
On the Giant Component in Wireless Multi-hop
Networks

Xiaoyuan Ta∗‡, Guoqiang Mao∗‡, and Brian D.O. Anderson†§
∗School of Electrical and Information Engineering, The University of Sydney

†Research School of Information Sciences and Engineering, Australian National University
‡National ICT Australia Limited[1], Sydney, Australia
§National ICT Australia Limited, Canberra, Australia

Abstract—In this paper, we study the giant component, the
largest component containing a non-vanishing fraction of nodes,
in a wireless multi-hop network where n nodes are randomly and
uniformly distributed in [0, 1]d (d = 1, 2) and any two nodes can
communicate directly with each other iff their Euclidean distance
is not larger than the transmission range r. We investigate the
probability that the size of the giant component is at least a given
threshold p with 0.5 < p ≤ 1. For d = 1, we derive a closed-form
analytical formula for this probability. For d = 2, we propose
an empirical formula for this probability using simulations. In
addition, we compare the transmission range required for having
a connected network with the transmission range required for
having a certain size giant component for d = 2. The comparison
shows that a significant energy saving can be achieved if we
only require most nodes (e.g. 95%) to be connected to the giant
component rather than require all nodes to be connected. The
results of this paper are of practical value in the design and
analysis of wireless ad hoc networks and sensor networks.

I. INTRODUCTION

A wireless multi-hop network, e.g. wireless ad hoc/sensor
network, usually consists of a number of decentralized and
self-organized nodes that communicate with each other over
wireless channels, and packets are forwarded hop-by-hop from
the source to the destination. Connectivity is a prerequisite
for many network functions, e.g. routing, topology control, in
such wireless multi-hop networks [1], [2], [3]. A network is
connected iff (if and only if) for any pair of two nodes, there is
at least one path between them. Otherwise, the network is said
to be disconnected. Generally, a disconnected network may
consist of a number of isolated nodes and several components.
We call the largest component containing a non-vanishing
fraction of nodes the giant component [4].

In the past several years, the connectivity problem in
wireless multi-hop networks has been widely investigated and
significant outcomes have been achieved [2], [3], [5], [6].
However, from a practical point of view, requiring all nodes
to be connected may be a too stringent condition to satisfy.
It has been shown by simulations that the transmission range
required for a large percentage of nodes to be connected is
much less than the transmission range for all nodes to be
connected [1], [4], [7]. Fig. 1 shows the average value of the
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ratio of the transmission range required for 95% of nodes to be
connected to the transmission range required for a connected
network. As shown in the figure, when the number of nodes
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Fig. 1. Simulation results: Average value of ratio r0.95/r1. r1: transmission
range required for a connected network; r0.95: transmission range required
for 95% of nodes to be connected. The ratio shown is the average value, and
each average value is obtained over 2000 random topologies, in which a total
of n nodes are uniformly and randomly distributed on a unit square.

is 1000, the transmission range required for 95% nodes to
be connected is 24% less than that required for a connected
network. Based on a conservative estimate that the required
transmission power increases with the square of the required
transmission range, this means an energy saving of at least
42%. In addition, the ratio decreases as the total number of
nodes n increases. This means that the energy saving is more
significant in a network with a large number of nodes. In
practice, many network applications do not require all nodes
to be connected and having a few disconnected nodes is
not critical [8]. Examples of applications of this type might
be habitat monitoring for wild animals, monitoring ocean
temperature. Hence, it is practical and significant to investigate
the giant component, and to quantify, as far as possible, the
extent of this saving (as opposed simply to observing the
possibility of saving).

In this paper, we investigate the probability that the size of
the giant component achieves a given threshold. The size of
the giant component is defined as the ratio of the number of
nodes in the giant component to the total number of nodes
in the network [4]. More specifically, we assume that a total
of n nodes are randomly and independently distributed in
[0, 1]d (d = 1, 2) following a uniform distribution and each
node has a uniform transmission range of r. Any two nodes
can communicate directly with each other iff their Euclidean



distance is at most r. This network model has been widely used
in the area [1], [2], [6], [9]. Based on this result one can derive
the minimum transmission range at which a nominated large
percentage of nodes are connected with a high probability. The
advantage of using this minimum transmission range, rather
than a higher transmission range for a connected network, is
that both power consumption and interference can be reduced
while meaningful services can still be provided.

