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Abstract— Given a wireless sensor network (WSN) whose
sensors are randomly and independently distributed in a bounded
area following a homogeneous Poisson process with density ρ
and each sensor has a uniform transmission radius of r0, we
investigate the probability that two random sensors separated by
a known distance x are k-hop neighbors for some positive integer
k in this paper. We give a closed-form equation for computing this
probability for k = 2; and also give a recursive equation for eval-
uating this probability for k > 2 by using some approximations.
The accuracy of the approximate analytical solution is validated
by simulations. Furthermore, we present an empirical method to
correct the discrepancies between the analytical results and the
simulation results caused by the approximation. The result of this
paper can be useful in a number of sensor network problems, e.g.,
estimating the transmission delay between two sensors and energy
consumed in the transmission, and WSN routing problems.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been widely in-
vestigated and discussed in recent years. Generally, a typical
wireless sensor network consists of a large number of small,
inexpensive, low-power and multi-functional sensor nodes,
deployed either randomly or according to some predefined
statistical distribution, over a geographic region of interest [1].
Extensive research has been done in the area of WSNs, includ-
ing routing protocols [2], localization algorithms [3], power
control technique [4], and so on. Many of these problems can
be studied in the framework of graph theory.

Consider a WSN whose sensors are randomly and inde-
pendently distributed in a bounded region in �2, according
to a homogeneous Poisson process. Each sensor has a trans-
mission radius of r0. For many purposes, this sensor network
can be modeled by a unit disk graph with a vertex in the
graph representing every sensor and an edge in the graph
representing every sensor pair for which the two sensors can
directly communicate with each other. Any two sensors can
directly communicate with each other iff (if and only if) their
Euclidean distance is smaller than the given threshold r0.
The resulting graph G = (V,E), where V is the vertex set
and E is the edge set, is called the underlying graph of the
network. Many interesting aspects of a WSN can be studied
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using its underlying graph, such as the network connectivity
[5], [6], the probability that any two sensors in the network
are k-hop neighbors for some positive integer k [7], [8]
and the critical transmission radius required to achieve an
asymptotically connected network [9].

In this paper we investigate the conditional probability
Φk(x) that any two sensors separated by a known distance x
are k-hop neighbors for some positive integer k. Two sensors
being k-hop neighbors means that the length of the shortest
path between the two sensors, measured in the number of hops,
is k. A recursive analytical equation embodying an approxi-
mation is given for computing this probability. The results
developed in the paper may lead to solution to problems such
as estimation of the energy consumption for data transmission
between two sensors and the associated transmission delay and
WSN routing problems [10], [11]. Also given the probability
density p(x) for the distance x between any two sensors [12],
our result can be used to compute Φk, i.e., the unconditional
probability that any two random sensors are k-hop neighbors,
which is useful for studying many WSN problems such as
estimating the overall energy consumption and the lifetime of
a WSN. Furthermore, once Φk(x) has been obtained, Φx(k)
can then be easily found using Bayes’ formula. Knowledge
of Φx(k) may be used to estimate the geographical distance
x between two sensors via maximum likelihood estimation if
the hop number k is known, which may be used to improve
existing localization algorithms [10].

In [7], Bettstetter et al. investigated the probability that two
random sensors are k-hop neighbors for k = 1 and k = 2,
where n sensors are uniformly distributed in a rectangular
area. Their results are based on the distribution of the distance
between two random sensors derived by Ghosh [13]. For
k > 2, only simulation results were presented. In [8], Miller
considered sensors distributed following a two dimensional
Gaussian distribution, and derived an approximation for the
probability that two random sensors are two-hop neighbors.
In [14], Chandler analyzed the probability two random packet
radio stations separated by a known distance can communicate
in k or less hops where stations are uniformly distributed over
flat earth.

In this paper, we provide a recursive equation for computing
the probability that two random sensors are k-hop neighbors
for some positive integer k. The technique used in deriving
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the recursive equation is the same as that used in [14].
A contribution of this paper is we point out the reliance
of the analysis on the independence assumption, which is
defined later, and the performance impact of the independence
assumption. In addition, we show that the probability that two
random sensors are k-hop neighbors is only determined by
two parameters, i.e., the normalized distance and the average
vertex degree. We also provide simulation results as well
as discrepancy analysis between the simulation results and
the analytical results. Furthermore, we present an empirical
method to correct the discrepancy caused by the independence
assumption.

