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SUMMARY

A major challenge in network and service level agreement (SLA) management is to provide Quality
of Service (QoS) demanded by heterogeneous network applications. Online QoS monitoring plays an
important role in the process by providing objective measurements that can be used for improving
network design, troubleshooting and management. Online QoS monitoring becomes increasingly difficult
and complex due to the rapid expansion of the Internet and the dramatic increase in the speed of network.
Sampling techniques have been explored as a means to reduce the difficulty and complexity of measurement.
In this paper, we investigate several major sampling techniques, i.e. systematic sampling, simple random
sampling and stratified sampling. Performance analysis is conducted on these techniques. It is shown
that stratified sampling with optimum allocation has the best performance. However, stratified sampling
with optimum allocation requires additional statistics usually not available for real-time applications. An
adaptive stratified sampling algorithm is proposed to solve the problem. Both theoretical analysis and
simulation show that the proposed adaptive stratified sampling algorithm outperforms other sampling
techniques and achieves a performance comparable to stratified sampling with optimum allocation. A QoS
monitoring software using the aforementioned sampling techniques is designed and tested in various real
networks. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

With the rapid growth of Internet in scale and complexity, providing Quality of Service (QoS) in
Internet becomes increasingly important for network design, traffic engineering, troubleshooting
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and service level agreement (SLA) management. The need for accurate network performance
measurement and monitoring is increasing for both network management and SLA validation.
Online QoS measurement plays an important role in the process. It is not only useful for network
operators who want to keep track of the performance of their network, but also useful for the
individual customer who wants an objective test on whether QoS provided by the Internet service
providers (ISPs) is satisfactory. Moreover, having the ability to measure against key performance
indicators facilitates the continuous quality improvement process. It helps the ISPs to locate the
bottleneck of the network and to properly allocate network resources to achieve a prescribed QoS
for all network users [1]. A service performance problem becomes an opportunity to structurally
improve overall service quality and customer satisfaction.

There has been significant work on developing mechanisms and algorithms for online network
performance monitoring and traffic measurements. This includes the work of Internet Engineering
Task Force (IETF) groups such as IP Performance Metrics (IPPM) group which has proposed the
framework for IP performance measurement, and other organizations such as [2–6]. Also, many
papers have been published on network performance measurement and analysis, such as [7–16].

However, online QoS measurement becomes increasingly difficult and complex due to the rapid
expansion of the Internet. Moreover, the dramatic increase in the speed of wide area backbones
presents obstacles to data collection. The enormous amount of measurement data may significantly
increase cost and resource usage [17]. Sampling-based measurement methods have been explored
to reduce the amount of control data and resources required for network performance monitoring,
and finally to reduce the measurement complexity and cost. The principle of sampling techniques
is to investigate the characteristics of a population of elements using a representative subset. In
network performance monitoring, the performance metrics (e.g. packet delay, packet loss and
jitter) are computed by choosing some particular packets among the entire traffic in the network.
In this paper, theoretical analysis is conducted on the performance of several major sampling
techniques, i.e. systematic sampling, simple random sampling and stratified sampling. It is shown
that stratified sampling with optimum allocation has the best performance. However, stratified
random sampling with optimum allocation requires extra statistics from the parent traffic trace,
which are not known a priori in real applications. To address the problem, a novel adaptive
sampling strategy is proposed, which employs a least-mean-square (LMS) algorithm to predict the
required statistics from past observations. The proposed strategy is able to significantly reduce the
amount of measurement data required. Theoretical analysis is performed on the performance of
the strategy. Simulation using real traffic trace is also performed. Both the theoretical analysis and
simulation results demonstrate the accuracy of the proposed strategy. Software is designed, which
implements the proposed technique.

In this paper, we focus on delay measurement because network delay is a key performance
metric in SLAs and has significant impact on a number of delay-sensitive applications, such as
VoIP (Voice over IP) and video traffic [13]. However, the proposed strategy can be readily extended
to measuring other QoS metrics such as packet loss and jitter.

The rest of this paper is organized as follows. Section 2 outlines related work. Section 3
introduces three sampling techniques with a qualitative discussion on their advantages and disad-
vantages. Section 4 quantitatively analyses the performance of these sampling techniques. Section
5 describes in detail the proposed adaptive stratified sampling scheme. Section 6 introduces the
traffic trace used for simulation. Section 7 presents the simulation results using real traffic traces
provided by the WAND group. Section 8 introduces the QoS monitoring software designed by us,
and finally Section 9 concludes this paper.
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2. RELATED WORK

Sampling techniques have been widely applied to network performance measurements [1, 17–26],
and efficient adaptive sampling schemes have also been developed.

