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Abstract—In this paper, we study the well-known phase tran-
sition behavior of connectivity in a wireless multi-hop network,
but, in contrast to other studies, in a shadowing environment.
We consider that a total of n nodes are randomly, independently
and uniformly distributed on a unit square in <2, each node has
a uniform transmission power and any two nodes are directly
connected if and only if the power received by one node from the
other node, as determined by the log-normal shadowing model,
is larger than or equal to a given threshold. We extend the results
obtained under the unit disk communication model in previous
work to the more realistic log-normal shadowing model, and
derive an analytical formula for the phase transition width of
connectivity for large n. We also demonstrate how our results
can be extended to higher dimensional networks and to other
channel models.

I. INTRODUCTION

A wireless multi-hop network, e.g. a wireless sensor/ad hoc
network, is generally formed by a number of self-organized
and decentralized wireless devices which communicate with
each other in a peer-to-peer manner over wireless channels.
Packets are forwarded through either single hop or multi-
hop paths between any pair of source and destination. In
such a network, most network functions, e.g. routing, topology
control, require the network to be connected [1], [2], [3]. A
network is said to be connected iff (if and only if) for any pair
of two nodes, there is at least one path between them.

One widely studied property of network connectivity is
its phase transition behavior. In a network where nodes are
randomly and independently distributed in a bounded area
and any two nodes are directly connected iff their Euclidean
distance is less than or equal to the transmission range (i.e.
the unit disk communication model), it has been shown that
there exists a threshold in transmission range above which
the network is connected with a high probability; and there
exists another threshold in transmission range below which
the network is connected with a low probability [1], [4], [5].
The difference between the two thresholds defines the so-
called phase transition width. The phase transition width is
also known as the threshold width in some papers [6]. We will
give a more rigorous definition of the phase transition width
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shortly in Section II. Intuitively, the phase transition width
gives an indication on how easy/difficult it is to transform a
network that is not connected into a connected network. A
good understanding of such a phase transition phenomenon is
of practical significance for the design and implementation of
wireless multi-hop networks [4], [5], [7], [8].

Previous results regarding the phase transition width of
connectivity, e.g. [4], [5], [9], are all derived based on a
simple channel model, i.e. the unit disk communication model.
The unit disk communication model is based on the path
loss phenomenon [10] alone, and assumes that the received
signal strength at a receiving node from a transmitting node is
only determined by a deterministic function of the Euclidean
distance between the two nodes. However, in reality, the
received signal strength often shows probabilistic variations
induced by shadowing effects that are unavoidably caused by
different levels of clutter on the propagation path [10], [11].
To better capture physical reality, one should consider the
variations of the received signal strength. It has been shown
in [12], [13] that a more accurate modeling of the physical
layer is indeed important for better understanding of wireless
multi-hop network characteristics. This observation motivates
us to investigate the phase transition behavior of connectivity
by employing a more realistic channel model.

In this paper, we shall investigate analytically the phase
transition width of connectivity based on the log-normal
shadowing model [10] which can better capture the shadowing
effects and is more realistic than the unit disk communication
model used in the literature. We derive an analytical formula
for calculating the phase transition width of connectivity for
large n in <2. We also conducted simulations to verify our
analytical results. Finally, we present a roadmap for extending
our result to higher dimensional networks and to other channel
models. These results provide valuable insight into the design
and implementation of wireless multi-hop networks.

The rest of this paper is organized as follows. Section II
describes the network model and some notations used in later
analysis. Section III briefly reviews related work. Section IV
presents the main result of the paper on the phase transition
width of connectivity for large n in <2. Section V presents the
roadmap for extending the result to 3-dimensional networks
and to other channel models. Finally, Section VI concludes
this paper and discusses future work.



II. PRELIMINARIES

A. Wireless channel model

The wireless received signal strength Pr(duv) between any
two nodes u and v has been popularly modeled by a log-
normal shadowing model [10], [11], [14]:

Pr(duv) = Pt − PL0(d0)− 10α log10

duv

d0
+ Zσ, (1)

where Pr(duv) is the received power at a receiving node
v from a transmitting node u in dB milliwatts, Pt is the
transmitted power of the transmitting node u in dB milliwatts,
duv is the Euclidean distance between nodes u and v, PL0(d0)
is the reference path loss in dB at a reference distance d0, α
is the path loss exponent which indicates the rate at which
the received signal strength decreases with distance, and Zσ

is a zero-mean Gaussian (normal) random variable (in dB)
with standard deviation σ (also in dB). The reference path
loss PL0(d0) is calculated using the free space Friis equation
or obtained through field measurements at distance d0 [10]. In
this paper, PL0(d0) and d0 are assumed to be known constants
[15], [16]. The value of α depends on the environment and
terrain structure and can vary between 2 in free space and 6
in heavily built urban areas. The value of σ is usually larger
than zero and can be as high as 12 dB [10].

