Abstract—Crowd distribution is a challenging issue in the management and design levels. This paper provides a passive method to derive the crowd density distribution using Wi-Fi measurements on a real scenario. Six WiFi access points (AP) are deployed in the platform 2/3 of Redfern station, Sydney to monitor the platform for a week. Based on the probability maps that are built using RSSI measurements and prior knowledge, the crowd distribution is calculated on the platform and its results are compared with distributions acquired from CCTV images. Final density heat maps are in good agreement with the acquired results from CCTV cameras.

Index Terms—Crowd, Crowd Distribution, RSSI Measurements

I. INTRODUCTION

Understanding crowd behavior and its distribution is always a critical matter in terms of planning, management and safety. To this end, one needs to detect people and map them into the area to be able to determine the density and its distribution. There are several methods to detect people such as CCTV camera images [1], [2], RFID tags [3] Wi-Fi [4]–[7] or Bluetooth [8], [9] probing and etc. Analyzing the images of CCTV cameras can provide an accurate estimation of the number of people in the area. However, the coverage of the video cameras is limited and it’s not possible to install them anywhere. Moreover, processing the images of the video cameras is computationally expensive. Using techniques such as reading RFID tags, requires huge participatory of people to carry the tags around in addition to the FRID readers installation. Meanwhile, pervasive existence of smart phones makes WiFi scanning more suitable method in detecting people.

Using WiFi scanning raise two main challenges. First challenge is to provide an accurate estimation of the number of people within the scanning range, considering the probability of having unavailable or undiscovered WiFi nodes. To address this issue, we use the same method of penetration rate described the ratio of discoverable devices over the total number of people. Second challenge in using WiFi scans, is to locate the detected nodes and map it into the area to derive the density distribution map. Researchers have been focused in localizing the node using Wi-Fi signals for the last decade. Most of the localization methods are based on the RSSI measurements and channel modeling to estimate the location [10]–[13]. WiFi fingerprints, which is another approach in localization, is also reading RSSI values in different points and comparing the fingerprints with measured values [7], [14], [15]. These measurement are usually done on the carrying device, such as mobile phones, to estimate the location of the user. This approach is not applicable in crowd density estimation project, since the scanners (WiFi Access Points) should collect data and locate the nodes. So, a similar approach is introduced to locate the nodes in the area using WiFi fingerprints.

This paper presents a method to estimate crowd density and its spatial distribution based on RSSI measurements on Wi-Fi access points on a train platform in Redfern station, Sydney. To the best of our knowledge, this is the first time of using the measurements on the APs to locate the nodes in the area. Considering the limited number of measurement samples, a probabilistic method is introduced to create probability map instead of exact fingerprint map to help locating the nodes and deriving the density distributions. The main contributions of this paper can be summarized as:

- Localizing the nodes based on the received signal strength measurements on each AP using probability map which
is constructed based on fingerprint map

- Crowd Density Estimation using multiple Wi-Fi APs’ scans
- Determining spatial distribution of the crowd using above steps

Understanding spatial distribution of the crowd relies on describing RSSI accurately and conquering with the non-Gaussian noise from interference, reflection, and fading. The remainder of this paper is organized as follows. Section II defines the problem and challenges that should be conquered. Proposed solution is described in Section III. Section IV describes the experiments and discuss outcomes of the research and final conclusion is presented in section V.

II. PROBLEM STATEMENT

Ubiquity of WiFi technology and representation of specific characteristics in different situations made it a practical solution in crowd estimation and device localization. Leveraging characteristics such as location-specific RSSI values enables one to determine the spatial distribution of available devices. Although WiFi probes are very useful in detecting available nodes, locating the nodes while they are not engaged is quite challenging. To define the problem, the scenario on the platform has been described and then the challenges are specified.

A. Experiments and data collection

The experiments and data collection, have been done on a train platform (Platform 2/3) in Redfern station, Sydney. Fig. 1 represents the test environment with a small cabin, available seats, and six APs installed on the platform for scanning purposes. Part of the platform that is covered with metallic shades are also indicated in Fig. 1. During the experiment, the whole platform is divided into $1m \times 1m$ grids; which the centers are indicated by dots. All APs scan the area continually and record timestamps and RSSI values for any detected device. To satisfy privacy preservation, any individual node indicated with a unique hash ID.