Claffy et al. [17] investigated the performance of various sampling methods related to wide area
network traffic characterization. Their simulation results revealed that the time-triggered sampling
techniques do not perform as well as the packet-triggered ones. However, the performance dif-
ferences between packet-based sampling techniques and their time-based counterparts are small.
In [1], several adaptive sampling methods were developed and evaluated to address inaccuracies
of static (or conventional) sampling. It was shown that the adaptive sampling methods achieve
more accurate estimates of the mean, variance and the Hurst parameter (a measure of traffic self-
similarity). In [19], two adaptive sampling methods were proposed based on linear prediction and
fuzzy logic, respectively. The performance of these techniques was then compared with conven-
tional sampling methods by conducting simulative experiments using Internet and videoconference
traffic patterns. The simulation results showed that the proposed adaptive techniques are signif-
icantly more flexible in their ability to dynamically adjust to fluctuations in network behaviour,
and in some cases they are able to reduce the sample count by as much as a factor of 2 while
maintaining the same accuracy as conventional sampling methods. Zseby [21] investigated the
deployment of sampling techniques for SLA validation focusing especially on the application of
sampling to non-intrusive end-to-end measurements. Experiments are performed using systematic,
random and stratified sampling. Tests with stratified sampling showed how the estimation accuracy
can be improved if a priori information was available. Zseby [22] investigated the stratification
strategy to improve estimation accuracy without increasing the sample size. It was shown that
the sample size could be significantly reduced if packets were stratified according to their size.
Furthermore, adaptive schemes with a dynamic adjustment of the stratification boundaries were
compared to schemes with fixed boundaries. Zseby and Zander [23] investigated SLA validation for
highly interactive applications such as multiplayer online games. They proposed a novel solution
for passive SLA validation based on direct a sampling of the customer traffic. They also presented
an elegant solution for estimating the sampling error prior to the sampling and for computing the
minimum sample rate required depending on SLA parameters. Ma et al. [26] proposed a new
adaptive sampling scheme for monitoring network performance given the knowledge of the traffic
type, i.e. voice traffic. They then compared the proposed adaptive sampling scheme with systematic
sampling and stratified sampling methods through simulation using voice traffic. They showed that
the proposed adaptive scheme achieved the best accuracy on voice traffic.

3. SAMPLING TECHNIQUES

Traditional sampling techniques can be classified into three categories: systematic sampling, random
sampling and stratified random sampling [17, 21, 22]. Figure 1 illustrates these three sampling
techniques.

3.1. Systematic sampling

Systematic sampling generates sampling traffic according to a deterministic function. Generation
of the sampling traffic is triggered by either time (i.e. at fixed intervals) or packet count (i.e. every
kth packet). Figure 1(a) shows systematic sampling with a period of T seconds.
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Figure 1. An illustration of the three categories of sampling techniques: (a) systematic sampling;
(b) random sampling; and (c) stratified random sampling.

The use of systematic sampling always involves the risk of biasing the results. If the systematics
(e.g. periodic repetition of an event) in the sampling process resemble the systematics in the
observed stochastic process (e.g. occurrence of event of interest in the network), there is a high
probability that the estimation will be biased. Typical examples of the systematics in the network
are the periodic update of the routing table by a router, which has been shown in the literature to
contribute to the periodic surge in packet delay, and the periodic exchange of information between
routers due to SNMP protocol.

3.2. Random sampling

Random sampling, e.g. the Poisson sampling, employs a simple random distribution function to
determine when a sample should be generated. Typically, the samples are generated according
to a Poisson process or a uniform distribution. As shown in Figure 1(b), random sampling may
produce a varying number of samples in a given time interval. With random sampling, an un-
biased estimate of the QoS metric can be obtained [27, p. 21]. However, the entirely random
nature of the sampling process may also cause the undesirable effect that the sampling inter-
vals are not evenly distributed, and therefore the network may not be sampled for a rather long
time.

3.3. Stratified random sampling

Stratified random sampling combines the fixed time interval used in systematic sampling with
random sampling [19]. Figure 1(c) shows stratified random sampling with a stratum size of 4.5T
and the elements of the sample are randomly generated in each stratum.

