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Abstract—Considering a wireless multi-hop network where a
total of n nodes are randomly, independently and uniformly
distributed in a unit square in <2 and each node has a uniform
transmission power, a fundamental problem is to investigate the
connectivity of such networks. In this letter, we prove that the
probability of having a connected network and the probability
of having no isolated node asymptotically converges to the same
value as n goes to infinity for an arbitrary wireless channel model
satisfying certain intuitively reasonable conditions.

Index Terms—connectivity, isolated node, wireless multi-hop
network, channel model.

I. INTRODUCTION

ONE of the most fundamental properties of wireless multi-
hop networks, e.g. wireless ad hoc/sensor network, is

connectivity [1], [2], [3]. A network is said to be connected
iff (if and only if) for any pair of two nodes, there is at least
one path between them. There has been significant research
on network connectivity during the last few years [1], [2],
[3], [4]. The results proved by Gupta et al. indicate that
under the unit disk communication model, the probability of
having a connected network asymptotically converges to the
probability of having no isolated node as the number of nodes
goes to infinity in <2 [1]. Similar results were proved under
the log-normal shadowing model in <2 by Ta et al. in [5].
These two results raise an interesting question: whether the
asymptotic property, i.e. the above two probabilities converge
as the number of nodes goes to infinity, holds under more
generic channel models. The results obtained under a specific
channel model may not necessarily apply for other channel
models. Hence, it is important to investigate whether this
asymptotic result is valid for generic channel models satisfying
certain common conditions.

In this letter, we investigate analytically the network con-
nectivity in a wireless multi-hop network for wireless chan-
nel models which are arbitrary apart from obeying certain
intuitively reasonable general conditions on node-pair con-
nectivity. We assume that a total of n nodes are randomly,
independently and uniformly distributed in a unit square in
<2, and each node has a uniform transmission power. Any
two nodes can communicate with each other directly with
probability gC(x), where x is the Euclidean distance between
the two nodes, C represents any arbitrary channel model (e.g.
log-normal shadowing model), and gC(x) is the probability
that any two nodes with distance x apart from each other
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are directly connected. The function gC(x) can be derived
using the channel model, the transmission power and the
threshold power (or SNR) above which a receiving node can
correctly receive the packet. Different channel models may
lead to different gC(x). For example, if the channel model C
is the unit disk communication model with the transmission
range r, we have gC(x) = 1 when x ≤ r; gC(x) = 0
when x > r. For the log-normal shadowing model, gC(x)
can be found in [2], [5]. Based on this network model, we
shall prove that the probability of having a connected network
asymptotically converges to the probability of having no
isolated node as n →∞ for any channel model satisfying the
following conditions of rotational and translation invariance,
monotonicity and integral boundedness:





g(C)(x) = g(C)(y) whenever x = y;
g(C)(x) ≤ g(C)(y) whenever x ≥ y;

0 <
∫
<2 g(C)(x)dx < ∞.

(1)

The first restriction indicates that the propagation path is
symmetric; the second restriction indicates that g(C)(x) must
be a non-increasing function of the distance x; the third
restriction avoids the trivial case that any two nodes are
directly connected with probability one [6]. It can be easily
shown that both the unit disk communication model and the
log-normal shadowing model satisfy the condition Eq. 1. The
result in this letter extends the result derived in [1] for the
unit disk communication model and the result derived in [5]
for the log-normal shadowing model.

Throughout this letter, we represent a wireless multi-hop
network by an undirected graph with each vertex of its vertex
set uniquely representing a node and each edge of its edge
set uniquely representing a wireless link, and vice versa. The
graph is then called the underlying graph of the network, and
is defined as follows.

Definition 1. Let X1, X2, ..., Xn be n points which are
independently, randomly and uniformly distributed in a unit
square in <2; let Xn = {X1, X2, ..., Xn}. The underlying
graph G(Xn, C) is an undirected graph having Xn as its vertex
set, and with an edge connecting each pair of vertices Xi

and Xj in Xn with probability g(C)(‖Xi − Xj‖), where C
represents the channel model, function g(C)(·) satisfies the
conditions Eq. 1, and ‖ · ‖ means the Euclidean norm.