To determine crowd density, the easiest way is to count the number of available individual devices appear in each AP as scans its coverage environment. However, there is a high chance of missing a node due to packet collision, signal attenuation or blockage. Furthermore, a recent feature on phones which enable them to create dynamically changing MAC addresses can result in multiple detections of the same node over a specified period of time.

B. Spatial-Temporal variation of signal

Recorded RSSI values are the main characteristics to localize a node. However, the received value of signal strength can vary in time due to various reasons such as blockage, OS of the devices, and battery level of the device. Furthermore, WiFi security and power saving approaches results in a very spars data; specially, on the peak hours while people are in rush and moving fast. According to the WiFi protocol, while an AP listens to the probe requests coming from the devices if the device receives reply from an AP, it will initiate association process. Otherwise, it will go to sleep mode for a random period. This process cause issues in localizing the nodes due to the detection intervals.

III. PROPOSED APPROACH

Realizing an estimation of crowd distribution can be divided into two steps. First step is to have an understanding of the number of nodes in the platform. Then, location of each node should be determined to map it on the platform.

A. Localization

As mentioned, each AP listens to the probe requests of devices and by hearing the request, records RSSI values of the receiving packets. To find the location of a node based on the WiFi signal measurements several methods have been introduced. Use of fingerprint map based on prior measurements is one of the promising techniques [16]–[20]. In this technique, WiFi signal will be measured in the space time domain and then, new measurements will be compared to the recorded values to estimate the location of the node. In this section, the WiFi signal fingerprint map construction approach and its issues on dealing with limited sample numbers of data will be discussed. Therefore, a new approach will be introduced to minimize the uncertainty of fingerprint map based localization in dealing with a sparse dataset.
1) Fingerprint and Probability map construction: The experiments on this project was based on passive scanning process [8] which results in a sparse set of data specially during rush hours; while people are trying to reach out or get into the train as soon as possible. Considering the average speed of people during these hours and WiFi random backoff protocol the number of samples that can be recorded are limited. The limited number of data leads to a very challenging issue in terms of localization and node mapping.

Given a set of APs, \(AP = \{AP_1, AP_2, AP_3, ..., AP_N\} \) where \(N \) is the number of APs in the test field \(\mathcal{F} \subseteq \mathbb{R}^2 \). The field, \(\mathcal{F} \), is divided into \(1m \times 1m \) grids and number of received signal strength samples is recorded in each AP from a device on the cell, \(C_{ij} \). Where \(i \) and \(j \) are indicators of row \(i \) and column \(j \) in the grid. So, the signal signature of any Wi-Fi device on each cell can be described as \(\text{Signature}(C_{ij}) = \{S_1^{ij}, S_2^{ij}, ..., S_N^{ij}\} \). \(S_N^{ij} \) represents ideal signal strength on \(AP_N \) from a device at cell \(ij \). We treat each measurements as a Gaussian variable. Assuming the receiving signal from cell \(i \) and \(j \) in AP \(N \) as

\[
x_{ij}^N = S_{ij}^N + n
\]

(1)

Where \(S_{ij}^N \) is the actual value of the receiving signal and \(n \) is a spatially uncorrelated zero mean Gaussian noise. The probability of the location can be formulated as a Gaussian probability:

\[
\Pr(L_{ij} | x_{ij}^N) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2} \| x_{ij}^N - S_{ij}^N \|^2 \right)
\]

(2)

During this project, we assume that the node \(k \) is on a 2D environment and its position at time \(t \) can be described as \(X_t^k = [x^k, y^k]^T \) which is mapped to the center of cell that it’s associated. Assuming that the average value for signal strength can be measured from any AP within each cell. Then, we have a tensor describing WiFi RSSI measurements within each cell. To determine the position of each node, we define the probability function of the position as \(f(X_t^k = x_t^k) \). Thus, considering the measurements of each AP and assuming that measurements are i.i.d, the probability of having the node in cell \(L_{ij} \) will be

\[
f \left(X_t^k = L_{ij}^k \mid \text{measurements} \right) = \prod_{k=1}^{N} f \left(x_{ij}^k \mid t_{ij}^k \right)
\]

(3)

Having measurements for device \(k \) at time \(t \), we aim to estimate node’s position, \(x_t^k \), for the state \(x_t^k \).

Deriving the fingerprint map based on the experiments helps to determine locations more accurately. However, localization with this method requires enough number of measurements due to temporal variation of the RSSI measurements. To overcome this issue, probability map is introduced. Using this method, a probability will be assigned for every measurement and the expected value for each cell will be calculated using assigned probabilities.