In addition to the log-normal shadowing model, we shall
make three further assumptions in this paper, which are
commonly used in the area [11], [16], [14]: α remains constant
in the entire network area; σ remains constant for all pairs of
nodes in the network; propagation paths are symmetric, i.e. the
received power at node v from node u is equal to the received
power at node u from node v.

For any two nodes u and v, there exists a wireless link
between them (or they are directly connected) iff the received
power Pr(duv) is not less than some given threshold Pth (also
in dB milliwatts), i.e. Pr(duv) ≥ Pth [10], [11], [14]. Hence,
using Eq. 1, the probability that two random nodes u and
v separated by a known distance x are directly connected,
denoted as P(x), is given by

P(x) = Pr{Pr(x) ≥ Pth} =
∫ ∞

10α log10
x
r

1√
2πσ

e−
t2

2σ2 dt,

(2)
where

r = d010
Pt−P L0(d0)−Pth

10α (3)

is the transmission range in the absence of shadowing (i.e.
σ = 0). Note that the unit disk communication model is a
special case of the log-normal shadowing model when σ = 0.

In this paper, we consider that all nodes have the same
transmission power Pt. It is clear that the shadowing-free
transmission range r is related to the transmission power Pt

by Eq. 3. Throughout this paper, we shall investigate the
transmission power Pt by investigating r given that Pth and
α are fixed.

B. Network model

In this paper, we represent a wireless multi-hop network by
an undirected graph G(V, E) with a set of vertices V = V (G)
and a set of edges E = E(G). Each vertex of the set V
uniquely represents a node and each edge of the set E uniquely
represents a wireless link, and vice versa. The graph G(V, E)
is called the underlying graph of the network. In the following,
we give a formal definition of the underlying graph, denoted
as G(Xn, r, σ), of the network considered in this paper.

Definition 1. Let X1, X2,..., Xn be n points which are
randomly, independently and uniformly distributed on a unit
square in <2; let Xn = {X1, X2, ..., Xn}. The underlying
graph G(Xn, r, σ) is an undirected graph having Xn as its
vertex set, and with an edge connecting each pair of vertices
Xi and Xj in Xn with probability P(‖Xi −Xj‖), where r is
given by Eq. 3, σ is the standard deviation of the shadowing
in the log-normal shadowing model, function P(·) is given by
Eq. 2 and norm ‖ · ‖ means the Euclidean norm.

Remark. Although the network model considered in this paper
is built on a unit square, all results developed for a square of
unit size can be easily extended to a square of arbitrary size. In
fact, by a suitable space rescaling [17], [18], all the properties
obtained in this paper can be reformulated [17].

Next, we give a formal definition of the phase transition
width of connectivity. Let P(n, r) denote the probability that
the graph G(Xn, r, σ) is connected. Here, we consider that α
and σ are any fixed values within their normal ranges, e.g.
α ∈ [2, 6], σ ∈ [0, 12]. It is obvious that P(n, r) is a strictly
monotonically increasing function of r for 0 < P(n, r) < 1
in some finite interval of r, and P(n, r) = 0 or 1 outside the
interval [4], [5]. Let ζ denote a positive real number. Define

r(n, ζ) := inf(r > 0 : P(n, r) ≥ ζ), ζ ∈ (0, 1). (4)

The phase transition width of connectivity over the probability
interval [ζ, 1− ζ] is then defined as

δ(n, ζ) := r(n, 1− ζ)− r(n, ζ), ζ ∈ (0,
1
2
). (5)

Henceforth, unless otherwise indicated, the short term phase
transition width will be used with ζ being simply understood.

C. Notation

Throughout the paper, we will use standard mathematical
notations concerning the asymptotic behavior of functions, i.e.,
f(n) = o(g(n)) or f(n) ¿ g(n) if f(n)

g(n) → 0 as n → ∞;
f(n) = O(g(n)) if there exists a constant c and a value n0

such that f(n) ≤ c · g(n) for all n ≥ n0; f(n) ∼ g(n) if
f(n)
g(n) → 1 as n →∞ [19]. Symbols “o”, “O” and “∼” always
apply in the limiting case when n → ∞. Define the notation
(·)+ as y+ = y if y ≥ 0 and y+ = 0 if y ≤ 0.

