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On the Probability of K-hop Connection in Wireless Sensor Networks
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Abstract— Considering a wireless sensor network whose sen-
sors are randomly and independently distributed in a bounded
area according to a homogeneous Poisson process with intensity
ρ and each sensor has a uniform transmission radius of r0, an
important problem is to obtain the probability that two random
sensors separated by a known distance x are k hop neighbors
for some positive integer k. In this letter, we give a recursive
analytical equation for computing this probability. The analytical
solution is validated by simulations.

Index Terms— Probability, k-hop connection, wireless sensor
networks.

I. INTRODUCTION

CONSIDER a wireless sensor network (WSN) whose
sensors are randomly and independently distributed in

a bounded region in �2, according to a homogeneous Poisson
process. Each sensor has a uniform transmission radius of r0.
This sensor network can be modeled by a unit disk graph with
a vertex in the graph uniquely representing every sensor and
an edge in the graph representing every sensor pair for which
the two sensors can directly communicate with each other.
Any two sensors can directly communicate with each other if
and only if their Euclidean distance is smaller than the given
threshold r0. The resulting graph G = (V,E), where V is
the vertex set and E is the edge set, is called the underlying
graph of the network. Many interesting aspects of a WSN can
be studied using its underlying graph.

In this letter we investigate the conditional probability
Pr(k|x) that any two sensors separated by a known distance x
are k-hop neighbors for some positive integer k. Two sensors
being k-hop neighbors means that the length of the shortest
path between the two sensors, measured in the number of
hops, is k. A recursive analytical equation embodying an
approximation is given for computing this probability. The
results are important because they enable solution of a number
of problems, such as estimation of the energy consumption
for data transmission between two sensors and the associated
transmission delay. Further, given the probability density p(x)
for the distance x between any two sensors [1], our result
can be used to compute the unconditional probability Pr(k),
which is useful for studying problems such as estimating
the overall energy consumption and the lifetime of a WSN,
and WSN routing problems. Again, once Pr(k|x) has been
obtained, Pr(x|k) can be readily found using Bayes’ formula.
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Knowledge of Pr(x|k) may be used to improve the per-
formance of WSN localization algorithms, e.g., connectivity-
based localization algorithms [2].

In [3], Bettstetter and Eberspaecher investigated the prob-
ability that two random sensors are k-hop neighbors for
k = 1 and k = 2, where sensors are uniformly distributed
in a rectangular area. For k > 2, only simulation results
were presented. In [4], Miller considered sensors distributed
following a two dimensional Gaussian distribution, and de-
rived an approximation for the probability that two random
sensors are 2-hop neighbors. In [5], Chandler analyzed the
probability two random packet radio stations separated by a
known distance can communicate in k or less hops where
stations are uniformly distributed over flat earth.

In this letter, we provide a recursive equation for computing
the probability that two random sensors are exact k-hop
neighbors for some positive integer k. The technique used
in deriving the recursive equation is the same as that used in
[5]. A contribution of this letter is we point out the reliance
of the analysis on the independence assumption, which is
defined later, and the performance impact of the independence
assumption. Furthermore, we show that the probability that
two random sensors are k-hop neighbors is only determined by
two parameters, i.e., the normalized distance and the average
vertex degree. We also provide simulation results as well as
discrepancy analysis between the simulation results and the
analytical results.

In Section II we derive the probability that any two sensors
separated by a known distance x are two-hop neighbors. In
Section III we develop a recursive analytical equation for
the probability that any two sensors separated by a known
distance x are k-hop neighbors for k > 2. Section IV presents
simulation results. Finally, Section V concludes this letter and
discusses future work.

II. PROBABILITY THAT ANY TWO SENSORS ARE

TWO-HOP NEIGHBORS

In what follows, the conditional probability Pr(k|x) that
two random sensors separated by a known distance x are
k-hop neighbors is denoted by Φk(x). The disk of radius l
centered at s is denoted by D(s, l).