The rest of this paper is organized as follows. In Section
II we derive a closed-form equation for the probability that
any two sensors separated by a known distance x are two-hop
neighbors. In Section III we develop (using an approximating
assumption) a recursive analytical equation for evaluating the
probability that any two random sensors separated by a known
distance x are k-hop neighbors for k > 2. Section IV presents
simulation results and analyzes the causes of the discrepancies
between the analytical results and the simulation results. Sec-
tion V presents a method to correct the discrepancies, which
gives a more accurate results. Finally, Section VI concludes
this paper and discusses future research directions.

II. PROBABILITY THAT ANY TWO SENSORS ARE TWO-HOP

NEIGHBORS

In this paper we consider a WSN whose sensors are
randomly and independently distributed in a bounded area
according to a homogeneous Poisson process with node den-
sity ρ and the underlying graph of the sensor network is a
unit disk graph with a uniform transmission radius r0. The
transmission range of one sensor is defined as the circle of
radius r0 centered at this sensor.

Obviously, Φ1(x) = 1 when x ≤ r0 and Φ1(x) = 0 when
x > r0. For k = 2, it means that the two sensors have no direct
link between each other but can communicate through at least
one intermediate sensor. Therefore at least one intermediate
sensor must lie in the intersectional area of the transmission
ranges of the two sensors, i.e., the shaded area A in Fig. 1,
to act as a relay sensor. Ignoring the boundary effect, the

d

A

xs

r0r0

Fig. 1. An illustration of two-hop neighbors. Sensors s and d are two random
sensors, separated by a known distance x (r0 < x ≤ 2r0).

probability Φ2(x) can be found as the probability that there is
at least one sensor located in the region A in Fig. 1.

Since sensors are Poissonly distributed, the probability that
there is no sensor located in A is exp(−ρA), where A is the

size of the area A, given by

A = 2r2
0 arcsin(

√
1 − x2

4r2
0

)−xr0

√
1 − x2

4r2
0

, r0 < x ≤ 2r0.

(1)
Hence, the probability Φ2(x) can be readily obtained:

Φ2(x) = 1 − Pr{no sensor in A} = 1 − e−ρA. (2)

When x ≤ r0, the two sensors can connect directly with each
other, so Φ2(x) = 0; when x > 2r0, we have A = 0, so that,
Φ2(x) = 0. Therefore,

Φ2(x) =
{

1 − e−ρA r0 < x ≤ 2r0;
0 otherwise.

(3)

III. PROBABILITY THAT ANY TWO SENSORS ARE k-HOP

NEIGHBORS

For k > 2, it can be easily understood through the geometry
that the derivation of the probability is rather tedious and it
is very hard to obtain an exactly closed form equation for
Φk(x). In this section, we shall evaluate the probability Φk(x)
for k > 2, continuing to ignore the boundary effect. Consider
two random sensors s and d which are separated by a known
distance x, as shown in Fig. 2. Sensor d is a k-hop neighbor
of s iff sensor d is not a m-hop neighbor of s for any m < k
and there is at least one sensor within the transmission range
of d which is a k − 1 hop neighbor of s.

d

C

xs

r
dr

dC

0r

Fig. 2. An illustration of k-hop (k > 2) neighbors. Sensors s and d are two
random sensors separated by a known distance x (r0 < x ≤ kr0).

Let us first consider the probability that there is at least one
sensor within the transmission range of d which is a k−1 hop
neighbor of s. An approximation, termed the independence
assumption, has to be used in order to obtain an analytical
solution, i.e., the event that one arbitrary sensor located within
the transmission range of d is a k − 1 hop neighbor of s is
independent of the event that another arbitrary sensor located
within the transmission range of d is a k − 1 hop neighbor of
s. The implication of this approximation will be discussed in
the next section. Consider the area C in Fig. 2 which is the
intersectional area of a circle of radius r centered at s and a
circle of radius r0 centered at d. A differential increment dr
on r gives a differential area dC and the size of the differential
area dC is 2rθdr, where θ is given by,

θ = arccos
x2 + r2 − r2

0

2xr
. (4)

Since dr is a very small value, the probability that there
exists more than one sensor within dC can be ignored and the
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probability that there exists a single sensor in the differential
area dC is given by 2ρrθdr. Given Φk−1(r), the probability
that there is a sensor within dC which is also a k − 1 hop
neighbors of s is given by 2Φk−1(r)ρrθdr.