III. RELATED WORKS

In [7], Krishnamachari et al. discussed some examples of
network properties that exhibit phase transition behavior, such
as connectivity, coordination and probabilistic flooding for



route discovery. The authors then pointed out the significance
of understanding phase transitions. In [8], Krishnamachari et
al. showed that three distributed configuration tasks, viz., par-
tition into coordinating cliques, Hamiltonian cycle formation
and conflict-free channel allocation, undergo phase transitions
with respect to the transmission range. The authors argued
that phase transition analysis is useful in self-configuration of
wireless networks. In [20], Aspnes et al. demonstrated using
simulations the existence of the phase transition phenomenon
for localizability of wireless sensor networks.

Goel et al. [6] proved that all monotone properties [6], [21]
of random geometric graphs have a sharp phase transition
width, δ(n, ζ), which is bounded in <d (d = 1, 2, 3) by

δ(n, ζ) ≤ δ̄(n, ζ) =





O(log1/2 1
ζ /n1/2), d = 1

O(log3/4 n/n1/2), d = 2
O(log1/d n/n1/d), d ≥ 3

(6)

Because Eq. 6 are upper bounds for all monotone properties,
they may be quite conservative for some specific monotone
properties.

Han et al. [4] pointed out that because the results in [6] were
derived for a generic monotone property, they may be further
sharpened for certain specific monotone graph properties such
as connectivity. The authors improved the results of Goel et
al. for the property of network connectivity in one and two
dimensional spaces, and derived the phase transition width of
connectivity for large n, i.e.,

δ(n, ζ) =

{
C(ζ)

n + o(n−1), d = 1
C(ζ)

2

√
1

πn log n (1 + o(1)), d = 2
(7)

where C(ζ) = log( log ζ
log(1−ζ) ). The results are much sharper

than the results given in Eq. 6, which indicates that the
results in Eq. 6 are quite conservative for a specific monotone
property.

Using the same network model assumption as in [4], we
have extended the above result derived by Han et al. to a more
generic situation, i.e. a generic analytical formula for the phase
transition width of k-connectivity for large n and for any fixed
integer k > 0 in d-dimensional space (d = 1, 2, 3) [5]. The
result reduces to Eq. 7 when d = 1, 2 and k = 1.

IV. PHASE TRANSITION WIDTH OF CONNECTIVITY

In this section, we derive the main results on the phase
transition width δ(n, ζ) of connectivity in <2 under the log-
normal shadowing model. We have ignored the boundary effect
in our derivation as is often done.

First, we present the following proposition which will be
used in the proof of later theorem.

Proposition 1. Consider G(Xn, r, σ) in <2 and a real number
ω ∈ <. Let r satisfy

r = rn(ω) =

√√√√ log n + ω

πn exp
(

2η2σ2

α2

) . (8)

Ignoring the boundary effect, the following holds:

lim
n→∞

P(n, rn(ω)) = exp
(−e−ω

)
.

Proof: In order to prove the result, we make use of some
results derived in [3]. For any wireless channel model C, let
G(Xn, C) denote the undirected graph in <2 having Xn as its
vertex set, and with an edge connecting each pair of vertices
Xi and Xj in Xn with probability gC(‖Xi −Xj‖). Let ψ(C)
denote the probability that any two randomly selected vertices
in graph G(Xn, C) are directly connected. Lemmas 1 and 3
in [3] indicate that if ψ(C) = log n+ω

n and gC(x) satisfies the
following conditions of rotational and translation invariance,
monotonicity and integral boundedness:





g(C)(x) = g(C)(y) whenever x = y;
g(C)(x) ≤ g(C)(y) whenever x ≥ y;

0 <
∫
<2 g(C)(x)dx < ∞,

(9)

then,

lim
n→∞

Pr{G(Xn, C) is connected} = exp
(−e−ω

)
.

It can be easily shown that the log-normal shadowing model
satisfies the conditions given by Eq. 9 [3].

It therefore remains to demonstrate that the probability ψ(C)
for the log-normal shadowing model, denoted as ψ(Xn, r, σ),
assumes the form log n+ω

n when r is given by Eq. 8. Let X be
the random variable representing the Euclidean distance be-
tween two randomly selected nodes in the graph G(Xn, r, σ).
Because nodes are uniformly and independently distributed in
a unit square, if the boundary effect is ignored, the probability
density function (pdf ) of X , is given by [14]

pX(x) = 2πx. (10)

Hence, from Eq. 1, Eq. 3 and Eq. 10, we have

ψ(Xn, r, σ) = Pr{Pr(X) ≥ Pth}
= Pr{Zσ ≥ 10α log10

X

r
}

=
∫ ∞

−∞
Pr{X ≤ r exp(

ηz

α
)} 1√

2πσ
e−

z2

2σ2 dz.