Obviously, Φ1(x) = 1 when x ≤ r0 and Φ1(x) = 0
when x > r0. For k = 2, it means that the source s and
the destination d have no direct link between each other but
can communicate through at least one intermediate sensor.
Therefore at least one sensor must lie in the intersectional area
D(s, r0)∩D(d, r0), i.e., the shaded area A in Fig. 1. Ignoring
the boundary effect, the probability Φ2(x) can be found as the
probability that there is at least one sensor located in A.
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Fig. 1. An illustration of two-hop neighbors. Sensors s and d are two random
sensors separated by a distance x (r0 < x ≤ 2r0).
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Fig. 2. An illustration of k-hop (k > 1) neighbors. Sensors s and d are two
random sensors separated by a known distance x (x > r0).

Since sensors are Poissonly distributed, the probability that
there is no sensor located in A is exp(−ρA), where A is the
size of the area A, given by

A = 2r2
0 arcsin(

√
1 − x2

4r2
0

)−xr0

√
1 − x2

4r2
0

, r0 < x ≤ 2r0.

(1)
Hence, the probability Φ2(x) can be readily obtained:

Φ2(x) = 1 − Pr{no sensor in A} = 1 − e−ρA. (2)

When x ≤ r0, the two sensors can connect directly with each
other, so Φ2(x) = 0; when x > 2r0, we have A = 0, so that,
Φ2(x) = 0. Therefore,

Φ2(x) =
{

1 − e−ρA, r0 < x ≤ 2r0;
0, otherwise.

(3)

III. PROBABILITY THAT ANY TWO SENSORS ARE k-HOP

NEIGHBORS

In this section, we shall evaluate the probability Φk(x) for
k > 2, continuing to ignore the boundary effect. Consider two
random sensors s and d separated by distance x, as shown in
Fig. 2. Sensor d is a k-hop neighbor of s iff sensor d is not a
m-hop neighbor of s for any m < k and there is at least one
sensor within D(d, r0) which is a k − 1 hop neighbor of s.

Let us first consider the probability that there is at least one
sensor within D(d, r0) which is a k − 1 hop neighbor of s.
An approximation, termed the independence assumption (and
verified as reasonable by simulation evidence below), has to
be used in order to obtain an analytical solution, i.e., the event
that one arbitrary sensor located within D(d, r0) is a k−1 hop
neighbor of s is independent of the event that another arbitrary
sensor located within D(d, r0) is a k − 1 hop neighbor of s.
Consider the area C in Fig. 2, i.e., C = D(s, r) ∩ D(d, r0),
a differential increment dr on r gives a differential area dC

and the size of the differential area dC is dC = 2rθdr, where
θ is given by,

θ = arccos
x2 + r2 − r2

0

2xr
. (4)

Since dr is a very small value, the probability that there
exists more than one sensor within dC can be ignored and the
probability that there exists a single sensor in the differential
area dC is given by 2ρrθdr. Given Φk−1(r), the probability
that there is a sensor within dC which is also a k − 1 hop
neighbors of s is given by 2Φk−1(r)ρrθdr.

Let f(C) denote the probability that there is no sensor in
C which is a k − 1 hop neighbor of s. Then

f(C + dC) = f(C)(1 − 2Φk−1(r)ρrθdr). (5)

Eq. 5 readily leads to the conclusion that

df(C) = −2Φk−1(r)ρrθf(C)dr. (6)

Therefore the probability that there is no sensor within
D(d, r0) which is a k − 1 hop neighbor of s at distance x
is given by

g(x) = exp(
∫ x+r0

x−r0

−2Φk−1(r)ρrθdr). (7)

The probability that a sensor d at a distance x to s is not a
m-hop neighbor of s for any m < k is given by:

1 −
k−1∑
i=1

Φi(x). (8)

Therefore the probability that sensor d is a k-hop neighbor
of s is given recursively as:

Φk(x) = (1−
k−1∑
i=1

Φi(x))(1−exp(−
∫ x+r0

x−r0

2Φk−1(r)ρrθdr)).

(9)
For k = 2, when x ≤ r0 or x > 2r0, it can be readily

shown that Φ2(x) = 0; when r0 < x ≤ 2r0, it can be shown
that

−
∫ x+r0

x−r0

2Φ1(r)ρrθdr − ρ

∫ r0

x−r0

2rθdr = −ρA, (10)

where A is given in Eq. 1, and 1−Φ1(x) = 1, the expression
for Φ2(x) agrees with that in Eq. 3.

