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Abstract— Service-level-agreement (SLA) monitoring measures
network Quality-of-Service (QoS) parameters to evaluate whether
the service performance complies with the SLAs. It is becoming
increasingly important for both Internet service providers (ISPs)
and their customers. However, the rapid expansion of the Internet
makes SLA monitoring a challenging task. As an efficient method
to reduce both complexity and overheads for QoS measurements,
sampling techniques have been used in SLA monitoring systems.
In this paper, a novel adaptive stratified sampling strategy is
developed based on the stratified sampling with optimum alloca-
tion to make the QoS monitoring less intrusive and more efficient.
Simulations using real traffic traces are conducted, which show
that the proposed algorithm achieves better performance than
systematic sampling and Poisson sampling.

Index Terms— SLAs, QoS, packet delay, LMS prediction,
adaptive sampling

I. INTRODUCTION

Internet Service Providers (ISPs) now offer service level
agreements (SLAs) routinely to their customers. This has
driven the service-providers to seek consistent testing and
measurement methods to accurately measures network perfor-
mance. To develop proper monitoring and performance estima-
tion techniques therefore becomes a key challenge for network
management. However, the implementation of measurement
becomes increasingly difficult and complex due to the rapid
expansion of the Internet. Moreover, the dramatic increase
in the speed of wide area backbones presents obstacles to
complete statistics collection. The enormous amount of mea-
surement data may significantly increase the cost and resource
usage [1].

Sampling-based measurement methods are used to reduce
the quantity of control data and resources required for network
performance monitoring, and finally to reduce the measure-
ment complexity and cost. The principle of sampling tech-
niques is to investigate the characteristics of a population
of elements using a representative subset. In network per-
formance monitoring, the performance metrics (e.g., packet
delay, packet loss and jitter) are computed by choosing some
particular packets among the entire traffic in the network.
Systematic sampling and random sampling are two widely
used methods in existing monitoring systems, but both of
them have severe limitations. Stratified random sampling with
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optimum allocation can achieve higher estimation accuracy,
but it requires extra statistics from the parent traffic trace,
which are not known a priori in real applications. To address
the challenge, a novel adaptive sampling strategy is proposed,
which employs a least-mean-square (LMS) algorithm to pre-
dict the required statistics from past observations. The sample
size for the next stratum is calculated from the predicted
value of the required statistics. The proposed algorithm is
applied for packet delay measurements. Simulation results
show that the proposed adaptive sampling scheme produces
good performance.

The rest of this paper is organized as follows: Section II in-
troduces three conventional sampling methods, as well as their
advantages and disadvantages; Section III describes in detail
the proposed adaptive stratified sampling scheme; Section IV
introduces the delay traffic trace used for simulation; Section V
presents the simulation results using real traffic traces provided
by the WAND group; and finally Section VI concludes this
paper.

II. SAMPLING TECHNIQUES
Traditional sampling techniques can be classified into three

categories: systematic sampling, random sampling and strati-
fied random sampling [1], [2], [3]. Fig. 1 illustrates these three
sampling techniques.
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Fig. 1. Sampling techniques

A. Systematic Sampling
Systematic sampling generates sampling traffic according to

a deterministic function. Generation of the sampling traffic is
triggered by either time (i.e., at fixed intervals) or packet count
(i.e., every k-th packet). Fig. 1.(a) shows systematic sampling
with a period of T seconds.

The use of systematic sampling always involves the risk of
biasing the results. If the systematics (e.g., periodic repetition
of an event) in the sampling process resemble the systematics
in the observed stochastic process (e.g., occurrence of event
of interest in the network), there is a high probability that the
estimation will be biased.



B. Random Sampling

Random sampling employs a random distribution function
to determine when a sample should be generated. Typically
the samples are generated according to a Poisson process or
uniform process. As shown in Fig. 1.(b), random sampling
may produce a varying number of samples in a given time
interval. With random sampling, an unbiased estimate of the
QoS metric can be achieved. However, the entirely random
nature of the sampling process may also cause the undesirable
effect that sampling intervals are not evenly distributed, and
therefore the network may not be sampled for a rather long
time.