In stratified sampling, the elements of the parent population are first grouped into subsets (i.e.
strata). The elements of the sample are then taken from each subset. Because the selections in
different strata are made independently, the variances of the estimators for individual strata can be
added together to obtain the variance of the estimator for the whole population. A smaller variance
indicates a more accurate estimator. Since only the within-stratum variances enter into the variance
of the estimator, the principle of stratification is to partition the population in such a way that
the elements within a stratum are as similar as possible. The stronger the correlation between
elements within a stratum, the more accurate the estimator will be. Therefore, even though strata
may differ markedly from one another, a stratified sample with a desired number of elements from
each stratum in the population will tend to be ‘representative’ of the population as a whole [28,
p. 117]. Depending on how the sample size (i.e. number of elements in a sample) is distributed
among strata, stratified sampling can be further classified into proportional allocation and optimum
allocation [28]. In proportional allocation, the sample size in each stratum is allocated such that
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it is proportional to the size of the parent population in that stratum. In optimum allocation, the
sample size in each stratum is allocated such that it is proportional to the standard deviation
of the variable of interest (e.g. packet delay) in that stratum. In this paper, the sampling time
of the stratified sampling is divided into fixed length intervals (i.e. stratum) according to the
correlation of the variable of interest (i.e. packet delay) to be measured, then sampling packets
are selected according to a random process during each interval. The stronger the correlation
between packet delays in an interval is, the more accurate the estimation of the mean packet delay
will be.

4. PERFORMANCE ANALYSIS OF SIMPLE RANDOM SAMPLING
AND STRATIFIED SAMPLING

In this section, we shall analyse the performance of different sampling techniques. As the variance
of the sample mean has been widely used as a performance measure [18, 27, p. 15], the performance
of these sampling techniques is analysed by comparing the variance of the sample mean of different
sampling schemes under the constraint that they use the same sample size. The smaller the variance
of the sample mean is, the better performance the sampling technique has. The sampling gain �
is defined as the difference between the variances of the sample mean of two different sampling
techniques [22]. Table I shows the notations used in our analysis.

Equations (1) and (2) present the two assumptions used in the analysis, and these are widely
used assumptions in the area [21, 22]:

Nl − 1≈ Nl , l = 1, 2, . . . , L (1)

n

N
<0.05 (2)

Equation (1) requires that the parent population size in each stratum is a large number. Equation
(2) requires that the sample size is small in comparison with the parent population size. Both
assumptions can be readily satisfied.

Table I. Notations used in the analysis.

Property Parent population Sample

Total number of elements in a sample N n
Number of elements in the lth stratum Nl nl
Number of strata L L
Mean value � ȳ
Mean value in the lth stratum �l ȳl
Variance of the variable of interest �2 s2

Standard deviation of the variable of interest � s
Variance of the variable of interest in the lth stratum �2l s2l
Standard deviation of the variable of interest in the lth stratum �l sl
Variable of interest (i.e. packet delay) y y
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For stratified sampling, it can be shown that the overall sample variance �2 is related to the
sample variance in each stratum by

�2 = 1

N − 1

N∑
i=1

(yi − �)2 = 1

N − 1

L∑
l=1

Nl∑
i=1

(yli − �)2

= 1

N − 1

L∑
l=1

Nl∑
i=1

[(yli − �l) + (�l − �)]2

= 1

N − 1

L∑
l=1

(Nl − 1)�2l + 1

N − 1

L∑
l=1

Nl(�l − �)2 (3)

Applying the approximation in Equation (1), and multiplying both sides of Equation (3) by a
common factor 1/n(1− n/N ), where (1− n/N ) is the finite population correction (fpc) factor, it
can be obtained that

1

n

(
1 − n

N

)
�2 = 1

n

(
1 − n

N

) L∑
l=1

Nl

N
�2l + 1

nN

(
1 − n

N

) L∑
l=1

Nl(�l − �)2 (4)

Note that the approximation N −1≈ N has been used in the above derivation. This approximation
is a natural outcome of assumption 1.

The variance of the sample mean for simple random sampling is [28, p. 15]

Varran(ȳ) =
(
1 − n

N

) �2

n
(5)

For stratified random sampling, the variance of the sample mean is given by [27, p. 91]

Varst(ȳ) =
L∑

l=1

(
Nl

N

)2 (
Nl − nl

Nl

)
�2l
nl

(6)

If stratified sampling with proportional allocation is used, then nl is related to n, N and Nl by

nl = n
Nl

N
(7)

The variance of the sample mean for stratified sampling with proportional allocation becomes

Varprop(ȳ) = 1

n

(
1 − n

N

) L∑
l=1

Nl

N
�2l (8)

Comparing Equations (4) and (5) with Equation (8), it can be shown that when the total sample
size n is the same:

Varran(ȳ) =Varprop(ȳ) + 1

n

(
1 − n

N

) 1

N

L∑
l=1

Nl(�l − �)2 (9)
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Hence, the sampling gain of the stratified sampling with proportional allocation compared with
simple random sampling is

�prop =Varran(ȳ) − Varprop(ȳ) (10)

= 1

nN

(
1 − n

N

) L∑
l=1

Nl(�l − �)2�0 (11)

The sampling gain is always positive, which implies that the performance improvement can be
achieved in moving from simple random sampling to stratified sampling with proportional alloca-
tion.