A. Discussion

Let α
.= x/r0 and β

.= πr2
0ρ. The parameter α is the

normalized distance and the parameter β is the average vertex
degree of a unit disk graph. It can be shown by mathematical
induction that under the independence assumption, Φk(x) is
only determined by the normalized distance and the average
vertex degree..

Proof : For k = 1, it is immediate that Φ1(x) is a function
of α only. Suppose Φn(x) can be expressed as a function of
α and β for n ≤ k, i.e., Φn(x) = Υn(α, β). Then when
n = k + 1, the first term on the right side of Eq. 9 is

1 −
k∑

i=1

Φi(x) = 1 −
k∑

i=1

Υi(α, β). (11)
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Fig. 3. Probability that two random sensors separated by a known distance
x are k-hop neighbors for k = 2, 3 and 4.

Let µ = r/r0, the integral in the second term on the right side
of Eq. 9 becomes∫ x+r0

x−r0

2Υk(
r

r0
, β)ρrθdr

=
∫ x/r0+1

x/r0−1

2Υk(µ, β)ρµr0θr0dµ

=
β

π

∫ α+1

α−1

2Υk(µ, β) arccos
α2 + µ2 − 1

2αµ
µdµ. (12)

From Eq. 9, 11 and 12, we have Φk+1(x) = Υk+1(α, β),
hence, the hypothesis is also valid when n = k + 1.

IV. SIMULATION

In this section, we use simulations to establish the accuracy
of the theoretical analysis in the presence of the boundary
effect and the shortcomings of the independence assumption.
In the simulation, sensors are distributed in a square of size a×
a, where a = 20, according to a homogenous Poisson process
with node density ρ. We vary the average vertex degree (i.e.,
πr2

0ρ) while keeping the node density ρ fixed, each value
of the average vertex degree represents a different scenario.
Each scenario is repeated 100 times and the average result is
shown. The analytical results are obtained through numerical
integration using the adaptive quadrature algorithm [6, pp.27-
41], which calculates more points only in regions of rapid
functional variation and less points where the integrand is
varying slowly, and hence obtains high accuracy of numerical
results with given constraints on the computational complexity.

Fig. 3 displays Φk(x) for k = 2, 3 and 4. For k = 2, we
can see that the simulation results and the analytical results
agree very well, which indicates that Eq. 3 is an accurate
expression of Φ2(x). However, for k = 3 and 4, there are
slight discrepancies between the analytical results and the
corresponding simulation results, as shown in Fig. 3. The
discrepancies are attributable to the boundary effect and the
independence assumption we used in Section III. Note that the
discrepancy for the small probabilities (e.g., Φk(x) ∼ 10−5) is
due to the accuracy of the numerical integration. Because the
analytical result is given in a recursive form, it is also possible
that the accuracy of the numerical integration decreases for
large k. However, this was not found to be the major cause
of the discrepancy in the simulation. The boundary effect is
illustrated by Fig. 4. In Fig. 4, we keep πr2

0ρ constant and
vary the ratio r0/a to calculate the mean absolute difference
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Fig. 4. MAD between the analytical results and the corresponding simulation
results for different values of r0/a; πr2

0ρ is kept constant at 15.7080.
When r0/a increases, a larger percentage of sensors are located near the
boundary and the impact of the boundary effect is more pronounced. Thus
the discrepancy between the analytical and the simulation results increases.

(MAD) between the analytical results and the simulation
results. MAD is the average value of the absolute differences,
i.e., MAD = 1

N

∑N
i=1 |Anai−Simi|, where Anai and Simi

are the i-th analytical result and its corresponding simulation
result respectively, and N is the number of results selected
to calculate MAD. The larger MAD is, the greater the
discrepancy is.

V. CONCLUSION AND FUTURE WORK

In this letter, we provided an analytical recursive equation
for the probability that any two sensors separated by a known
distance x are k-hop neighbors for any positive integer k.
Simulations were conducted which validated the accuracy of
the approximate analytical equation.

In the future, we shall consider sensors distributed following
a uniform distribution and the impact of the boundary effect
on the analytical equation.
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