and Y6 with n = 100, 200, . . . , 900 and 1000
respectively. From this figure, we do observe that (1) the Davg of
DT approaches 6; (2) for k = 6, the Davg of Yao graph is almost
the same as that of Theta graph, and both are roughly 1.4 times the
Davg of DT, thus complying with the formula (2).

Fig. 11 plots the Davg of Yao and Theta graphs under different
k’s, mainly showing the following. First, the data lines of Yao and
Theta graphs are almost identical, reflecting the Davg of Yao and
Theta graphs are very close under different k’s. Since the data line
of Theta graph is almost hidden by that of Yao graph, we add a
table inside Fig. 11 to present the actual data behind the data lines.
Second, the data lines of both graphs exhibit a zigzag shape, which
is consistent with formulae (2) and (3). This reflects that the parity
of k has an impact on the connectivity of Yao and Theta graphs, and
this zigzag of Davg will help explain the zigzag of the average-case
stretches in the coming plots.

5.3. Average-case hop stretches

This subsection presents experimental results on average-case
hop stretches by GF on three types of graphs: Theta graph, Yao
graph and DT. Specifically, Fig. 12 plots the results with k = 6 and
n = 100, 200, . . . , 900 and 1000 respectively. This figure mainly
shows that (1) for all experimented n, GF achieves a slightly smaller
stretch on Yao graphs than on Theta graphs; and (2) GF has amuch
larger stretch on DTs than on Yao and Theta graphs; this can be
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Fig. 13. Average hop stretch with different k’s and n = 800.

Fig. 14. Average hop path length by GF with different n’s and k = 6.

Fig. 15. Average hop path length by GF with different k’s and n = 800.

explained by that DTs have smallerDavg than Yao and Theta graphs
as shown in the previous subsection.

The average-case hop stretches of GF on Theta and Yao graphs
with k = 6, 7, . . . , 13 are plotted in Fig. 13. This figure mainly
shows the following.

First, the average hop stretches on both Yao and Theta graphs
exhibit a zigzag shape, bearing a relatively large value at an odd
k and a relatively small value at an even k. This is contradictory
to the intuition that when k increases, the connectivity of Yao and
Theta graphs will get richer and hence the average stretch should
decrease monotonically. So this reflects that the parity of k has a
significant impact on the performance of GF on Yao and Theta graphs.
This impact links to the zigzag shape of Davg depicted in 0, where
an even k generally gives rise to a larger Davg and hence richer
connectivity than an odd k.

Second, when k equals 6 or 12, GF achieves a better hop stretch
than other experimented k’s on both Yao and Theta graphs. This
implies that six is an efficient cone number for Yao and Theta graphs.

Fig. 16. Average hop shortest path length with different n’s and k = 6.

Fig. 17. Average hop shortest path length with different k’s and n = 800.

To generalize the discussion in a broader context, this is similar
in principle to the phenomenon that bees build honeycomb cells
with a hexagonal shape to minimize the consumption of construction
materials [35]. Considering that k = 12 involves too much cost
in establishing edges in Yao and Theta graphs, k = 6 should be a
suitable choice for using Yao and Theta graphs to establish network
topologies.

According to formula (1), stretchGF (G, s, t) is a ratio between
GF (G, s, t) and SP(G, s, t), so a question arising naturally is:
whether the average path length by GF (GFavg (G)) and the average
shortest path length (SPavg (G)) onYao andTheta graphs also exhibit
a zigzag shape when k increases. To investigate this, we measured
the GFavg (G) and the SPavg (G) for Yao and Theta graphs in our
experiments, and also measured them for DTs for comparison
purpose. Themeasurement results onGFavg (G) are shown in Fig. 14
(k = 6 and varying n) and Fig. 15 (n = 800 and varying k), and the
results on SPavg (G) are shown in Fig. 16 (k = 6 and varying n) and
Fig. 17 (n = 800 and varying k).

From Figs. 14 and 16, we can observe that both the GFavg (G) and
the SPavg (G) of all three graph types increase when n grows from
100 to 1000. This is consistent with the intuition that more nodes
result in longer paths in graphs. Also from these two figures, we see
that both Yao and Theta graphs have smaller GFavg (G) and SPavg (G)
than DTs, showing that richer connectivity contributes to shorter
path lengths.

From Figs. 15 and 17, we can observe that both the GFavg (G) and
the SPavg (G) decrease smoothlywhen k increases from 6 to 13, thus
no zigzag shape is spotted. This reflects that the parity of k does not
have a noticeable influence on GFavg (G) and the SPavg (G), although
it does have a very apparent influence on stretchGF ,avg (G) according
to Fig. 13.