II. CONNECTIVITY

In this section, we present the main result in this letter,
which is given in the following theorem.
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Theorem 1. Let Pc(Xn, C) denote the probability that the
graph G(Xn, C) of Definition 1 is connected, and P0(Xn, C)
denote the probability that the graph G(Xn, C) of Definition 1
has no isolated node. Ignore the boundary effect. If the limit
of P0(Xn, C) exists when n →∞, then the limit of Pc(Xn, C)
also exists when n →∞, vice versa, and

lim
n→∞

Pc(Xn, C) = lim
n→∞

P0(Xn, C).

Theorem 1 implies that for a given graph G(Xn, C) as
defined in Definition 1, if n is large enough, then with high
probability, the graph becomes connected at the moment when
the last isolated node vanishes (or equivalently, the network
achieves a minimum degree of one). The result, derived for
an arbitrary channel model satisfying the conditions Eq. 1, is
consistent with the result derived for the unit disk communi-
cation model in [1] and the result derived for the log-normal
shadowing model in [5].

It is well known that in two or higher dimensional networks,
it is difficult to derive an closed-form analytical formula for
computing the probability Pc(Xn, C). A widely used method
is to study Pc(Xn, C) by analyzing P0(Xn, C) which can be
easily derived. Theorem 1 indicates that P0(Xn, C) is a close
approximation of Pc(Xn, C) for large n for an arbitrary chan-
nel model satisfying Eq. 1, which provides a theoretical basis
for estimating Pc(Xn, C) by P0(Xn, C). Existing solutions of
P0(Xn, C) for the unit disk communication model and the log-
normal shadowing model can be found in [2], [3], [5].

III. PROOF OF THEOREM 1

To prove Theorem 1, we apply some results derived for
the Poisson random-connection model, as defined below, in
continuum percolation [6].

Definition 2 ( [6]). Let {X1, X2, X3, ...} be an infinite series
of points which are randomly, independently and uniformly
distributed in a unit square in <2; let Nλ be a Poisson random
variable with mean λ > 0; let Pλ = {X1, X2, ..., XNλ

}. The
Poisson random-connection model, denoted as G(Pλ, g), is
an undirected graph having Pλ as its vertex set, and with an
edge connecting each pair of vertices Xi and Xj in Pλ with
probability g(‖Xi −Xj‖), where g(·) is a function from the
positive reals into [0, 1] and satisfies the conditions Eq. 1.

Throughout this letter, let F (C) denote the probability
that two randomly selected nodes in the graph G(Xn, C)
are directly connected. In principle at least F (C) can be
derived using the function gC(x) and the node distribution.
For example, for nodes distributed randomly and uniformly in
a unit square, ignoring the boundary effect, F (C) = πr2 when
C is the unit disk communication model with transmission
range r [1], [3]. In the rest of this section, we first derive three
lemmas, viz., Lemmas 1, 2 and 3, and then prove Theorem
1 using these lemmas. We shall use standard mathematical
notations: y(n) = o(g(n)) if limn→∞

y(n)
g(n) = 0; g(n) À y(n)

if y(n) = o(g(n)); y(n) ∼ g(n) if limn→∞
y(n)
g(n) = 1.

Lemma 1. Let Pd(Xn, C) be the probability that the graph
G(Xn, C) is disconnected. Let F (C) be the probability that two

randomly selected nodes in G(Xn, C) are directly connected.
Ignore the boundary effect. Given any fixed c ∈ <, if F (C) =
log n+c

n , then

lim inf
n→∞

Pd(Xn, C) ≥ 1− exp
(−e−c

)
.

Proof: Let Piso(Xn, C) be the probability that an arbitrary
node in G(Xn, C) is isolated. Ignoring boundary effects, then

Piso(Xn, C) ∼ (1− F (C))n−1, as n →∞.

Because F (C) = log n+c
n → 0 as n →∞, we have

Piso(Xn, C) ∼ e−c

n
, as n →∞.

Since n À 1 and F (C) = log n+c
n → 0 as n → ∞, the

event that a randomly selected node has i neighbors is almost
independent of the event that another randomly selected node
has j neighbors [3], [4], [6]. Ignoring boundary effects, then

P0(Xn, C) = (1− Piso(Xn, C))n ∼
(

1− e−c

n

)n

∼ exp
(−e−c

)
, as n →∞. (2)

Using Eq. 2 and the fact that Pd(Xn, C) ≥ 1 − P0(Xn, C),
the result follows.