C. Stratified Random Sampling

Stratified random sampling combines the fixed time interval
used in systematic sampling with random sampling [4]. Fig.
1.(c) shows stratified random sampling with a period of T and
a random sample is generated in each period.

The elements of the parent population are firstly grouped
into subsets (i.e., strata), elements of sample are then taken
from each subset. Depending on how the sample size (i.e.,
number of elements) is distributed among strata, stratified
sampling can be further classified into proportional allocation
and optimum allocation [5]. Proportional allocation means
that the sample size in each stratum is proportional to the size
of parent population in that stratum, while optimum allocation
means that the sample size in each stratum is proportional to
the standard deviation of the variable of interest (e.g., packet
delay) in that stratum. In this paper, the procedure of stratified
sampling is divided into fixed time intervals (i.e., stratum size)
according to the correlation of the elements (e.g., packet delay)
to be measured, then sampling packets are selected according
to a random process during each interval. The stronger the
correlation between packet delays in an interval is, the more
accurate the estimation of the mean packet delay will be.

D. Sampling Trigger

The sampling process can be triggered by packet count,
timer or packet-content [6]. In count-based sampling meth-
ods, the start and the finish of a sampling is triggered by
packet count. For example, a count-based systematic sampling
deterministically selects every k-th element (e.g., packet) out
of the data set. Timer-based sampling methods use a timer
instead of a packet count to trigger sampling. When the
timer expires, we select the next sampling packet. Packet-
content-based sampling methods trigger the sampling process
according to the contents of a packet (e.g., TCP SYN packet).
Claffy et al. [1] show that the performance difference between
count-based sampling techniques and timer-based sampling
techniques is very small.

E. Performance Comparison between Counted-based Simple
Random Sampling and Stratified Sampling

As variance of the sample mean has been widely used
as a performance measure [7, pp. 15], [8], the performance
of these sampling techniques is compared by comparing the

variance of the sample mean of different sampling schemes
under the constraint that the sample sizes of different sampling
methods are the same. The smaller the variance is, the better
performance the sampling technique has. The sampling gain
∆ is defined as the difference between the variance of the
sample mean of two different sampling techniques [3]. Table
I shows the notations used in our analysis:

TABLE I
NOTATIONS USED IN THE ANALYSIS

Property Parent Sample
population

Number of elements N n
Number of elements in the l-th stratum Nl nl

Number of strata L L
Mean value µ ȳ

Mean value in the l-th stratum µl ȳl

Variance of the variable of interest σ2 s2

Standard deviation of the variable of interest σ s
Variance of the variable of interest σ2

l s2
l

in the l-th stratum
Standard deviation of the variable of interest σl sl

in the l-th stratum
Variable of interest (e.g., packet delay) y y

Eq. 1 and Eq. 2 present the two assumptions used in the
analysis, and they are widely used assumptions in the area [2],
[3]:

Nl − 1 ≈ Nl, (1)

n

N
< 0.05. (2)

For stratified sampling, it can be shown that the variance σ2

is related to the variances in each stratum by:

σ2

=
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Applying the approximation in Eq. 1, and multiplying both
sides by a common factor 1

n (1 − n
N ), where (1 − n

N ) is the
finite population correction (fpc) factor, it can be obtained
that:

1
n
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N
)σ2 (4)
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1
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The variance of the sample mean with simple random sam-
pling is [5, pp. 15]:

V arran(ȳ) = (1− n

N
)
σ2

n
. (5)



For stratified random sampling, the variance of the sample
mean is given by [7, pp. 91]:

V arst(ȳ) =
L∑

l=1

(
Nl

N
)2(

Nl − nl

Nl
)
σ2

l

nl
. (6)

If proportional allocation is used, then nl is given by [7,
pp. 91]):

nl = n
Nl

N
. (7)

The variance of the sample mean for proportional allocation
becomes:

V arprop(ȳ) =
1
n

(1− n

N
)

L∑

l=1

Nl

N
σ2

l . (8)

Comparing Eq. 4 and Eq. 5 with Eq. 8, it can be shown
that when the total sample size n is the same:

V arran(ȳ) = V arprop(ȳ) +
1
n

(1− n

N
)

1
N

L∑

l=1

Nl(µl − µ)2.