5.4. Average-case Euclidean stretches

This subsection presents experimental results on average-case
Euclidean stretches by GF on Theta graph, Yao graph and DT.
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Fig. 18. Average Euclidean stretch with different n’s and k = 6.

Fig. 19. Average Euclidean stretch with different k’s and n = 800.

Specifically, the results on these three types of graphs for n =

100, 200, . . . , 900 and 1000 and k = 6 are plotted in Fig. 18,
which shows very different phenomena from those on hop stretch
shown in Fig. 12. First, GF achieves almost identical average-case
Euclidean stretches on Yao and Theta graphs, which is different
from the case of hop stretch in which the GF clearly performs a
little better on Yao graph. Second, though DTs have smaller Davg
than Yao and Theta graphs, GF performs better on DTs than on Yao
and Theta graphs, which is opposite to the case of hop stretch in
which GF performs better on Yao and Theta graphs than on DTs.
This performance difference interestingly reflects that the DT graph
structure is more beneficial for GF to perform in Euclidean stretch
than in hop stretch, and the impact of the DT graph structure on GF
performance in Euclidean stretch overshadows the impact of the Davg
of DT.

The average-case Euclidean stretches of GF on Theta and Yao
graphs with k = 6, 7, . . . , 13 and n = 800 are plotted in
Fig. 19. This figure shows very similar phenomena to those on
hop stretches shown in Fig. 13. First, the average-case Euclidean
stretches on both Yao and Theta graphs exhibit a zigzag shape.
Second, when k equals 6 or 12, GF achieves a better Euclidean
stretch than other experimented k’s on both Yao and Theta graphs.
The comments to these phenomena will be the same as those to
the hop stretches.

Similar to what we did for the hop stretches, we present a
further study on the impact of the parity of khere. For the Euclidean
stretch, there exist two related metrics: absolute stretch and native
stretch. Both metrics are also important in practice, and we will
look at whether absolute stretch and native stretch exhibit a zigzag
shape when k changes between even and odd numbers.

First, the absolute stretch by a routing algorithm Γ from s to t in
a graph G, denoted by abs_stretchΓ (G, s, t), is defined as:

abs_stretchΓ (G, s, t) =
Γ (G, s, t) in Euclidean

d(s, t)
(4)

Fig. 20. Average absolute stretch with different n’s and k = 6.

From this definition, we see that absolute stretch is another metric
for evaluating the performance of a routing algorithm besides the
stretch described in Section 4. Further, the average absolute stretch
by Γ on a graph G, denoted by abs_stretchΓ ,avg (G), is defined as the
average abs_stretchΓ (G, s, t) of all (s, t) pairs in G.

Second, the native stretch from s to t in a graph G, denoted by
nat_stretch (G, s, t), is defined as:

nat_stretch(G, s, t) =
SP(G, s, t) in Euclidean

d(s, t)
(5)

From this definition, we see that native stretch is regardless of
routing algorithms but a reflection of a graph’s structure. Further,
the average native stretch of a graph G, denoted by nat_stretch
avg (G), is defined as the average nat_stretch (G, s, t) of all (s, t)
pairs in G; the maximum native stretch of a graph G, denoted by
nat_stretchmax(G), is defined as the maximum nat_stretch (G, s, t)
of all (s, t) pairs in G. As a worthy note, for a type of graphs, if the
nat_stretchmax(G) of every graph instance G has a constant upper
bound c, this type of graphs is called a c-spanner, and c is called
the spanning ratio (or stretch factor) of this type of graphs [18]. For
example, DT is known to be a 1.998-spanner [37], Y6 is known to
be a 5.8-spanner [1], and Θ6 is known to be a 2-spanner [3]. And
determining the tight (i.e., the minimum) spanning ratio for a type
of graphs is a long-existing research area [18].

It is easy to observe that the following relationship holds among
Euclidean stretch, absolute stretch and native stretch:

Euclidean stretchΓ (G, s, t) =
abs_stretchΓ (G, s, t)
nat_stretch(G, s, t)

(6)

Thus, absolute stretch and native stretch not only reflect the routing
performance and the graph structure, but also help understand the
behavior of the Euclidean stretch. Therefore, we also measured the
abs_stretchGF ,avg (G) and the nat_stretchavg (G) for Yao graph, Theta
graph and DT in our experiments. The measurement results on
abs_stretchGF ,avg (G) are shown in Fig. 20 (k = 6 and varying n) and
Fig. 21 (n = 800 and varying k), and the results on nat_stretchavg (G)
are shown in Fig. 22 (k = 6 and varying n) and Fig. 23 (n = 800
and varying k).