If stratified sampling with optimum allocation [28] is used, then nl is given by

nl = nNl�l∑L
k=1 Nk�k

(12)

The variance of the sample mean for stratified sampling with optimum allocation can be obtained
from Equations (6) and (12):

Varopt(ȳ) = 1

n

(
L∑

l=1

Nl

N
�l

)2

− 1

N

L∑
l=1

Nl

N
�2l (13)

From Equations (8) and (13), we can derive the difference between Varprop(ȳ) and Varopt(ȳ):

Varprop(ȳ) − Varopt(ȳ) = 1

nN

L∑
l=1

Nl(�l − �̄l)
2�0 (14)

where �̄l is

�̄l =
L∑

l=1

Nl

N
�l (15)

This sampling gain is positive, which means the stratified sampling with optimum allocation has
better performance than the stratified sampling with proportional allocation.

Similarly, fixing the sample size n and ignoring the fpc factor (which is close to 1 by using
assumption in Equation (2)), the sampling gain of stratified sampling with optimum allocation
versus simple random sampling is

�opt =Varran(ȳ) − Varopt(ȳ) (16)

= 1

nN

[
L∑

l=1
Nl(�l − �)2 +

L∑
l=1

Nl(�l − �̄l)
2
]

(17)

� 0 (18)

This means that stratified sampling with optimum allocation also has better performance than
simple random sampling.
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Based on Equations (11), (14) and (18), we can conclude that the stratified sampling with
proportional allocation performs better than the simple random sampling, and stratified sampling
with optimum allocation has the best performance among the three sampling techniques.

Note that earlier analysis is performed on count-based sampling techniques, i.e. sampling is
triggered by packet count. Based on the observation in [17] that the difference between count-based
sampling and timer-based sampling (sampling is triggered by time) is very small, these conclusions
may also extend to the timer-based sampling techniques.

5. ADAPTIVE STRATIFIED SAMPLING ALGORITHM

In the last section, we have shown that stratified sampling with optimum allocation has the best
performance. However, Equation (12) implies that the stratified sampling with optimum allocation
requires the knowledge of the standard deviation of the parent population in the lth stratum, i.e. �l ,
in order to allocate the sample size in the lth stratum. This requirement is unrealistic for real-time
applications. In this section, we develop an adaptive stratified sampling algorithm, which uses the
LMS algorithm to predict the value of �l for sample size allocation. The proposed algorithm is
then applied to packet delay sampling.

5.1. Least-mean-square algorithm

The LMS algorithm is one of the most widely used adaptive linear algorithm. The computational
procedure of the LMS algorithm for one-step prediction is listed in the following [29, p. 655] for
completeness:

• Compute the required output:

x̂k =
m−1∑
i=0

wk(i)xk−1−i =WT
kX(k) (19)

where m is the order of the predictor, X(k) is the input vector and Wk is the prediction
coefficient vector:

X(k) = [xk−1, xk−2, . . . , xk−m]T (20)

Wk = [wk(0), wk(1), . . . , wk(m − 1)]T (21)

Initially, each weight wk(i) is set to an arbitrary fixed value.
• Compute the prediction error:

ek = xk − x̂k (22)

• Update the coefficient vector:

Wk+1 =Wk + 2�ekX(k) (23)

where � is the step size.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)
DOI: 10.1002/dac



ONLINE END-TO-END QoS MONITORING

5.2. Prediction of the sample size within a stratum

It has been shown in Section 3.3 that for stratified sampling with optimum allocation, the sample
size within a stratum is

nl = nNl�l∑L
k=1 Nk�k

(24)

To simplify the estimation of nl , an assumption is made that the parent population size Nl is
approximately the same in each stratum, i.e.

Nl

Nk
≈ 1, l �= k (25)

This assumption is valid when the parent population size Nl is very large and the stratum size is a
constant in time. This assumption has been validated using a real traffic trace. Details of the traffic
trace is explained in Section 6. Figure 2 shows the ratio Nk/N1 of the real traffic trace with a
stratum size of 50, 100, 130 and 200 s, respectively, where Nk, k = 1, 2, . . . , L is the total number
of packets within the kth stratum of the real traffic trace and N1 is the total number of packets
within the 1st stratum of the real traffic trace. We can see that the ratio Nk/N1 is approximately
bounded in the interval [0.8, 1.2].