(9)
Hence, the sampling gain of the stratified sampling with
proportional allocation is:

∆prop = V arran(ȳ)− V arprop(ȳ), (10)

=
1

nN
(1− n

N
)

L∑

l=1

Nl(µl − µ)2 ≥ 0. (11)

The sampling gain is positive, which indicates performance
improvement can be achieved in moving from simple random
sampling to stratified sampling with proportional allocation.

If optimum allocation is used, then nl is given by [7, pp.
97]:

nl =
nNlσl∑L
k=1 Nkσk

. (12)

The variance of the sample mean for optimum allocation can
be obtained from Eq. 6 and Eq. 12:

V aropt(ȳ) =
1
n

(
L∑

l=1

Nl

N
σl)2 − 1

N

L∑

l=1

Nl

N
σ2

l . (13)

From Eq. 8 and Eq. 13, we can derive the difference between
V arprop(ȳ) and V aropt(ȳ):

V arprop(ȳ)− V aropt(ȳ) =
1

nN

L∑

l=1

Nl(σl − σ̄l)2 ≥ 0, (14)

where σ̄l is:

σ̄l =
L∑

l=1

Nl

N
σl. (15)

Therefore with the same sample size n, ignoring the fpc fac-
tor, the sampling gain of the stratified sampling with optimum
allocation in comparison with simple random sampling is:

∆opt = V arran(ȳ)− V aropt(ȳ) (16)

=
1

nN
[

L∑

l=1

Nl(µl − µ)2 +
L∑

l=1

Nl(σl − σ̄l)2](17)

≥ 0. (18)

Based on Eq. 11 and Eq. 14, we can conclude that stratified
sampling with proportional allocation performs better than
the simple random sampling, and stratified sampling with
optimum allocation performs better than stratified sampling
with proportional allocation.

Earlier analysis is performed on count-based sampling tech-
niques. Since the difference between count-based sampling
and timer-based sampling is very small [1], the same conclu-
sion may also extend to the timer-based sampling techniques.

III. ADAPTIVE STRATIFIED SAMPLING
ALGORITHM

In the last section, we have shown that stratified sampling
with optimum allocation has the best performance. However
Eq. 12 implies that stratified sampling with optimum allocation
requires the knowledge of the variance of the parent population
in the l-th stratum, i.e., σl, in order to allocate the sample
size in the l-th stratum. This requirement is unrealistic for
online monitoring. In this section, we develop an adaptive
stratified sampling algorithm, which uses the least-mean-
square algorithm to predict the value of σl for sample size
allocation. The proposed algorithm is then applied to packet
delay sampling.

A. Least-mean-square Algorithm

The LMS algorithm is one of the most widely used adaptive
linear algorithm. The computational procedure for the LMS
algorithm is listed in the following [9, pp. 655]:
• Compute required output

x̂k =
m−1∑

i=0

wk(i)xk−1−i = WT
k X(k), (19)

where m is the order of the predictor, X(k) is the input
vector and Wk is the prediction coefficient vector.

X(k) = [xk−1, xk−2, ..., xk−m]T , (20)
Wk = [wk(0), wk(1), ..., wk(m− 1)]T . (21)

Initially, each weight wk(i) is set to an arbitrary fixed
value.

• Compute the prediction error

ek = xk − x̂k. (22)

• Update the coefficient vector

Wk+1 = Wk + 2υekX(k), (23)

where υ is the step size.