The rest of this paper is organized as follows. Section II
reviews related work. Section III describes the network model.
In section IV, we derive a closed-form analytical formula
for computing the probability that the giant component size
achieves a given threshold for d = 1. In section V, we
propose an empirical formula for the probability that the giant
component size achieves a given threshold for d = 2 using
simulations. Section VI concludes this paper and discusses
future work.

II. RELATED WORK

There has been extensive work on the giant component for
Bernoulli random graphs, and an analytical formula relating
the giant component size and the average node degree2 has
been found [10]. However, the Bernoulli random graph is not
suitable for modeling wireless multi-hop networks, because
in Bernoulli random graphs, the probability of existence of a
link between any two nodes is independent of their Euclidean
distance, whereas in wireless multi-hop networks, such prob-
ability is dependent on the Euclidean distance. Therefore, it is
inappropriate to apply the results on the giant component size
obtained from Bernoulli random graphs directly into wireless
multi-hop networks.

In [4], Hekmat et al. investigated the giant component size
in a log-normal shadowing environment, where a total of n
nodes are randomly and uniformly distributed on a square
and a link exists between two nodes if the power received
at one node from the other node, as determined by the log-
normal shadowing model, is greater than a given threshold.
Based on the analytical results obtained in Bernoulli random
graphs, the authors proposed an empirical formula relating
the giant component size and the average node degree in
random geometric graphs (refer to [5]). In [11], Németh et
al. investigated the giant component size by using a fractal
propagation model where the probability of having a link
between two nodes is determined by their Euclidean distance
and two non-negative constants. They found that the giant
component size can be characterized by a single parameter,
viz., the average node degree. However, the empirical formula
of the former paper only works well when the variance of the
shadowing is large; the propagation model used in the latter
paper may be suitable only for restricted environments.

III. NETWORK MODEL

Generally, a wireless multi-hop network can be represented
by an undirected graph G(V, E) with a set of vertices V and

2Average node degree is the average number of neighbors of an arbitrary
node.

a set of edges E. Each vertex of the set V uniquely represents
a node and each edge of the set E uniquely represents a
wireless link, and vice versa. For many purposes, a so-called
random geometric graph Gd(n, r) can be used for modeling
such wireless multi-hop networks, where the subscript d is
used to emphasize the dimension. In this paper, we shall model
the network by a random geometric graph Gd(n, r) which is
typically defined as follows.

Definition 1 ( [5], [12]). Given n ∈ N and r ∈ [0, 1], a random
geometric graph Gd(n, r) is a graph in which n vertices are
randomly and independently distributed in the unit cube [0, 1]d

following a uniform distribution, and any two vertices u and
v are directly connected iff ||u−v|| ≤ r, where the norm || · ||
means the Euclidean norm.

Remark. In this paper, we assume that any two nodes can
communicate directly with each other iff their Euclidean dis-
tance is less than or equal to the transmission range r, i.e. the
unit disk communication model. The unit disk communication
model simplifies the analysis, but it is interesting and important
to investigate how conclusions obtained under the unit disk
communication model extend to a more realistic channel
model. In [13], Santi et al. claimed that the basic nature of the
results would not change if more realistic channel models were
considered based on the simulation results in [14]. Therefore,
the impact of different channel models on the results in the
paper is likely to be quantitative, i.e. the nature and the trend
(e.g. the ratio r0.95/r1 decreases quickly with n) revealed in
the results will not be affected.

IV. GIANT COMPONENT SIZE IN ONE-DIMENSIONAL SPACE

One-dimensional wireless multi-hop networks are indeed
useful in many real world scenarios. Examples of such appli-
cations might be a vehicular network built along a highway,
a network deployed along an attack route in battlefield, and
other networks where nodes are placed on a line [15]. In this
section, we shall derive a closed-form analytical formula for
the probability of having a giant component with size above
a given threshold p (0.5 < p ≤ 1) in one-dimensional space
(d = 1), denoted by P1(n, r, p). We are interested in all values
of n, not just asymptotically large n.

In order to derive the probability P1(n, r, p), the following
three lemmas, viz., Lemma 1, Lemma 2 and Lemma 3 are
needed. Lemma 2 and Lemma 3 are used to derive P1(n, r, p);
Lemma 1 is used to prove Lemma 2 and Lemma 3.