Lemma 2. Let Pd(Pm(n), C) be the probability that the graph
G(Pm(n), C) is disconnected, where m(n) = bn − n

3
4 c. Let

F (C) be the same probability as defined in Lemma 1. Ignore
boundary effects. Given any fixed c ∈ <, if F (C) = log n+c

n ,

lim
n→∞

Pd(Pm(n), C)) = 1− exp
(−e−c

)
.

Proof: A component of a graph is a maximally connected
subgraph of the graph. The order of a component is the
number of vertices in the component. It has been proved that
a.a.s. G(Pλ, g) has at most one infinite-order component for
each λ ≥ 0 (Theorem 6.3 of [6]). In addition, as λ →∞, a.a.s.
any given point of Pλ either lies in an infinite-order component
or is isolated (Theorem 6.4 of [6]). Since m(n) → ∞ as
n → ∞, the graph G(Pm(n), C) only consists of isolated
vertices and an infinite-order component a.a.s..

Let Y (Pm(n), C) be the probability that G(Pm(n), C) has at
least one isolated node. Using the above analysis, we have

Pd(Pm(n), C) = (1 + o(1))Y (Pm(n), C), as n →∞. (3)

For a Poisson random variable Mn with mean m(n) =
bn− n

3
4 c, using the Chebyshev’s inequality, we have [5]

lim
n→∞

Pr{bn− 2n
3
4 c ≤ Mn ≤ n} = 1. (4)

For any integer j ≥ 0, define Y (Xj , C) as the probability
that the graph G(Xj , C) has at least one isolated node. Define
Jn = {j : j ∈ N, bn− 2n

3
4 c ≤ j ≤ n}. Then, using Eq. 4, it

can be easily shown that

Y (Pm(n), C) =
∞∑

j=0

(m(n))j

j!
e−m(n)Y (Xj , C)

=
∑

j∈Jn

(m(n))j

j!
e−m(n)Y (Xj , C) + o(1), as n →∞. (5)
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Ignoring the boundary effect, for any j ∈ Jn, we have

Y (Xj , C) = 1− (1− Piso(Xj , C))j
.

Since j ∈ Jn, we have j
n → 1 as n → ∞. In the same way

as in the proof of Lemma 1, we have

Y (Xj , C) ∼ 1− exp
(−e−c

)
, as n →∞. (6)

Substituting Eq. 6 into Eq. 5, and using Eq. 4, we have

Y (Pm(n), C) = 1− exp
(−e−c

)
+ o(1), as n →∞. (7)

By Eq. 3 and Eq. 7, the result follows immediately.

Lemma 3. Adopt the same hypothesis as Lemma 1, then

lim sup
n→∞

Pd(Xn, C) ≤ 1− exp
(−e−c

)
.

Proof: For any integer j ≥ 0, define Pd(Xj , C) as the
probability that the graph G(Xj , C) is disconnected. In the
same way as in the proof of Lemma 2, we have

Pd(Pm(n), C) =
∞∑

j=0

(m(n))j

j!
e−m(n)Pd(Xj , C)

=
∑

j∈Jn

(m(n))j

j!
e−m(n)Pd(Xj , C) + o(1), as n →∞. (8)

For fixed transmission power, channel C, and any l > 0, we
have the following inequality (similar to the one in [1]),

Pd(Xl, C) ≤ Pr{node l is isolated in G(Xl, C)}
+Pd(Xl−1, C). (9)

By taking recursion on Eq. 9, we have that for any j ∈[
bn− 2n

3
4 c − 1, n− 1

]
,

Pd(Xn, C)

≤
n∑

l=j+1

Pr{node l is isolated in G(Xl, C)}+ Pd(Xj , C)

∼
n∑

l=j+1

(1− F (C))l−1 + Pd(Xj , C)

≤ (1− F (C))j

F (C) + Pd(Xj , C). (10)

Since j ∈ Jn, j
n → 1 as n →∞. Using the condition F (C) =

log n+c
n , we have

(1− F (C))j

F (C) ∼ e−c

log n + c
= o(1) as n →∞. (11)

Inserting Eq. 10, Eq. 11 into Eq. 8, it can be obtained that

Pd(Pm(n), C) ≥ Pd(Xn, C)
∑

j∈Jn

(m(n))j

j!
e−m(n) + o(1)

= Pd(Xn, C) + o(1), as n →∞. (12)

By Lemma 2 and Eq. 12, we have

Pd(Xn, C) ≤ 1− exp
(−e−c

)
+ o(1), as n →∞,

from which the result follows.