B. Prediction of the Sample Size within a Stratum

It has been shown in Section II-C that for stratified sampling
with optimum allocation, the sample size within a stratum is:

nl =
nNlσl∑L
k=1 Nkσk

. (24)



To simplify the estimation of nl, an assumption is made that
the parent population size Nl is approximately the same in
each stratum, i.e.,

Nl

Nk
≈ 1, l 6= k. (25)

This assumption is valid when the parent population size Nl

is very large and the stratum size is a constant in time. This
assumption has been validated using the real traffic trace.
Fig. 2 shows the ratio Nk/N1 of the real traffic trace with
stratum size = 50, 100, 130 and 200 seconds respectively,
where Nk, k = 1, 2, ..., L is the total number of packets within
the k-th stratum of the real traffic trace and N1 is the total
number of packets within the 1-st stratum of the real traffic
trace. We can see that the ratio Nk/N1 is bounded in the
interval [0.8, 1.2].
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Fig. 2. Ratio of packet number between different strata

Using the assumption, Eq. 24 can be simplified as:

nl ≈ nσl∑L
k=1 σk

=
nσl

Lσ̄s
= ϕσl, (26)

ϕ =
n∑L

k=1 σk

=
n

Lσ̄s
. (27)

In real applications, ϕ can be simply treated as a propor-
tionality constant which determines the sampling rate. ϕ can
be chosen empirically and a larger ϕ will produce a higher
sampling rate.

Since the standard deviation of packet delay σl is the true
value of the parent delay trace, which cannot be obtained
in real applications, it is approximated by the corresponding
standard deviation of sampling packet delay sl. Then the LMS
algorithm is employed to predict sl from its past values.
Hence, the estimator n̂l of sample size for the l-th stratum
is computed by:

n̂l = ϕŝl, (28)

ŝl =
m−1∑

i=0

wl(i)sl−1−i, (29)

el = sl − ŝl, (30)
wl+1(i) = wl(i) + 2υelsl−1−i, i = 0, 1, ..., m− 1.(31)

The predictor order can be obtained using the AICC Crite-
rion for order selection [10, pp. 171].

C. Estimation Error

The estimation error in n̂l may increase the variance of the
sample mean, i.e., decrease the measurement accuracy of the
adaptive sampling method. From Eq. 6, the actual variance of
the sample mean using the predicted stratum sample size n̂l

is:

V aract(ȳ) =
L∑

l=1

(
Nl

N
)2

σ2
l

n̂l
−

L∑

l=1

(
Nl

N
)2

σ2
l

Nl
. (32)

From Eq. 13 and Eq. 32, we can derive the relative error
between them:

V aract(ȳ)− V aropt(ȳ)
V aropt(ȳ)

=
1
n

L∑

l=1

(n̂l − nl)2

n̂l
(33)

=
1
n

L∑

l=1

nl
(φl − 1)2

φl
, (34)

where φl = n̂l/nl. When φ = 0.9, the relative error between
V aract(ȳ) and V aropt(ȳ) is 0.0111 = 1.11%; when φ =
1.2, the relative error between V aract(ȳ) and V aropt(ȳ) is
0.0333 = 3.33%. We can see that the impact of the estimation
error on the measurement accuracy is marginal when n̂l is
reasonably accurate.

IV. PARENT TRAFFIC TRACE

In order to compare the performance of different sam-
pling techniques, experiments are necessary. In this paper,
all experiments are performed using a one-way delay trace
as the parent traffic trace. This delay trace is generated by
importing a real traffic trace into Opnet Modeler. This real
traffic trace (“20010613-060000-e1.gz”) was collected by the
WAND research group at the University of Waikato Computer
Science Department. It was captured between 6.00 a.m. and
8.54 a.m. on June 13th, 2001 on a 100Mbps Ethernet link. IP
headers in the traffic trace are GPS synchronised and have
a time accuracy of 1 µs. More information on the traffic
trace and the measurement infrastructure can be found on the
research group’s website [11].

The network topology used in the Opnet Modeler is shown
in Fig. 3. The selection of network nodes (e.g., switch, router,
link) and background traffic utilisations of the links are shown
in Table II. The first 2600-second part of the entire trace is

link-1
link-2

link-6link-5link-4link-3 link-7 link-8

link-9
link-10

Fig. 3. Network topology used in Opnet Modeler.