Lemma 1 (Lemma 1 in [12]). Let [x, x+y] be a subinterval of
length y on a unit interval [0, 1]. Let two of k given vertices be
placed on the borders of this subinterval. Let P (k, y, r) be the
probability that the remaining k− 2 vertices placed randomly
and uniformly on [0, 1] are inside [x, x+y] and the k vertices
form a connected subgraph of length y. Then

P (k, y, r) =
min{k−1,by/rc}∑

j=0

(
k − 1

j

)
(−1)j(y − jr)k−2. (1)



Lemma 2. Let F1
k denote the event that there exists a con-

nected subgraph with exactly k (k < n) vertices in G1(n, r)
and both endpoints of this subgraph are not within distance r
from the borders of the unit interval, and none of the remaining
n− k vertices is connected to this subgraph (refer to Fig. 2).
Then

Pr{F1
k} = (n− k + 1)

·
min{k−1,b 1

r c−2}∑

j=0

(
k − 1

j

)
(−1)j(1− (j + 2)r)n. (2)

0 1
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r r

Fig. 2. Illustration of event F1
k .

Proof: There are
(
n
k

)
distinct combinations for selecting

k vertices from a total of n vertices. Consider a subinterval
[x, x+y], where x and x+y are the positions of the left border
and the right border respectively. For any given k vertices,
there are

(
k
2

)
different combinations for selecting 2 vertices as

endpoints, and two permutations of each selection in placing
them on the borders of [x, x + y]; the probability that the
remaining k − 2 vertices placed randomly and uniformly on
[0, 1] are inside [x, x+y] and the k vertices form a connected
subgraph is given by Eq. 1. Then

Pr{F1
k} =

(
n

k

)
2
(

k

2

) ∫ 1−2r

0

(∫ 1−r−y

r

dx

)

P (k, y, r)(1− y − 2r)n−kdy

=
(

n

k

)
2
(

k

2

) ∫ 1−2r

0

P (k, y, r)(1− y − 2r)n−k+1dy. (3)

Dividing the integration interval [0, 1 − 2r] into subintervals,
i.e. [0, r), [r, 2r),. . . , and using Lemma 1, Eq. 3 becomes

Pr{F1
k} =

(
n

k

)
2
(

k

2

) b 1
r c−3∑

i=0

∫ (i+1)r

ir

(1− y − 2r)n−k+1




L(i)∑

j=0

(
k − 1

j

)
(−1)j(y − jr)k−2


 dy

+
(

n

k

)
2
(

k

2

) ∫ 1−2r

b 1
r cr−2r

(1− y − 2r)n−k+1




L(i)∑

j=0

(
k − 1

j

)
(−1)j(y − jr)k−2


 dy, (4)

where L(i) = min{k − 1, i}. Then taking the inner sums
outside the integrals, and letting L′ = min{k− 1, b1/rc− 2},

Eq. 4 becomes

Pr{F1
k} =

(
n

k

)
2
(

k

2

) L′∑

j=0

(
k − 1

j

)
(−1)j

·
(∫ 1−2r

jr

(y − jr)k−2(1− y − 2r)n−k+1dy

)

=
(

n

k

)
2
(

k

2

) L′∑

j=0

(
k − 1

j

)
(−1)j

· (1− jr − 2r)n

(∫ 1

0

tk−2(1− t)n−k+1dt

)
. (5)

Note that the integral on the right hand side of Eq. 5 is the
Beta Function. Therefore, it follows

∫ 1

0

tk−2(1− t)n−k+1dt =
(k − 2)!(n− k + 1)!

n!
. (6)

Inserting Eq. 6 into Eq. 5, Eq. 2 can readily be obtained.

Lemma 3. Let F2
k denote the event that there exists a con-

nected subgraph with exactly k (k < n) vertices in G1(n, r)
and the leftmost vertex of the subgraph is located within
distance r from the left border of the unit interval and the
remaining n − k vertices are all located on the right side of
this subgraph and none of them is connected to this subgraph
(refer to Fig. 3). Then

Pr{F2
k} =

min{k,b 1
r c−1}∑

j=0

(
k

j

)
(−1)j(1− (j + 1)r)n. (7)
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Fig. 3. Illustration of event F2
k .

Proof: Similar to the proof of Lemma 2, we have

Pr{F2
k} =

(
n

k

)
2
(

k

2

) ∫ 1−r

0

[∫ X

0

P (k, y, r)(1− y − x− r)n−kdx

]
dy,

where X = min{r, 1− r− y}. After simplifications, we have

Pr{F2
k}

=
(

n

k

)
2
(

k

2

) ∫ 1−r

0

P (k, y, r)
(1− r − y)n−k+1

n− k + 1
dy

−
(

n

k

)
2
(

k

2

) ∫ 1−2r

0

P (k, y, r)
(1− 2r − y)n−k+1

n− k + 1
dy.