Let f(C) denote the probability that there is no sensor in
C which is a k − 1 hop neighbor of s. Using the indepen-
dence assumption, the probability f(C) is independent of the
probability that there is no sensor in dC which is a k− 1 hop
neighbor of s, hence

f(C + dC) = f(C)(1 − 2Φk−1(r)ρrθdr). (5)

Eq. 5 readily leads to the conclusion that

df(C) = −2Φk−1(r)ρrθf(C)dr. (6)

Therefore the probability that there is no sensor within the
transmission range of d which is a k− 1 hop neighbor of s at
distance x is given by

g(x) = exp(
∫ x+r0

x−r0

−2Φk−1(r)ρrθdr). (7)

The probability that a sensor d at a distance x to s is not a
m-hop neighbor of s for any m < k is given by

1 − Φ1(x) − Φ2(x) − ... − Φk−1(x) = 1 −
k−1∑
i=1

Φi(x). (8)

Therefore the probability that sensor d is a k-hop neighbor
of s is given recursively as:

Φk(x) = (1−
k−1∑
i=1

Φi(x))(1−exp(−
∫ x+r0

x−r0

2Φk−1(r)ρrθdr)),

(9)
where r0 < x ≤ kr0; Φk(x) = 0 if x ≤ r0 or x > kr0.

For k = 2, when x ≤ r0 or x > 2r0, Φ2(x) = 0; when
r0 < x ≤ 2r0, it can be shown that

−
∫ x+r0

x−r0

2Φ1(r)ρrθdr = −ρ

∫ r0

x−r0

2rθdr = −ρA, (10)

where A is given in Eq. 1, and 1−Φ1(x) = 1, the expression
for Φ2(x) agrees with that in Eq. 3.

A. Discussion

Let α
.= x/r0 and β

.= πr2
0ρ. The parameter α is the

normalized distance and the parameter β is the average vertex
degree of a unit disk graph. It can be shown by mathematical
induction that the probability Φk(x), which is parameterized
by ρ, x and r0, is a function of α and β only.

Proof : For k = 1, it can be readily shown that Φ1(x) is a
function of α and β only.

Suppose Φn(x) can be expressed as a function of α and β
for n ≤ k, i.e., Φn(x) = Υn(α, β). Then when n = k + 1,
the first term on the right side of Eq. 9 is

1 −
k∑

i=1

Φi(x) = 1 −
k∑

i=1

Υi(α, β). (11)

Let µ = r/r0, the integral in the second term on the right side
of Eq. 9 becomes∫ x+r0

x−r0

2Υk(
r

r0
, β)ρrθdr (12)

=
∫ x/r0+1

x/r0−1

2Υk(µ, β)ρµr0θr0dµ (13)

=
β

π

∫ α+1

α−1

2Υk(µ, β) arccos
α2 + µ2 − 1

2αµ
µdµ. (14)

From Eq. 9, 11 and 14, we have Φk+1(x) = Υk+1(α, β),
hence, the hypothesis is also valid when n = k + 1. This
completes the proof.

The above discussion leads to the insight that under the
independence assumption, the probability that two random
sensors are k-hop neighbors is only determined by the normal-
ized distance between the two sensors and the average vertex
degree.

Note that in this paper, we consider the ideal case that
the wireless link between any two sensors does not suffer
from shadow fading. The transmission range of a sensor is
modeled by a disk with radius r0 centered at this sensor. The
analysis in this paper can be extended to consider shadow
fading environment, which is typically modeled by a log-
normal model.