Using the assumption in Equation (25), Equation (24) can be simplified as

nl ≈ n�l∑L
k=1 �k

= n�l
L�̄s

= ��l (26)
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Figure 2. Ratio of packet number between different strata.
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where

�= n∑L
k=1 �k

= n

L�̄s
(27)

In real applications, � can be simply treated as a proportionality constant which controls the
sampling rate. � can be chosen empirically and a larger � will produce a higher sampling rate.

Since the standard deviation of packet delay �l is the true value of the parent delay trace, which
cannot be obtained in real applications, it is approximated by the corresponding standard deviation
of sampling packet delay sl . Then, the LMS algorithm is employed to predict sl from its past
values. Hence, the estimator n̂l of sample size for the lth stratum is computed by

n̂l = �ŝl (28)

where ŝl is predicted from the past values using the LMS algorithm:

ŝl =
m−1∑
i=0

wl(i)sl−1−i (29)

el = sl − ŝl (30)

wl+1(i) = wl(i) + 2�elsl−1−i , i = 0, 1, . . . ,m − 1 (31)

The predictor order can be obtained using the AICC criterion for order selection [30, p. 171].

5.3. An analysis on the estimation error

The estimation error in n̂l may increase the variance of the sample mean, which in turn leads
to a decrease in the estimation accuracy of the adaptive sampling method. From Equation (6),
the variance of the sample mean when using the predicted stratum sample size n̂l (instead of nl
calculated from Equation (12)) is

Varact(ȳ) =
L∑

l=1

(
Nl

N

)2 �2l
n̂l

−
L∑

l=1

(
Nl

N

)2 �2l
Nl

(32)

From Equations (13) and (32), and ignoring the fpc factor, we can derive the relative error between
Varact(ȳ) and Varopt(ȳ) (Varopt(ȳ) is calculated using the ‘true value’ of nl ):

Varact(ȳ) − Varopt(ȳ)

Varopt(ȳ)
= 1

n

L∑
l=1

(n̂l − nl)2

n̂l
= 1

n

L∑
l=1

nl
(�l − 1)2

�l
(33)

where �l = n̂l/nl . Equation (33) relates the performance of the proposed adaptive stratified sam-
pling scheme (compared with the stratified sampling with optimum allocation) to the prediction
error in n̂l .

From Equations (26) and (28), we can obtain that

�l =
n̂l
nl

= �ŝl
��l

= ŝl
�l

(34)
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Therefore, the prediction error in n̂l comes from two sources:

• the estimation error in using sl as an approximation of �l ;
• the prediction error in using the LMS algorithm to predict sl .

For the first item, it can be shown that for a sample with� elements the statistic � = (� − 1)s2/�2

has a �2 distribution with (�−1) degrees of freedom [31, p. 216], where s2 is the sample variance.
Let 	1 and 	2 denote the two critical values of the �2 distribution, which are determined by the
confidence level 1 − 
, then the confidence interval of the variance of the parent population �2 is
[31, p. 216]

(� − 1)s2

	2
��2� (� − 1)s2

	1
(35)

Therefore, for the lth stratum, we have√
	1

n̂l − 1
� sl

�l
�

√
	2

n̂l − 1
(36)

For the second item, from Equation (30), we have

sl = ŝl + el (37)

From Equations (34), (36) and (37), we can obtain the confidence bounds of the ratio n̂l/nl with
a given confidence level 1 − 
:√

	1
n̂l − 1

− el
ŝl

� n̂l
nl

�
√

	2
n̂l − 1

− el
ŝl

(38)

or √
	1

n̂l − 1
− el

ŝl
��l�

√
	2

n̂l − 1
− el

ŝl
(39)

where 	1 and 	2 is determined by 1 − 
.
Now we have obtained the lower bound and the upper bound for the ratio �l = n̂l/nl , which is

expressed in the form of n̂l and the prediction error el . We are ready to examine the relative error in
Varact(ȳ), as given in Equation (33). Let � denote the function �(�) = (� − 1)2/�= �+1/�−2,
Figure 3 shows the variation of �(�) with �. Given this function, if we know the upper bound
and the lower bound of �, which is determined by Equation (39), the maximum value of �(�) in
this limited range of � can also be determined. Figure 3 shows that this maximum value of �(�)

will occur at either the lower bound of � or the upper bound of �. Let �max denote the value at
which � reaches its maximum value. Then Equation (33) can be further simplified as

Varact(ȳ) − Varopt(ȳ)

Varopt(ȳ)
= 1

n

L∑
l=1

nl
(�l − 1)2

�l
(40)

� 1

n

L∑
l=1

nl
(�max − 1)2

�max
(41)
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= (�max − 1)2

�max

1

n

L∑
l=1

nl (42)

= (�max − 1)2

�max
(43)

When �max = 0.9, the relative error between Varact(ȳ) and Varopt(ȳ) is smaller than 0.0111;
when �max = 1.2, the relative error between Varact(ȳ) and Varopt(ȳ) is smaller than 0.0333. We
can see that the impact of the estimation error on the measurement accuracy is marginal when n̂l
is reasonably accurate.