Dividing the integration interval into subintervals, i.e. [0, r),
[r, 2r),..., and using the same method as described in the proof



of Lemma 2, we have

Pr{F2
k}

=
min{k−1,b 1

r c−1}∑

j=0

(
k − 1

j

)
(−1)j(1− (j + 1)r)n

−
min{k−1,b 1

r c−2}∑

j=0

(
k − 1

j

)
(−1)j(1− (j + 2)r)n. (8)

Combining the two sums in Eq. 8, the result follows.
Now we can state the following result in this paper based

on Lemma 2 and Lemma 3.

Theorem 1. Consider a random geometric graph in <d

(d = 1), denoted as G1(n, r). Let p be a fixed real number in
(0.5, 1]. Let P1(n, r, p) be the probability that G1(n, r) has a
giant component of size at least p. Then,

P1(n, r, p)

=
n−1∑

i=dnpe


2

min{i,b 1
r c−1}∑

j=0

(
i

j

)
(−1)j(1− (j + 1)r)n

+(n− i + 1)

·
min{i−1,b 1

r c−2}∑

j=0

(
i− 1

j

)
(−1)j(1− (j + 2)r)n




+
min{n−1,b 1

r c}∑

j=0

(
n− 1

j

)
(−1)j(1− jr)n. (9)

Proof: Let C(G1) = C(G1(n, r)) denote the number of
nodes in the giant component in G1(n, r). Then it is clear that

P1(n, r, p) =
n∑

i=dn·pe
Pr{C(G1) = i}. (10)

From Eq. 10, the probability P (n, r, p) can be obtained
combining two calculations:

1) Pr{C(G1) = n}. This probability is actually the prob-
ability that the network G1(n, r) is connected, denoted
as Pcon. It is given by Corollary 1 in [12] as

Pcon =
min{n−1,b1/rc}∑

j=0

(
n− 1

j

)
(−1)j(1− jr)n. (11)

2) Pr{C(G1) = i} for dn · pe ≤ i < n. This probability
equals the probability that there exists a connected
subgraph with exactly i (dn · pe ≤ i < n) vertices and
none of the remaining n− i vertices is connected to this
subgraph. There are four different sub-cases in which
this event may happen, i.e.

a) Both endpoints of this subgraph are not within a
distance r from the borders of the unit interval.
Lemma 2 provides the probability for this case.

b) The left (right) endpoint of this subgraph is within
a distance r from the left (right) border of the unit

interval. Lemma 3 provides the probability for this
case.

c) Both endpoints of this subgraph are within distance
r from the borders of the unit interval. This can
only happen when i = n, but here we require i <
n. Hence, the probability of this case is zero.

Note that in Theorem 1 it is required that p > 0.5. In Lemma
2 and Lemma 3, the connected subgraph with exactly i vertices
is not necessarily the largest connected subgraph which we
are interested in. To ensure that the connected subgraph with
exactly i vertices is the largest connected subgraph, it suffices
that we restrict p > 0.5, so that for all i ≥ dn · pe, the size
of a connected subgraph with exactly i vertices is larger than
0.5 and is necessarily the largest connected subgraph.

Finally, the probability P1(n, r, p) as a key result in this
paper can be readily derived as

P1(n, r, p) =
n−1∑

i=dnpe

[
2Pr{F2

i }+ Pr{F1
i }

]
+ Pcon. (12)

Substituting Eq. 2, Eq. 7 and Eq. 11 into Eq. 12, we can
readily obtain Eq. 9.

V. GIANT COMPONENT SIZE IN TWO-DIMENSIONAL SPACE

In a two-dimensional wireless multi-hop network, the analy-
sis for the giant component becomes much more complicated.
It is difficult to obtain an analytical formula comparable to
the one-dimensional case. In this section, we shall develop an
empirical formula for estimating the probability that the giant
component size is at least p, denoted by P2(n, r, p), using
simulations. In sub-section V-C, we compare the transmission
range required for having a giant component of size above p
with the transmission range required for having a connected
network. Based on this comparison, we show that a significant
energy saving can be achieved if we only require most nodes
(95%) to be connected rather than require all nodes to be
connected.