In Fig. 20, both Yao and Theta graphs see a smaller absolute
stretch than DT; and in Fig. 22, both Yao and Theta graphs see a
smaller native stretch than DT. These two facts are consistent with
the intuition that larger Davg results in smaller absolute stretch and
native stretch. However, recall that Fig. 18 shows both Yao and
Theta graphs actually see a greater Euclidean stretch than DT. This
reflects that although the impact of DT’s graph structure outweighs
the impact of D avg on Euclidean stretch, this outweighing does not
happen on absolute stretch and native stretch.

Also, Fig. 20 shows that Yao graph sees a slightly smaller ab-
solute stretch than Theta graph; and Fig. 22 shows that Yao graph
has a slightly smaller native stretch than Theta graph. Recall that, in
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Fig. 21. Average absolute stretch with different k’s and n = 800.

Fig. 22. Average native stretch with different n’s and k = 6.

Fig. 23. Average native stretch with different k’s and n = 800.

Fig. 18, we cannot tell on which graph GF performs better in terms
of Euclidean stretch, but here we have Fig. 20 and Fig. 22 as rescue
to demonstrate that Yao graph is better than Theta graph in terms
of absolute stretch and native stretch.

Furthermore, Fig. 22 contributes a hint on determining the tight
spanning ratio of Y6. As aforementioned, the current smallest span-
ning ratio known for Y6 is 5.8 [1], which is much larger than the
spanning ratio ofΘ6 (equal to 2, known to be tight [3]). Since Fig. 22
shows that Y6 actually has a smaller nat_stretchavg (G) than Θ6, it
suggests that the spanning ratio of Y6 may also be improved to 2.

Finally, from Fig. 21, we observe that the absolute stretches of
both Yao and Theta graphs exhibit a slight zigzag shape but do
decrease strictly with the growth of k, which shows that the parity
of k has an impact on the absolute stretches, but the impact is not
as strong as that on the stretch. And from Fig. 23, we observe that
the native stretches of both Yao and Theta graphs decrease strictly
with the growth of kwithout exhibiting a zigzag shape. This shows
that the parity of k does not have an apparent impact on the native
stretch. Overall, the results from these two figures comply with
the intuition that larger k gives rise to smaller absolute stretch and
native stretch.

5.5. Summary of experimental results

Since this section presented many experimental results, a sum-
mary is provided here to list the main ones. Within the summary,
the guidelines for exploiting Yao graph, Theta graph and DT as
network topologies are also given when possible.

• In general, the GF algorithm performs well on both Yao and
Theta graphs, with average-case stretch less than 1.14 in
both hop and Euclideanmetrics on all experimented param-
eters in this paper.

• For both hop and Euclidean stretches, for both Yao and Theta
graphs, GF generally has smaller stretches when k is even
than when k is odd (e.g., k = 8 sees a smaller stretch than
k = 9, etc.), so when selecting cone numbers, an even number
should be favored over an odd number.

• For both hop and Euclidean stretches, for both Yao and
Theta graphs, when k is a multiple of six, GF achieves the
smallest stretches among nearby k’s (e.g., k = 6 sees smaller
stretches than k = 7, 8, 9, 10 and 11, but fails to beat k = 12).
Also considering that k = 6 is the smallest cone number
enabling Yao and Theta graphs void-free and involving less
edges than k = 7–11, k = 6 is probably the best cone
number to adopt in constructing network topologies.

• For hop stretch, GF performs slightly better on Yao graphs
than on Theta graphs, and performs the worst on DTs. So in
terms of hop stretch, Yao graph is the best choice as network
topologies among these three types of graphs.

• For Euclidean stretch, surprisingly, though Yao and Theta
graphs with k = 6 have larger Davg than DT, both of them
incur larger stretches than DT. So DT is the best choice as
network topologies in terms of Euclidean stretch. If DT is ex-
cluded, the decision between Yao and Theta graphs cannot
be made by comparing their average Euclidean stretches
because GF performs almost the same on these two graphs.
But if the absolute stretch and the native stretch are considered,
GF performs slightly better on Yao graph in both metrics.