IV. SIMULATION AND DISCREPANCY ANALYSIS

In this section, we use simulations to establish the accuracy
of the theoretical analysis in the presence of boundary effects
and the shortcomings of the independence assumption. In the
simulation, sensors are distributed in a square of size a × a,
where a = 20, according to a homogenous Poisson process
with node density ρ. We vary the average vertex degree (i.e.,
πr2

0ρ) while keeping the node density ρ fixed, each value of
the average vertex degree represents a different scenario. Each
scenario is repeated 100 times and the average result is shown.

Figs. 3 shows the probability that any two sensors separated
by a distance x are k-hop neighbors for k = 2, 3 and 4.
For k = 2, we can see that the simulation results and the
analytical results agree very well, which indicates that Eq. 3
is an accurate expression of Φ2(x). However, for k = 3 and
k = 4, there are slight discrepancies between the analytical
results and the corresponding simulation results, as shown in
Fig. 3. The figure also shows that for k = 3 and k = 4, when
(k − 1)r0 < x ≤ kr0, the analytical results are always larger
than the corresponding simulation results. The discrepancies
are attributable to the boundary effect and the independence
assumption we used, as will be discussed below.

A. Boundary Effect

For any two sensors si and sj which are close to the border,
the intersectional region of the transmission ranges of the two
sensors may be located partially outside the network area,
which causes an error in computing Φk(x). This effect is the
boundary effect. The impact of the boundary effect will reduce
as the network area becomes larger compared to r0.
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Fig. 3. Probability that two random sensors separated by a known distance
x are k-hop neighbors for k = 2, 3 and 4.

To evaluate the impact of the boundary effect, we keep
πr2

0ρ constant and vary the ratio r0/a to calculate the mean
absolute difference (MAD) between the analytical results and
the simulation results. MAD is the average value of the
absolute differences, i.e., MAD = 1

N

∑N
i=1 |Anai − Simi|,

where Anai and Simi are the i-th analytical result and its
corresponding simulation result respectively, and N is the
number of results selected to calculate MAD. The larger
MAD is, the greater the discrepancy is. The result is shown
in Fig. 4. When the ratio r0/a is small enough, the boundary

0.05 0.1 0.15 0.2 0.25 0.3
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

r0/a

m
ea

n 
ab

so
lu

te
 d

iff
er

en
ce

k=2
k=3

Fig. 4. MAD for different values of r0/a; πr2
0ρ is kept constant at 15.7080.

When r0/a increases, a larger percentage of sensors are located near the
boundary and the impact of the boundary effect is more pronounced. Thus
the discrepancy between the analytical and the simulation results increases.

effect can be ignored. Moreover, the boundary effect can be
eliminated in simulations by using toroidal distance metric
[6].

B. Dependence Problem

A second cause of the error is the independence assumption
in section III. The assumption is true for k = 2, but (and this
is a subtle point) it is not absolutely valid for k > 2. Now we
take k = 3 as an example to explain the difference. In Fig. 5,
sensor d is a 3-hop neighbor of s iff sensor d is not an m-hop

neighbor of s for any m < 3 and there is at least one sensor
within the transmission range of d which is a 2-hop neighbor
of s. For sensor d1, it is a 2-hop neighbor of s iff there is at
least one sensor within C1∪C2; and for sensor d2, it is a 2-hop
neighbor of s iff there is at least one sensor within C2∪C3. We
call C2 the dependent area of sensors d1 and d2, and call C1

and C3 the independent areas. If there is a sensor in C2, this
sensor will form both a part of the path from d1 to s and a part
of the path from d2 to s. Consequently, the probability that
d1 is a 2-hop neighbor of s and the probability that d2 is a 2-
hop neighbor of s are no longer independent. This correlation
between the two probabilities constitutes a violation of the
independence assumption and thus contributes to the error in
our analytical results.

ds

0r
0r

C3

C2

C1

d2

d1

Fig. 5. Dependence problem for k = 3. s and d are the source and the
destination respectively with a distance x apart. Sensors d1 and d2 are two
sensors randomly located within the transmission range of d; C1 ∪C2 is the
intersectional area of the transmission ranges of s and d1; C3 ∪ C2 is the
intersectional area of the transmission ranges of s and d2. The probability
that d1 is a 2-hop neighbor of s is not independent of the probability that
d2 is a 2-hop neighbor of s because there is nonzero probability of having a
sensor in C2.