A. Simulation

We use the Monte Carlo method to compute probabil-
ity P2(n, r, p). In the simulation environment, a total of n
(20 ≤ n ≤ 200) nodes are randomly and independently
distributed in a unit square following a uniform distribution.
We vary the transmission range r. For each given r, the links
between the nodes are constructed, and at each r we find
whether the network has a giant component with size at least
p. This process is repeated 10000 times for each r, and finally
by averaging on the 10000 random topologies, the empirical
probability that the network has a giant component with size
at least p at that specific r is obtained.

B. Empirical formula

By fitting extensive simulation results, we find that, for a
given p ∈ (0.5, 1), and for P2(n, r, p) ∈ [0.5, 0.99]

P2(n, r, p) ≈ exp
(

r−rc

z

)

1 + exp
(

r−rc

z

) , (13)



where rc and z are parameters of the model and are functions
of p. It is clear that [0.5, 0.99] is the range we are more
interested in practice, since the network is not well connected
when P2(n, r, p) is small. Note that this empirical formula
has a similar form to the one proposed in [3] which dealt with
connectivity of networks.

From Eq. 13, we can obtain an approximately linear rela-
tionship between r and log

(
P2(n,r,p)

1−P2(n,r,p)

)
, i.e.

r ≈ z · log
(

P2(n, r, p)
1− P2(n, r, p)

)
+ rc. (14)

The parameters rc and z can then be estimated by fitting the
linear function given by Eq. 14. Table. I shows the estimated
values of rc and z for different values of n, where the network
area is fixed as a unit square. ζ in the table represents the

TABLE I
ESTIMATION OF rc AND z. UNIT SQUARE NETWORK AREA.

p = 0.95 p = 0.90
n z rc ζ z rc ζ
20 0.0317 0.3056 0.9976 0.0311 0.2915 0.9962
40 0.0220 0.2213 0.9992 0.0195 0.2114 0.9972
60 0.0159 0.1817 0.9978 0.0133 0.1753 0.9991
80 0.0125 0.1580 0.9993 0.0105 0.1516 0.9985

100 0.0108 0.1407 0.9989 0.0086 0.1357 0.9992
120 0.0091 0.1288 0.9986 0.0074 0.1240 0.9991
140 0.0080 0.1196 0.9957 0.0067 0.1145 0.9973
160 0.0071 0.1116 0.9982 0.0059 0.1071 0.9989
180 0.0063 0.1053 0.9978 0.0051 0.1012 0.9991
200 0.0057 0.0999 0.9982 0.0046 0.0962 0.9990

linear correlation coefficient which indicates the strength of
a linear relationship between two random variables. We can
see that for both p = 0.95 and p = 0.90, ζ is very close to
1, which indicates a very good linearity. Hence, the proposed
model works very well and is accurate. Note that the proposed
model is also valid for lower values of p (e.g. p = 0.60, but
the corresponding simulation results have been omitted).

In order to further check the accuracy of the proposed
model, we compare in Fig. 4 the calculated results from
the empirical formula, i.e. Eq. 13, with the corresponding
simulation results. For both p = 0.95 and p = 0.90, we
choose four values of n, i.e. 140, 160, 180 and 200, and then
choose the corresponding values of z and rc from Table I,
and then substitute them into Eq. 13 to calculate P2(n, r, p).
As shown in Fig. 4, the calculated results and the simulation
results match very well.

The model given by Eq. 14 can be easily scaled. For the
sake of simplicity, we consider the network area as a square
of size l × l. Then set

z = α · l and rc = β · l. (15)

Substituting Eq. 15 into Eq. 14, we obtain the modified linear
model relating r

l and log
(

P2(n,r,p)
1−P2(n,r,p)

)
, i.e.

r

l
≈ α · log

(
P2(n, r, p)

1− P2(n, r, p)

)
+ β. (16)
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Fig. 4. Comparison between the calculated results from the empirical formula
and the simulation results for n = 140, 160, 180 and 200. The calculated
results are obtained using Eq. 13 and values of z and rc in Table I.

The left hand term of Eq. 16 is the normalized transmission
range with respect to l. In this paper, the network area corre-
sponds to the special case when l = 1. From the simulation
results, we find that for fixed p, the parameters α and β
are only determined by n, i.e. αn2 log n is approximately a
linear function of n; and β is approximately a linear function
of

√
log n/n which is similar to the functional dependence

revealed in [3] for connectivity. Fig. 5 shows the values of
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Fig. 5. Plots of αn2 log n versus n, and β versus
p

log n/n.