From Eq. 8, we have r → 0 as n → ∞. Hence,
min{1, r exp(ηz

α )} = r exp(ηz
α ) when n →∞. Thus, the last

equation becomes

ψ(Xn, r, σ) ∼
∫ ∞

−∞




∫ re
ηz
α

0

pX(x)dx


 1√

2πσ
e−

z2

2σ2 dz

=
∫ ∞

−∞




∫ re
ηz
α

0

2πxdx


 1√

2πσ
e−

z2

2σ2 dz

= πr2 exp
(

2η2σ2

α2

)
, as n →∞. (11)

Since the log-normal shadowing model satisfies Eq. 9, and
Eq. 8 and Eq. 11 imply that ψ(Xn, r, σ) = log n+ω

n , the result
follows by using Lemmas 1 and 3 of [3].



Using the above Proposition 1, the following theorem re-
garding r(n, ζ) defined in Eq. 4 can be obtained.

Theorem 1. Consider G(Xn, r, σ) in <2 and a real number
ζ ∈ (0, 1). Ignore the boundary effect. Then, for large n,

r(n, ζ) =

√√√√ log n

πn exp
(

2η2σ2

α2

) −
log

(
log

(
1
ζ

))
(1 + o(1))

2
√

πn log n exp
(

2η2σ2

α2

) .

Proof: For any ω ∈ <, Proposition 1 immediately yields

lim
n→∞

P(n, rn(ω)) = exp(−e−ω). (12)

Define Q := exp
(

2η2σ2

α2

)
, which is considered to be fixed

throughout this proof. For each x ∈ <, define a [0, 1]-valued
sequence {θn(x), n = 1, 2, 3...} by

θn(x) := min

(
1,

√(
log n + x

Qπn

)

+

)
, n = 1, 2, ... (13)

Because for any fixed x ∈ <, log n+x
Qπn → 0 as n → ∞, there

exists a finite integer N(x) such that

0 <

√
log n + x

Qπn
< 1, ∀n > N(x).

Hence, we have

θn(x) =

√
log n + x

Qπn
, ∀n > N(x). (14)

Therefore, from Proposition 1 and Eq. 12, we have

lim
n→∞

P(n, θn(x)) = exp(−e−x). (15)

Now fix x in <, from Eq. 15, we can obtain that for each
ε > 0, there exists a finite integer N(ε, x) such that

∣∣P(n, θn(x))− exp(−e−x)
∣∣ < ε, ∀n > N(ε, x). (16)

It can be easily checked that the mapping < →
<+ : x → exp(−e−x) is strictly monotonically increas-
ing and continuous with limx→−∞ exp(−e−x) = 0 and
limx→∞ exp(−e−x) = 1. Therefore, for each ζ ∈ (0, 1), there
exists a unique value of x in <, denoted as xζ , such that
exp(−e−xζ ) = ζ. In fact, from the equality exp(−e−xζ ) = ζ,
we have

xζ = − log(− log ζ). (17)

Hence, fixing x in < is equivalent to fixing ζ in (0, 1). Now
fix ζ in the interval (0, 1), and let ε be sufficiently small such
that 0 < 2ε < ζ and ζ + 2ε < 1. Then applying Eq. 16 with
x = xζ+ε and x = xζ−ε respectively, we have

∣∣P(n, θn(xζ+ε))− exp(−e−xζ+ε)
∣∣ < ε, ∀n > N(ε, xζ+ε)

(18)
and
∣∣P(n, θn(xζ−ε))− exp(−e−xζ−ε)

∣∣ < ε, ∀n > N(ε, xζ−ε).
(19)

We always assume that n is sufficiently large when necessary.
In the rest of this proof, we assume that n > N(ε, ζ) with

N(ε, ζ) = max{N(xζ), N(ε, xζ+ε), N(ε, xζ−ε)},
where N(xζ) represents the finite integer above which Eq. 14
holds.

Since exp(−e−xζ±ε) = ζ ± ε, it can be readily obtained
from Eq. 18 and Eq. 19 that

ζ < P(n, θn(xζ+ε)) < ζ + 2ε

and
ζ − 2ε < P(n, θn(xζ−ε)) < ζ.