Now we explain the exact implication of the above discus-
sion on our analysis and remedy for it. Let Λi denote the event
that an arbitrary differential area dSi in the transmission range
of d has one sensor si in it1 and this sensor si is also a k− 1
hop neighbor of s, and let Pr{Λi} denote the corresponding
probability of event Λi. Then,

Pr{Λi} = Φk−1(ri) · ρdSi, (15)

where ri is the distance between sensors s and si. The integral
in the second term on the right side of Eq. 9 is actually the
sum of Pr{Λi}, i.e.,∫ x+r0

x−r0

2Φk−1(r)ρrθdr =
∑

i

Pr{Λi}. (16)

Due to the dependency problem as discussed before, in
the second term on the right side of Eq. 9, it should be the
probability of the union of all possible Λi, i.e., Pr{⋃i Λi},
instead of 2Φk(r)ρrθ0dr =

∑
i Pr{Λi}. We define a new

variable Φ′
k(x) to be the correct probability considering the

dependency problem, then,

Φ′
k(x) = (1 −

k−1∑
i=1

Φ′
i(x))(1 − exp(−Pr{

⋃
i

Λi})). (17)

1Since dSi is a very small value, the probability that there is more than
one sensor within dSi can be ignored.
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Since the two events Λi and Λj (i �= j) are not necessarily
independent, we have,

Pr{
⋃
i

Λi} ≤
∑

i

Pr{Λi}, (18)

Therefore, the true value of the second term on the right side
of Eq. 9 is overestimated, i.e.,

1 − exp(Pr{
⋃
i

Λi}) ≤ 1 − exp(
∫ x+r0

x−r0

2Φk−1(r)ρrθdr).

(19)
When (k − 1)r0 < x ≤ kr0, Φ′

m(x) = Φm(x) = 0 for all
m < k, therefore, by Eq. 17

Φ′
k(x) = 1 − exp(−Pr{

⋃
i

Λi}),

≤ 1 − exp(−
∫ x+r0

x−r0

2Φk−1(r)ρrθdr) = Φk(x). (20)

Therefore, when (k−1)r0 < x ≤ kr0, Eq. 9 actually gives a
over bound for the real probability Φ′

k(x). This explains why
the analytical results yield values which are always larger than
those from the simulation results when (k − 1)r0 < x ≤ kr0

as shown in Fig. 3. Note however that when ρ goes to infinity,
Φk(x) → Φ′

k(x), i.e., the impact of the dependency problem
vanishes.

V. CORRECTION TO THE ANALYTICAL RECURSIVE

EQUATION

Though Eq. 17 is more accurate than Eq. 9, Pr{⋃i Λi} in
the second term on the right side of Eq. 17 is very hard to
compute. In this section, we present an empirical method to
correct for the error caused by the independence assumption.

Given two events E and F , there exists a real number ζ,
ζ ∈ [0, 1], such that,

Pr{E ∪ F} = Pr{E} + Pr{F} − Pr{E ∩ F}, (21)

= ζ · (Pr{E} + Pr{F}). (22)

Therefore, we assume (and this is an assumption) that there
exists a function ξk(β), ξk(β) ∈ [0, 1] such that,

Pr{
⋃
i

Λi} = ξk(β) ·
∑

i

Pr{Λi}. (23)

where β is defined in subsection III-A. Then, the probability
Φ′

k(x) becomes,

Φ′
k(x) = (1 −

k−1∑
i=1

Φ′
i(x))

· (1 − exp(−ξk(β)
∫ x+r0

x−r0

2Φ′
k−1(r)ρrθdr)). (24)

Now, we give a simple way to estimate ξk(β) by ξ̂k. For a
given k, first, we substitute ξk(β) by ξ̂k in Eq. 24 and obtain

the estimated probability Φ̂′
k(x), i.e.,

Φ̂′
k(x) = (1 −

k−1∑
i=1

Φ̂′
i(x))

· (1 − exp(−ξ̂k

∫ x+r0

x−r0

2Φ̂′
k−1(r)ρrθdr)). (25)