TABLE II
SELECTION OF NETWORK NODES AND BACKGROUND TRAFFIC

UTILISATIONS OF LINKS

Nodes Description Background
traffic utilisation

Switch-1,2 3 Com′s Switch 3800 N/A
Router-1,2,..,7 CISCO 12008 N/A

Link-1,10 100Mbps Link 0%
Link-2,3,8,9 100Mbps Link 50%

Link-4,7 100Mbps Link 70%
Link-5,6 100Mbps Link 55%

then imported into the Opnet Modeler. After the simulation,
we obtain a one-way delay traffic trace of a duration of 2600
seconds with 577718 packets. For the purpose of our study, we
treat the 2600-second delay traffic trace as the parent traffic
trace. Table III shows the summary statistics for the packet
delay, packet size and inter-arrival time of the parent traffic
trace.

TABLE III
SUMMARY STATISTICS FOR PACKET DELAY, PACKET SIZE AND

INTER-ARRIVAL TIME OF THE PARENT DELAY TRACE

Property Min. Max. Mean Var.
Packet delay (ms) 41.092 141.305 86.024 8529
Packet size (bytes) 64 1518 440.5 302080

Inter-arrival Time (ms) 0.006 203.3280 4.5181 74.4127

V. SIMULATION RESULTS

In this section, we perform simulations with different sam-
pling methods (i.e., timer-based systematic sampling, timer-
based Poisson sampling, stratified sampling with optimum
allocation and the proposed adaptive stratified sampling) and
compare their performance. The parent delay trace used for
simulation is the one-way delay trace presented in Section IV.

For stratified sampling with optimum allocation, the param-
eters required to calculate the sample size nl are all true values
from the parent delay trace. It is used as a benchmark, which
represents the best sampling performance that can be achieved.
The sample delay traces are selected directly from the parent
delay trace. The sampling goal is to estimate the mean packet
delay µ and the variance of packet delay σ2 of the parent delay
trace.

Several C programs were developed for sampling the sample
delay traces and calculating the estimated mean packet delay
µ̂ and the estimated variance of packet delay σ̂2 = s2 from
the sample delay traces, where µ̂ is the mean packet delay
of the sample delay trace and s2 is the variance of packet
delay of the sample delay trace. For simulation, each kind
of sampling (e.g., systematic sampling, systematic sampling)
is repeated a number of times, and the random seed in the
C programs is updated in each repetition. Let M denote the
number of repetitions (i.e., sampling rounds). So after M
sampling rounds, we obtain M different sample delay traces.
The estimated mean delay µ̂ and estimated variance of delay s2

are calculated for each sample delay trace in the M sampling
rounds. Then we can obtain M estimated mean delay, i.e.,

µ̂1, µ̂2, ..., µ̂M and M estimated variance of packet delay, i.e.,
s2
1, s

2
2, ..., s

2
M . The absolute error of the estimated mean, i.e.,

|µ̂i−µ|, and the absolute error of the estimated variance, i.e.,
|s2

i−σ2| are also calculated for the M sampling rounds, where
the true values µ and σ2 are obtained in Section IV and shown
in Table III.

To compare the performance of different sampling methods,
several metrics are used, which are:

• Average value of the sample mean (AMean): the average
value of the sample mean of the M sample delay traces.
AMean = 1

M

∑M
i=1 µ̂i, where M is the sampling rounds,

µ̂i is the mean value of the i-th sample delay trace in
the M sample delay traces. The smaller the difference
between AMean and µ is, the better the performance is.

• Average sample variance (AV ar): the average value
of the sample variance of the M sample delay traces.
AV ar = 1

M

∑M
i=1 s2

i , where s2
i is the variance of the i-

th sample delay trace. The smaller the difference between
AV ar and σ2 is, the better the performance is.