In Section 7, we have implemented simulations for the adaptive stratified sampling. The ratio
�l = n̂l/nl in the simulations was shown to be bounded in [0.77, 1.34]. �(�) reaches its maximum
value at � = 1.34. Hence �max = 1.34, and the relative error between Varact(ȳ) and Varopt(ȳ) is
smaller than 0.086. This means that the proposed adaptive stratified sampling scheme achieves
almost the same performance as stratified sampling with optimum allocation, which represents the
best sampling performance that can be achieved.

6. GENERATION OF THE PARENT PACKET DELAY TRACE

In order to compare the performance of different sampling techniques, experiments are necessary.
In this paper, all experiments are performed using a one-way delay trace as the parent packet
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Figure 4. Network topology used in Opnet Modeler.

Table II. Selection of network nodes and background traffic utilizations of links.

Nodes Description Background traffic utilization

Switch-1, 2 3 Com’s SuperStack II Switch 3800 N/A
Router-1, 2, . . . , 7 CISCO 12008 N/A
Link-1, 10 100Mbps Link 0%
Link-2, 3, 8, 9 100Mbps Link 50%
Link-4, 7 100Mbps Link 70%
Link-5, 6 100Mbps Link 55%

Table III. A summary of the statistics for packet delay, packet size and inter-arrival
time of the parent packet delay trace.

Property Minimum Maximum Mean Variance

Packet delay (ms) 41.092 141.305 86.024 8529
Packet size (bytes) 64 1518 440.5 302 080
Inter-arrival time (ms) 0.006 203.3280 4.5181 74.4127

delay trace. This delay trace is generated by importing a real traffic trace into Opnet Modeler.
This real traffic trace (‘20010613-060000-e1.gz’) was collected by the WAND research group at
the University of Waikato Computer Science Department. It was captured between 6.00 a.m. and
8.54 a.m. on 13 June 2001 on a 100Mbps Ethernet link. IP headers in the traffic trace are GPS
synchronized and have a time accuracy of 1 �s. More information on the traffic trace and the
measurement infrastructure can be found on the research group’s website [32].

The network topology used in the Opnet Modeler is shown in Figure 4. The selection of
network nodes (e.g. switch, router, link) and background traffic utilizations of the links are shown
in Table II. The first 2600-s part of the entire trace is then imported into the Opnet Modeler.
After the simulation, we obtain a one-way packet delay traffic trace of a duration of 2600 s with
577 718 packets. For the purpose of our study, we treat the 2600-s delay traffic trace as the parent
packet delay trace. Table III shows a summary of the statistics for the packet delay, packet size
and inter-arrival time of the parent packet delay trace.
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The minimum sample size required to obtain an estimate satisfying a given accuracy criterion
is given in [33, p. 27], which is

n�
z2
/2�

2

r2�2
(44)

where z
/2 is the upper 
/2 quantile of the Gaussian distribution and is determined by the confidence
level 1 − 
; r is the estimate accuracy (i.e. the bounds of the relative error between the actual
value and its estimate). In this paper, � = 86.024ms and �2 = 8529. If an accuracy of r = ±5%
and a confidence level of 100(1 − 
)%= 95% are required in estimating the mean packet delay,
then z
/2 = 1.96. Hence, the minimum sample size is 1739. Since the parent packet delay trace
has a time duration of 2600 s and the sampling frequency is chosen to be 1 packet/s, the total
sample size is approximately 2600, which satisfies the accuracy requirement. Moveover, the ratio
between the sample size (2600) and the parent population size (577 718) is 0.45%, which satisfies
with the assumption in Equation (2). If an accuracy of r = ±1% and a confidence level of 100(1−

)%= 95% are used, the minimum sample size would be 43 464, which means that a much higher
sampling rate would be required. This paragraph gives a guideline on choosing the sampling
frequency. In real applications, the values of � and �2 can be estimated empirically from past
measurements.

7. SIMULATION RESULTS

In this section, the performance of different sampling schemes, i.e. systematic sampling, the
Poisson sampling, stratified sampling with optimum allocation and the proposed adaptive stratified
sampling, is compared using Monte-Carlo simulations [34]. The total sample size for each sampling
technique is chosen to be the same. The parent packet delay trace used for simulation is the one-way
delay trace presented in Section 6.