According to the definition of r(n, ζ), we have P(n, r(n, ζ)) =
ζ. Hence, from the last two inequalities, it follows that

P(n, θn(xζ−ε)) < P(n, r(n, ζ)) < P(n, θn(xζ+ε)).

Because of the strict monotonicity of the mapping r →
P(n, r), we have

θn(xζ−ε) < r(n, ζ) < θn(xζ+ε). (20)

Define κ(n, ζ) := r(n, ζ) − θn(xζ), then it can be obtained
from Eq. 20 that

θn(xζ−ε)− θn(xζ) < κ(n, ζ) < θn(xζ+ε)− θn(xζ). (21)

For any fixed x ∈ <, it is clear that

lim
n→∞

x

log n
= 0.

Hence, from Eq. 14, we have

θn(x) =

√
log n

Qπn
×

√
1 +

x

log n

=

√
log n

Qπn
×

(
1 +

1
2

x(1 + o(1))
log n

)
, as n →∞.

Therefore, for any ζ ∈ (0, 1), we have

θn(xζ±ε)− θn(xζ)

=
xζ±ε − xζ

2
√Qπn log n

(1 + o(1)), as n →∞. (22)

Because Eq. 21 holds for all n > N(ε, ζ), it must be valid
when n → ∞ as well. And as n → ∞, the small order part
o(1) in Eq. 22 goes to zero. Hence, from Eq. 21 and Eq. 22,
we have

xζ−ε − xζ ≤ lim inf
n→∞

(
2
√
Qπn log n× κ(n, ζ)

)
(23)

xζ+ε − xζ ≥ lim sup
n→∞

(
2
√
Qπn log n× κ(n, ζ)

)
(24)

Because ε can be chosen to be arbitrarily small, and as
stated earlier xζ = − log(− log ζ) is a continuous and strictly
monotonically increasing function of ζ for ζ ∈ (0, 1), it is
evident that

lim
ε↓0

(xζ−ε − xζ) = lim
ε↓0

(xζ+ε − xζ) = 0. (25)



Hence, from Eq. 23, Eq. 24 and Eq. 25, we have

lim
n→∞

(
2
√
Qπn log n× κ(n, ζ)

)
= 0. (26)

Thus, given that Eq. 26 holds, it must be true that

κ(n, ζ) = o

(
1

2
√Qπn log n

)
.

Hence, we have

r(n, ζ) = θn(xζ) + κ(n, ζ)

=

√
log n

Qπn

(
1 +

xζ(1 + o(1))
2 log n

)
+ o

(
1

2
√Qπn log n

)

=

√
log n

Qπn
−

log
(
log

(
1
ζ

))
(1 + o(1))

2
√Qπn log n

.

Substituting Q = exp
(

2η2σ2

α2

)
into the last equality, the result

follows. Note that some parts of the proof used here are similar
to the arguments used in [5].

Comparing r(n, ζ) in Theorem 1 derived under the log-
normal shadowing model with corresponding result derived
under the unit disk communication model in [4], [5], we can
see that the only difference between them is the exponential
term exp

(
2η2σ2

α2

)
induced by the shadowing effects. When

σ = 0, this exponential term becomes one and the difference
vanishes. In reality, σ > 0, and this exponential term is always
larger than one, which indicates that less transmission power
is needed in a shadowing environment (σ > 0) than in a non-
shadowing environment (σ = 0) to obtain a connected network
with probability (1−ζ). Thus, the random variation associated
with the log-normal shadowing model is actually helpful in
improving network connectivity.

By Theorem 1, the phase transition width δ(n, ζ) for large
n can be derived in the following Corollary 1.

Corollary 1. Consider G(Xn, r, σ) in <2 and a real number
ζ ∈ (0, 1

2 ). Ignore the boundary effect. Then, for large n,

δ(n, ζ) =
log

(
log ζ

log(1−ζ)

)

2
√

πn log n exp
(

2η2σ2

α2

) (1 + o(1)). (27)

Proof: Since δ(n, ζ) = r(n, 1 − ζ) − r(n, ζ) by Eq. 5,
δ(n, ζ) for large n can be easily obtained by Theorem 1.

The only difference between Eq. 27 derived under the log-
normal shadowing model and Eq. 7 derived under the unit
disk communication model is still exp

(
2η2σ2

α2

)
. Hence, the

phase transition width δ(n, ζ) of connectivity is narrower in
a shadowing environment (σ > 0) than in a non-shadowing
environment (σ = 0).