Second, we select one value of β (e.g., β = 15.7080) and
vary the value of ξ̂k to calculate the MAD between Φ̂′

k(x)
and the simulation results, such that ξ̂k = arg minMAD,
hence obtain the optimal value of ξ̂k. To check the impact of
β on ξk(β), we may compare Φ̂′

k(x) and the corresponding
simulation results with different values of β, to see if it works
well with different β. As two examples, ξ̂3 = 0.76 and
ξ̂4 = 0.66 are derived with β = 15.7080, then are substituted
into three other scenarios (i.e., β = 35.3429, 62.8319 and
98.1748). The results are shown in Figs. 6 and 7 respectively,
we can see that the estimated probabilities and the simulation
results always agree very well with different values of β, which
indicates that β has marginal impact on ξk(β).
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Fig. 6. Probability that two random sensors separated by a known distance
x are 3-hop neighbors. ξ̂3 = 0.76.

Our empirical simulation shows that ξk(β) critically de-
pends on k but is almost independent of the value of β.
While this relationship between ξk(β), k and β needs a further
investigation, we offer the following intuitive explanation on
why ξk(β) is less dependent on β through the example in Fig.
5. As explained earlier, the correlation between the probability
that d1 is a 2-hop neighbor of s and the probability that d2

is a 2-hop neighbor of s is a major cause of the dependence
problem, hence the error. Note that this correlation in turn
critically depends on the relative size of C1/πr2

0 , C2/πr2
0

and C3/πr2
0 and is less affected by the average vertex degree

β. Therefore one may naturally expect that the correction
coefficient ξk(β) is also less dependent on β than on k.

This approximate independence of ξk(β) and β allows us
to estimate ξk(β) by ξ̂k whose value can be established via a

1930-529X/07/$25.00 © 2007 Crown Copyright
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

1283

Authorized licensed use limited to: UNIVERSITY OF SYDNEY. Downloaded on January 10, 2009 at 21:09 from IEEE Xplore.  Restrictions apply.



1 2 3 4
0

0.2

0.4

0.6

0.8

1

x/r
0

Φ
4(x

)
ρ=1.25, π r

0
2ρ=15.7080

1 2 3 4
0

0.2

0.4

0.6

0.8

1

x/r
0

Φ
4(x

)

ρ=1.25, π r
0
2ρ=35.3429

1 2 3 4
0

0.5

1

x/r
0

Φ
4(x

)

ρ=1.25, π r
0
2ρ=62.8319

1 2 3 4
0

0.5

1

x/r
0

Φ
4(x

)

ρ=1.25, π r
0
2ρ=98.1748

Analytical−Nonadjusted
Analytical−Adjusted
Simulation

Fig. 7. Probability that two random sensors separated by a known distance
x are 4-hop neighbors. ξ̂4 = 0.66.

priori simulation because it is not affected by change in the
average vertex degree β.

Table I shows the values of ξ̂k for k from 3 to 10. The values
were obtained by simulating with β = 15.7080, ρ = 1.25,
r0 = 2 and a = 20. Fig. 8 shows the estimated probability
Φ̂′

k(x) and the simulation results for k from 3 to 8, which
shows that the proposed empirical method can effectively
correct the error caused by the independence assumption. Note
that the value of β in Fig. 8 is 35.3429.

TABLE I

ESTIMATED VALUES OF ξk(β).

k 3 4 5 6 7 8 9 10
ξ̂k 0.76 0.66 0.76 0.66 0.63 0.60 0.58 0.57

VI. CONCLUSION AND FUTURE WORK

In this paper, we first presented an analytical recursive
equation for the probability that any two sensors separated by a
known distance x are k-hop neighbors for any positive integer
k, using the approximation that the probability that a random
sensor is a k-hop neighbor of one sensor is independent of the
probability that another random sensor is also a k-hop neighbor
of the same sensor. The error in the analytical result was
analyzed and an empirical method was presented to correct
the error caused by the approximation. Simulation showed a
good accuracy of the proposed empirical method.

As part of our future work, we intend to seek an accurate
analysis of the relationship between ξk(β) and β. We also
intend to investigate the probability Φk(x) in a log-normal
shadowing environment.
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