For stratified sampling with optimum allocation, the parameters required to calculate the sample
size nl are all true values obtained from the parent packet delay trace. It is used as a benchmark,
which represents the best sampling performance that can be achieved. The sample packet delay
traces are selected directly from the parent delay trace. The sampling goal is to estimate the mean
packet delay � and the variance of packet delay �2 of the parent packet delay trace.

Several C programs were developed for obtaining the sample packet delay traces and calculating
the estimated mean packet delay �̂ and the estimated variance of packet delay �̂2 = s2 from the
sample packet delay traces, where �̂ is the mean packet delay of the sample delay trace and s2 is the
variance of packet delay of the sample delay trace. For simulation, each kind of sampling technique
(e.g. systematic sampling, systematic sampling) is repeated a number of times, and the random
seed in the C programs is updated in each repetition. Let M denote the number of repetitions
(termed sampling rounds in this paper). After M sampling rounds, we obtain M different sample
delay traces. The estimated mean delay �̂ and estimated variance of delay s2 are calculated for
each sample delay trace in the M sampling rounds. Then, we can obtain M estimated mean delay,
i.e. �̂1, �̂2, . . . , �̂M and M estimated variances of packet delay, i.e. s21 , s

2
2 , . . . , s

2
M . The absolute

error of the estimated mean delay, i.e. |�̂i − �|, and the absolute error of the estimated variance,
i.e. |s2i − �2|, are also calculated for each M sampling round, where the true values � and �2 are
obtained from the parent packet delay trace in Section 6 and shown in Table III.
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Table IV. Simulation results of sampling tests using different sampling
methods (true values are: � = 86.824ms, �2 = 8529).

Sampling method M AMean (ms) AVar MSE

Systematic 222 74.803 5996 145
Poisson 222 64.998 4710 478
Stratified with optimum allocation 222 88.023 8959 5
Adaptive stratified 222 84.895 8081 10
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Figure 5. Relative error in predicting sl in Equation (30).

To compare the performance of different sampling methods, several metrics are used, which
are:

• Average value of the sample mean (AMean): the average value of the sample means of the M
sample delay traces. AMean= (1/M)

∑M
i=1 �̂i , where M is the number of sampling rounds,

�̂i is the mean value of the i th sample delay trace in the M sample delay traces. The smaller
the difference between AMean and � is, the better the performance is.

• Average sample variance (AVar): the average value of the sample variances of the M sample
delay traces. AVar= (1/M)

∑M
i=1 s

2
i , where s2i is the variance of the i th sample delay trace.

The smaller the difference between AVar and �2 is, the better the performance is.
• Mean square error (MSE) of the sample mean �̂i : MSE= (1/M)

∑M
i=1(�̂i −�)2. The smaller

the MSE is, the higher the accuracy is.
• Absolute error of estimated mean (AEMean): |�̂i − �|, the smaller |�̂i − �| is, the lower the
variance of the sample mean Var(�̂) is.
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Figure 8. Comparison of absolute error of estimated variance for different sampling methods. Stratum
size: 50 s, sampling rounds: 222.

• Absolute error of estimated variance (AEVar): |s2i − �2|, the smaller |s2i − �2| is, the better
can s2 estimate the true variance �2.

The first two metrics are used to give an intuitive gauge of the sampling accuracy by comparing
them directly with the corresponding true values of the variables of interest as shown in Table IV.
The rest three metrics are popularly employed metrics for comparing the performance of different
sampling methods [19, 21, 22, 24, 25].

Then simulations for these four sampling methods are performed. Each simulation is repeated
for 222 times (i.e. M = 222), where M = 222 is a randomly chosen large number. For systematic
sampling, the sampling interval is specified as 1 s. For Poisson sampling, the mean sampling
interval is 1 s. For the proposed adaptive sampling, the prediction parameters and stratum size are
chosen empirically. The predictor order is 4; the initial weights are: wl(0)= 0.257, wl(1)= 0.210,
wl(2)= 0.209 and wl(3)= 0.260; the step size is: � = 0.02; the stratum size is: 50 s. These values
of the predictor order, initial weights and stratum size are obtained empirically using a different
traffic trace (‘20010612-060000-e1.gz’), which was captured between 6.00 a.m. and 8.54 a.m. on
12 June 2001 on a 100Mbps Ethernet link [32], from that used in Section 6. The stratum size is
determined empirically by examining the packet delay correlation in the trace such that the packet
delay correlation in the same stratum is large enough.