A. Simulations

In this sub-section, we report simulations conducted to
validate the theoretical analysis. We programmed a tool in C++
for the simulations. In the simulations, we consider that a total
of n nodes are randomly and uniformly distributed in a unit

square in <2 and all nodes have the same transmission power.
We have used the toroidal distance metric [1], [5] to remove
the impact of the boundary effect on the simulation results.
Because simulations become very computationally intensive
and time consuming for large values of n, we limited n to
1500 in the simulations.

Fig. 1 and Fig. 2 show the analytical results and the
simulation results for δ(n, ζ) in <2 with ζ = 0.4 and ζ = 0.05
respectively. The value of n is varied between 100 and 1500,
ζ is set to two typical values, i.e., 0.4 (close to 0.5) and
0.05 (close to 0). When calculating the analytical results by
Eq. 27, the small order part is omitted, i.e. o(1) in the term
(1 + o(1)) is ignored. We can see that δ(n, ζ) decreases as n
grows, which is consistent with Corollary 1. The discrepancy
between the analytical results and the simulation results is due
to the omission of the small order part o(1) when computing
the analytical results. The small order part o(1) is significant
when n is small, but it will go to zero as n →∞. We can also
see that δ(n, ζ) is smaller for the log-normal shadowing model
(σ > 0) than for the unit disk communication model (σ = 0),
which is implied by Eq. 27 and Eq. 7. This comparison also
accords with the discussion after Corollary 1.
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Fig. 1. Phase transition width of connectivity δ(n, ζ) versus n in <2. The
value of α is set to 2, and the value of ζ is set to 0.4.

V. 3-DIMENSIONAL NETWORKS AND ARBITRARY
CHANNEL MODELS

The analysis and derivation in Section IV provides an
efficient roadmap for extending results in this paper to 3-
dimensional networks and to other channel models satisfying
Eq. 9. In this section, we briefly explain this roadmap.

The principle of the roadmap is to first derive a result
comparable to Proposition 1 for 3-dimensional networks or
for other channel models, and then apply the same technique
used in the proof of Theorem 1 to derive corresponding results
comparable to Theorem 1 and Corollary 1.

The results in [3] used for deriving Proposition 1, i.e.
Lemmas 1 and 3, are also valid in 3-dimensional networks
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Fig. 2. Phase transition width of connectivity δ(n, ζ) versus n in <2. The
value of α is set to 2, and the value of ζ is set to 0.05.

if the node distribution is the same as in this paper and the
channel model satisfies Eq. 9. Note that the integral space in
Eq. 9 should be changed accordingly from <2 to <3. Hence,
the extension of Theorem 1 and Corollary 1 to 3-dimensional
networks and any arbitrary channel model C satisfying Eq. 9
can be achieved according to the following four steps:

1) Derive the probability PC(x) that any two nodes sep-
arated by Euclidean distance x are directly connected
under the given channel model C. Note P(x) given by
Eq. 2 is the probability derived under the log-normal
shadowing model.

2) Derive the pdf of the Euclidean distance X between
two randomly selected nodes in 3-dimensional space,
denoted it as p<

3

X (x). Note pX(x) given by Eq. 10 is
the pdf derived for 2-dimensional space.

3) Derive r<
3,C

n (ω) (comparable to rn(ω) in Eq. 8), such
that the probability that the underlying network with
r<

3,C
n (ω) is connected tends to exp (−e−ω) as n →∞.

It can be obtained using PC(x) and p<
3

X (x) in the same
way as shown in the proof of Proposition 1.

4) Derive corresponding results comparable to Theorem 1
and Corollary 1 using r<

3,C
n (ω) in the same way as

shown in the proofs of Theorem 1 and Corollary 1.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we extended the well-known result on phase
transition width of connectivity obtained under the unit disk
communication model to the log-normal shadowing model
which is more realistic than the previous one. For large n,
we derived an analytical formula for calculating the phase
transition width of connectivity in <2. We also presented
simulations conducted to verify the accuracy of the theoret-
ical analysis. Finally, we provided an efficient roadmap for
extending our results to 3-dimensional networks and to other
wireless channel models. These results are very useful in the

design, self-configuration, and transmission power control in
wireless sensor/ad hoc networks.

One direction of our future work is to investigate the phase
transition width of k-connectivity (k > 1) [5] in a shadowing
environment, since we only considered connectivity (or 1-
connectivity) in this paper. Another direction is to study the
phase transition width considering the boundary effect.
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