Proof of Theorem 1: Note that both probabilities
Pc(Xn, C) and P0(Xn, C) are monotonically increasing func-
tions of F (C). In the following, we shall use this monotonic
property and Lemmas 1, 3 and Eq. 2 to prove Theorem 1 in
three steps.

Suppose the limit of P0(Xn, C) exists when n →∞. Then,
there are only three cases that limn→∞ P0(Xn, C) can be, i.e.
0, 1 and any value β ∈ (0, 1).

1) If limn→∞ P0(Xn, C) = 0: it is trivial to obtain that
limn→∞ Pc(Xn, C) = 0 since Pc(Xn, C) ≤ P0(Xn, C)
for all n.

2) If limn→∞ P0(Xn, C) = 1: because exp (−e−c) → 1 as
c → ∞, by the monotonic property of P0(Xn, C) with
respect to F (C) and Eq. 2, it must be true that for any
arbitrary c2 ∈ <, there exists an integer Nc2 such that

F (C) ≥ log n + c2

n
, ∀ n ≥ Nc2 .

Then, using the above requirement on F (C), the fact that
exp (−e−c2) → 1 as c2 →∞ and c2 can be arbitrarily
large, and the monotonic property of Pc(Xn, C) with
respect to F (C) and Lemma 3, it can be readily obtained
that limn→∞ Pc(Xn, C) = 1.

3) If limn→∞ P0(Xn, C) = β ∈ (0, 1): by the strict
monotonicity of exp (−e−c) with respect to c and Eq.
2, it must be true that

F (C) =
log n + cβ

n
,

where cβ ∈ < satisfies exp (−e−cβ ) = β. Using this
requirement on F (C), and Lemmas 1 and 3, it can be
obtained that limn→∞ Pc(Xn, C) = β.

Combining the above three cases, it is clear that if the limit
of P0(Xn, C) exists when n →∞, then the limit of Pc(Xn, C)
also exists when n → ∞, and limn→∞ P0(Xn, C) =
limn→∞ Pc(Xn, C). In the same way, we can prove that
if the limit of Pc(Xn, C) exists when n → ∞, then
the limit of P0(Xn, C) also exists when n → ∞, and
limn→∞ P0(Xn, C) = limn→∞ Pc(Xn, C). Hence, the result
follows.
Remark. Since Theorems 6.3-6.4 of [6] are also valid in 3-
dimensional space, in the same way as shown in the proofs of
Lemmas 1, 2, 3 and Theorem 1, we can prove that Theorem
1 is also valid in 3-dimensional space.

REFERENCES

[1] P. Gupta and P. Kumar, “Critical power for asymptotic connectivity
in wireless networks,” Stochastic Analysis, Control, Optimization and
Applications, pp. 547–566, 1998.

[2] C. Bettstetter and C. Hartmann, “Connectivity of Wireless Multihop
Networks in a Shadow Fading Environment,” Wireless Networks, vol. 11,
no. 5, pp. 571–579, September, 2005.

[3] C. Bettstetter, “On the Minimum Node Degree and Connectivity of a
Wireless Multihop Network,” in 3rd ACM International Symposium on
Mobile Ad Hoc Networking and Computing, Lausanne, 2002, pp. 80–91.

[4] V. Ravelomanana, “Extremal Properties of Three-Dimensional Sensor
Networks with Applications,” IEEE Transactions on Mobile Computing,
vol. 3, no. 4, pp. 246–257, July, 2004.

[5] X. Ta, G. Mao, and B. Anderson, “Critical Power for Connectivity of
Wireless Multi-hop Networks in the Presence of Shadowing,” submitted
for IEEE Transactions on Mobile Computing, 2008.

[6] R. Meester and R. Roy, Continuum Percolation. Cambridge, UK:
Cambridge University Press, 1996.