6. Related work

Since the study presented in this paper spans the following
three areas: (1) the void-free property of geometric graphs, (2) the
competitiveness of routing algorithms and (3) the experimental
study of average-case stretches, the related works in these three
areas are of interest to this paper. While we have overviewed
the related work for the area (1) in the Introduction section, this
section will focus on the related works for the areas (2) and (3).

The area (2) is a hard research area, because not many results
on competitive routing algorithms exist so far. Below we try to
reviewexistingmajor results,which are essentially sporadic in that
each result is only applicable to a particular type of graph. Since
two metrics are generally considered for the competitiveness in
the literature: hop metric and Euclidean metric, we organize our
survey based on these two metrics below.

For the hop metric, [9] proved that no online competitive rout-
ing algorithms exist for DTs (here online means that a forwarding
node only knows its 1-hop neighborhood information). Accord-
ingly, [9] suggested that competitive algorithms under the hop
metric are harder to obtain than their Euclidean counterparts.
Despite the difficulty, some competitive algorithms did appear for
other types of graphs. For example, [19] presented a competitive
routing algorithm for the graphs in which nodes are located in a
narrow strip; and [15] proposed a polynomial-time algorithm to
embed Combinatorial Unit Disk Graphs into O (log2n)-dimensional
space such that GF is competitive. As stated in [15] itself, the
proposed algorithm can also be viewed as an adapted GF algorithm
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that is competitive on Combinatorial Unit Disk Graphs. Different
from [15] and [16,19] did not achieve a constant upper bound on
the worst-case stretch of the face routing algorithm [20] on finite
undirected graphs, but proved an upper bound expressed by the
number of nodes and the number of edges in the graph.

For the Euclidean metric, [26] described the θ-routing algo-
rithm for Theta graphs, which achieves a competitive ratio of
1/(1 − 2sin(θ/2)) for k ≥ 7, where θ is the cone angle. This
competitive ratio of the θ-routing algorithm was later improved
slightly in [4], which divides k into four categories: 4n+ 2, 4n+ 3,
4n + 4 and 4n + 5 (here n is an integer ≥ 1) and gives specific
competitive ratios for different categories of k. For Yao graphs, we
do not see existing works on competitive algorithms. For DTs, [8]
first proved that GF is not competitive on DTs and then gave an
algorithm called Parallel Voronoi Routing that is competitive on
DTs. For other types of graphs, [6] gave a routing algorithm that
is competitive on a type of spanner graphs with maximum degree
12; and [5] gave a competitive routing algorithm on the so-called
half-θ6-graphs.

Our paper studies the competitiveness of GF on Theta and Yao
graphs, which has no known results from previous work.We are suc-
cessful in showing that GF is not competitive in hopmetric on these
two types of graphs. In Euclidean metric, we cannot determine
the competitiveness of GF on Yao and Theta graphs in this paper,
and will study it as our next-step work. We note that studying the
competitiveness of routing algorithms is a challenging area, and
there are several open problems in this area as noted in [4,7].

The area (3), the experimental study of average-case stretches,
also only sees sporadic studies. Aforementioned works [15,19] con-
ducted experiments on the average-case stretches of their pro-
posed routing algorithms on their exploited graphs respectively
in hop metric. The average-case Euclidean stretch by GF on DTs is
first experimented in [13]. After this, [8] presented comparisons
on Euclidean stretches by GF and five other routing algorithms on
DTs. A recent work [30] presented comparisons on both hop and
Euclidean stretches by GF and six other routing algorithms on DTs.
The experimental work in this paper is the first to study both hop and
Euclidean stretches by GF on Theta and Yao graphs.

7. Conclusions

Since GF is an important routing algorithm for wireless net-
works, this paper studied how well Yao and Theta graphs sup-
port GF, and presented both theoretical and experimental results.
Theoretically, this paper proved that (1) when k < 6, Yao graph
or Theta graph is not void-free on certain node sets in the plane;
(2) when k ≥ 6, both Yao and Theta graphs are void-free on any
node set in the plane; and (3) GF is not competitive on Yao graph or
Theta graph in hop metric when k ≥ 6. Experimentally, this paper
showed several meaningful results that can guide the selection
of graphs as network topologies. A summary of these results and
guidelines is provided in Section 1.5.

While we have shown that GF is not competitive on Yao and
Theta graphs in hop metric, we conjecture that GF is competitive
on Yao and Theta graphs in Euclidean metric when k ≥ 6. How-
ever, we are unable to complete the proof at this stage and will
investigate it in our future work.
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