Figure 5 shows the relative error (i.e. el/sl ) in predicting the standard deviation of sampling
packet delay in each stratum and Figure 6 shows the autocorrelation of el . We can see that the
relative error el/sl is marginal and the error el is approximately independent, which indicates
a good performance of the prediction algorithm. The total sample size n is specified as 2600
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Figure 9. RTT measurements using UDP protocol between a server located at the University of
Sydney and a client located at NICTA at ATP, Sydney. Both the client and the server are connected
to a high-speed LAN, then to a WAN. The average RTT measured is 1.154ms. The horizontal axis
shows the packet delay and the vertical axis shows the probability that the measured packet delay

exceeds a specified packet delay value.

in order to make sure it has the same sample size as the systematic sampling and the Poisson
sampling (n = samping duration/sampling rate= 2600/1= 2600). For stratified sampling with
optimum allocation, the stratum size is also specified as 50 s and the total sample size is 2600.

Table IV shows the simulation results. It can be seen that the stratified sampling with optimum
allocation achieves the best performance. The proposed adaptive sampling scheme produces ap-
proximately the same performance as the stratified sampling with optimum allocation; it performs
much better than systematic sampling and Poisson sampling. Figure 7 shows the absolute error
of the estimated mean in different simulation rounds (i.e. 222 rounds) and Figure 8 shows the
absolute error of the estimated variance for the 222 sampling rounds. Both figures show that the
proposed adaptive stratified sampling gives better estimation accuracy than the systematic sampling
and the Poisson sampling; and the performance of the proposed adaptive scheme is close to the
performance of stratified sampling with optimum allocation.

8. SOFTWARE DESIGN

In this section, we shall introduce a QoS monitoring software designed by us based on the earlier
analysis.
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Figure 10. RTT measurements using UDP protocol between a server located at the University of Sydney
and a client located at Carlton, Sydney. The server is connected to a WAN through a high-speed LAN.
The client is connected to a WAN through a wireless LAN, then ADSL. The average RTT measured is
25.601ms. The horizontal axis shows the packet delay and the vertical axis shows the probability that the

measured packet delay exceeds a specified packet delay value.

The software is developed using C + + language and is designed to operate in widely used
versions of the Windows operating system (i.e. Windows 2000 and XP). The software uses a
client–server architecture. The client initiates the measurement request, and the server responds to
the client’s request, performs some simple computation and returns the required information back
to the client. One server can respond to multiple clients. The measurements can be taken using TCP,
UDP or ICMP protocol. The software supports systematic sampling, the Poisson sampling and
the proposed adaptive sampling strategies, and also it supports RTT (Round-trip) delay, one-way
jitter and one-way loss measurements. Moveover, it also provides a simple idea about the network
availability by diagnosing and recording the time when the network is available and when the
network is unreachable. Users can specify sampling parameters, e.g. ‘IP precedence’, packet size,
packet size distribution (constant or random size), sampling methods, sampling frequency. The
flexibility in choosing sampling parameters allows the program to be used in different network
environments.

Figures 9–11 show RTT measurements performed in a number of different environments. In
particular, the RTT measurement results shown in Figure 11 between a computer located at the
University of Sydney and a computer located at NICTA in Canberra are impressively good. Note
that in simulation environments, the true values for the performance metrics of interest (e.g.
packet delay, jitter) are known, whereas in real environments, the true values cannot be obtained.
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Figure 11. RTT measurements using TCP protocol between a server located at the University of
Sydney and a client located at NICTA in Canberra. Both the client and the server are connected to
a high-speed LAN, then to a WAN. The average RTT measured is 5.940ms. The horizontal axis
shows the packet delay and the vertical axis shows the probability that the measured packet delay

exceeds a specified packet delay value.

Therefore, it is impossible to make the same performance comparisons for the real data obtained
here as that for the simulation data.

9. CONCLUSION

In this paper, we investigated several major sampling techniques, i.e. systematic sampling, random
sampling and stratified sampling (with proportional allocation and optimum allocation) that can be
used for end-to-end QoS measurement. Theoretical analysis was conducted, which showed that the
stratified sampling with optimum allocation has the best performance. However, the implementation
of stratified sampling with optimum allocation requires knowledge of the standard deviation of the
variable of interest in each stratum, which is not available for real-time applications. Therefore, we
proposed a novel adaptive stratified sampling scheme to solve the problem. The proposed sampling
scheme is based on stratified sampling with optimum allocation. It employs a LMS algorithm to
predict the standard deviation of the variable of interest in a stratum, which is required to compute
the sample size for that stratum. Both analytical study and simulation were conducted on the
performance of the proposed scheme, which showed that the proposed adaptive sampling scheme
outperforms systematic sampling and the Poisson sampling and achieves a performance close to
that of stratified sampling with optimum allocation, which is used as a benchmark representing
the best performance.
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