• Mean square error (MSE) of the sample mean µ̂i:
MSE = 1

M

∑M
i=1(µ̂i − µ)2. The smaller the MSE is,

the higher the accuracy is.
• Absolute error of estimated mean (AEMean): |µ̂i − µ|,

the smaller |µ̂i − µ| is, the lower the variance of the
sample mean V ar(µ̂) is.

• Absolute error of estimated variance (AEV ar): |s2
i −σ2|,

the smaller |s2
i −σ2| is, the better can s2 estimate the true

variance σ2.

Then simulations for these four sampling methods are
performed respectively. Each simulation is repeated for 222
times (i.e., M = 222). For timer-based systematic sampling,
the sampling interval is specified as 1 second. For timer-based
Poisson sampling, the mean sampling interval is 1 second.
For the proposed adaptive sampling, the prediction parameters
and stratum size are adjusted to the appropriate values. The
predictor order is 4; the initial weights are: wl(0) = 0.257,
wl(1) = 0.210, wl(2) = 0.209 and wl(3) = 0.260; the step
size is: υ = 0.02; the stratum size is: 50 seconds. These final
values of the predictor order, initial weights and stratum size
are obtained by using a different traffic trace (“20010612-
060000-e1.gz”), which was captured between 6.00 a.m. and
8.54 a.m. on June 12th, 2001 on a 100Mbps Ethernet link
[11], from that used in Section IV. As shown in Fig. 4, the
error in predicting the standard deviation of sampling packet
delay in each stratum, i.e., el in Eq. 30, is approximately inde-
pendent, which indicates a good performance of the prediction
algorithm. The total sample size n is specified as 2600 in order
to make sure it has the same sample size as the timer-based
systematic sampling and the timer-based Poisson sampling
(n = samping duration/sampling rate = 2600/1 = 2600).
For stratified sampling with optimum allocation, the stratum
size is also specified as 50 seconds and the total sample size
is 2600.

Table IV shows the simulation results. It can be seen that
the stratified sampling with optimum allocation achieves the
best performance. The proposed adaptive sampling scheme
produces approximately the same performance as the stratified
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TABLE IV
SIMULATION RESULTS OF SAMPLING TESTS WITH DIFFERENT SAMPLING

METHODS. (TRUE VALUES ARE: µ = 86.824 ms, σ2 = 8529)

Sampling method M AMean AV ar MSE
Systematic 222 74.803 ms 5996 145

Poisson 222 64.998 ms 4710 478
Stratified with 222 88.023 ms 8959 5

optimum allocation
Adaptive stratified 222 84.895 ms 8081 10

sampling with optimum allocation; it performs better than the
timer-based systematic sampling and the timer-based Poisson
sampling. Fig. 5 shows the absolute error of the estimated
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Fig. 5. Comparison of Absolute Error of Estimated Mean for different
sampling methods. Stratum size: 50 seconds, sampling rounds: 222.

mean and Fig. 6 shows the absolute error of the estimated
variance for the 222 sampling rounds. These also indicate that
the proposed adaptive stratified sampling gives higher accuracy
of estimate than the timer-based systematic sampling and the
timer-based Poisson sampling.

VI. CONCLUSION

In this paper, we proposed a novel adaptive stratified sam-
pling scheme for online end-to-end SLA monitoring. This
proposed sampling scheme is based on the stratified sampling
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Fig. 6. Comparison of Absolute Error of Estimated Variance for different
sampling methods. Stratum size: 50 seconds, sampling rounds: 222.

with optimum allocation. It employs an LMS algorithm to
predict the extra statistics required to compute the sample
size within a stratum in stratified sampling with optimum
sampling, which are unknown a priori in real applications. We
then performed simulations using real traffic network traffic,
and compared the performance of the proposed adaptive sam-
pling strategy with other sampling methods. The simulation
results showed that the proposed adaptive sampling scheme
performed better than the timer-based systematic sampling and
the timer-based Poisson sampling. We have also investigated
the impact of the estimation error (i.e., estimate nl by n̂l) on
the expected accuracy of estimation. The theoretical analysis
and the simulation results both demonstrated that the impact
was marginal.
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