αn2 log n with respect to n, and β with respect to
√

log n/n
respectively. For p = 0.95, the linear correlation coefficients
for α and β are 0.9980 and 0.9987 respectively; for p = 0.90,
the linear correlation coefficients for α and β are 0.9977 and
0.9990 respectively. The linear models for α and β are given
by

p = 0.95 :

{
α ≈ 6.6418n−145.9807

n2 log n ,

β ≈ 0.9107
√

log n
n − 0.0521.

(17)

p = 0.90 :

{
α ≈ 5.3535n−108.5792

n2 log n ,

β ≈ 0.8659
√

log n
n − 0.0482.

(18)



Now, we can estimate the probability P2(n, r, p) given n,
l, r and p either based on Eq. 13 and Eq. 15 when l = 1 or
based on Eq. 16 when l 6= 1. For instance, given p = 0.95
and l 6= 1, we can estimate α and β from Eq. 17, and then
we can estimate P2(n, r, p) from Eq. 16. We can also estimate
the transmission range required to achieve a desired value of
probability P2(n, r, p) from Eq. 16.

Using the method described above, we record in Table II,
for fixed p, some specific values of n and the normalized
transmission range r

l which yield a giant component of size
above p with probability 95% (i.e. P2(n, r, p) = 0.95). These

TABLE II
VALUES OF THE NORMALIZED TRANSMISSION RANGE r

l
GUARANTEEING

P2(n, r, p) = 95% WITH p = 0.90 AND 0.95.

p = 0.95 p = 0.90 p = 0.95 p = 0.90
n r/l r/l n r/l r/l
20 0.3988 0.3830 120 0.1556 0.1459
40 0.2859 0.2688 140 0.1432 0.1342
60 0.2286 0.2145 160 0.1325 0.1245
80 0.1947 0.1826 180 0.1239 0.1163
100 0.1725 0.1611 200 0.1168 0.1097

results can be applied directly into the design procedure of
the network and may provide useful insight for the relative
magnitude of the transmission range with respect to network
area required for having a certain size giant component with
a high probability.

C. Energy savings

In this sub-section, we estimate the energy saving if most
nodes rather than all nodes are required to be connected
based on a conservative estimate that the required transmission
power increases with the square of the required transmission
range. Let Rp be the transmission range required for having a
giant component of size above p with probability 95% (i.e.
P2(n,Rp, p) = 0.95, one may also be interested in other
values of probability such as 98%, 99%); and let R1 be the
transmission range required for having a connected network
with probability 95%. Then we use

R2
1−R2

p

R2
1

as the metric to
measure the energy saving. Rp can be obtained in the same
way as we obtain results in Table II. R1 can be obtained using
the method given in [3]. Since the empirical method given in
[3] is developed for n ≤ 125, we focus only on n ≤ 125. The

TABLE III
ESTIMATION OF ENERGY SAVINGS IF MOST NODES RATHER THAN ALL
NODES ARE REQUIRED TO BE CONNECTED. R1 IS THE TRANSMISSION

RANGE REQUIRED FOR HAVING A CONNECTED NETWORK WITH
PROBABILITY 95%; R0.95 (R0.90) IS THE TRANSMISSION RANGE

REQUIRED FOR HAVING A GIANT COMPONENT OF SIZE ABOVE 0.95 (0.90)
WITH PROBABILITY 95%.

n R1/l R0.95/l Energy sav. R0.90/l Energy sav.
20 0.4454 0.3988 19.8% 0.3830 26.1%
40 0.3209 0.2859 20.6% 0.2688 29.8%
60 0.2625 0.2286 24.1% 0.2145 33.2%
80 0.2263 0.1947 25.9% 0.1826 34.9%
100 0.2009 0.1725 26.2% 0.1611 35.7%
120 0.1817 0.1556 26.6% 0.1459 36.1%

comparison is shown in Table III. We can see that the energy
saving is significant and increases with n.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigated the probability that a network
has a giant component with size above a given threshold in
wireless multi-hop networks. In the one dimensional case,
we derived a closed-form analytical formula for calculating
this probability. In the two dimensional case, we proposed an
empirical formula for estimating this probability by fitting the
simulation results. The empirical formula is shown to be very
accurate for n ≤ 200.

Part of our future work will be investigating the probability
of having a giant component analytically in two and three
dimensional networks, and in extending the results of this
paper to other channel models, e.g. log-normal shadowing
model [16]. In addition, investigating the asymptotic behavior
of the giant component using Theorem 1 for one-dimensional
networks will also be an interesting problem for our future
work.
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