It is noteworthy to mention that in this map, the grids that are blocked with different obstacles will receive the value of zero as the probability of existence.

B. Leveraging prior knowledge

As mentioned above having limited number of samples of received signal strength poses tremendous challenges in finding the location of each node. Leveraging prior knowledge can help to compensate the lack of samples. To acquire this knowledge, the platform is monitored for a day. It is noted that people trying to avoid the middle of platform due to the obstacles such as pillars and seats. They also tend to stay on the side that train stops. However, some try the other side of platform for faster walk. Considering all these observations, the distribution on the X-axes of the platform (as illustrated in Fig. 1), according to the trains’ timetables, can be modeled using Gaussian mixture model with variable variance values as shown in Fig. 2.

\[
f(x) = (1 - \alpha)g_1(x) + \alpha g_2(x)
\]

(4)

Where \(g_1(x) = \phi_{\theta_1}(x), \theta_1 = (\mu_1, \sigma_1^2) \).

On the other hand, people form a nearly uniform distribution as reaching the concourse as shown in Fig. 3. This phenomena can be modeled by defining variance of the Gaussian mixture model as a function of Y-axes (distance from concourse). So, a multi-dimentional model obtained which provides the distribution of the platform.

\[
f(x) = \sum_{i=1}^{K} \alpha_i N(x \mid \mu_i, \Sigma_i)
\]

(5)

\[
N(x \mid \mu_i, \Sigma_i) = \frac{1}{\sqrt{(2\pi)^k \mid \Sigma \mid}} \exp \left(-\frac{1}{2} (x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) \right)
\]

(6)

This probability function is used to adjust the final probability map of crowd distribution aiming for better accuracy.
C. Crowd estimation and crowd distribution

The most straightforward method to estimate the crowd around each AP is to run a scan for any nearby device and assuming that each discovered device is indicating a person within a given radius. However, even with this assumption, device detection is a function of random variables due to synchronization and signal propagation with distance and there is a possibility of miss-detection. Furthermore, considering real world situation, this method may not be accurate due to undiscoverable devices. To take undiscoverable devices into account, we define penetration rate ρ as the ratio of discoverable devices to the total number of people within radius R. This ratio would be obtained through field experiments.

$$\rho \triangleq \frac{\text{Number of people with discoverable devices}}{\text{Total number of people}}$$ (7)

Considering the probability of having a node in cell i and j for M measurements, the expected value of the number of people in each cell is determined as

$$E(\text{Number of people}) = \sum_{0}^{M} 1 \text{Pr}(L_{ij})$$ (8)

IV. Experiments

The experiments are done on platform 2/3 of Redfern station, Sydney. Fig. 4 provides layout of the platforms in the station. Sydney Trains provided facilities and managed data collection on the platform during the experiments. The experiments were divided into two sections. In the first section, we have recorded data to extract fingerprints and probability map of the platform. As it is clear, there is a small gap between platforms, around 13 meters. Therefore, adjacent platforms (1 and 4/5) also considered during the experiments and initial data collection. Then, CCTV images and WiFi data is collected for a week to provide and estimate the crowd density map. Final results are compared with the results of CCTV images to validate the approach.

A. Fingerprint map extraction

To drive the fingerprint map for the platform and considering our limited access to the data collection systems, we have to design series of experiments to derive the RSSI values at the center of the grids as described in Fig. 1. To collect RSSI values, three participants with six different mobile phones followed predefined rules. Each person had a Nexus 6p and one other phone (Samsung, Apple, Sony). The platform divided into three section for the measurements and defined different paths for each person as shown in Fig. 5. Each person followed the defined path while standing steady at the centre of each cell for a minute. This process enabled us to record enough data samples to extract the fingerprint map of the platform.

When we collected the data provided by Sydney Trains (according to the defined rules and recorded timestamps) we extracted the averaged RSSI values for each point aiming to build the fingerprint map. Fig. 6 shows the averaged values of measured RSSI for each person from all the six APs. As mentioned, each person follows a specific defined rules during
this stage. So, the measurement can be verified based on the patterns of change and its values according to its distance from each AP. Then, considering AP positions and defined paths for each participant, the fingerprint map (Signature(C_{ij})) formed using the average values of measurements to build the fingerprint map for each AP through the platform.

Having new measurements as (x_{ij}), the probability map for each node is calculated regarding each AP. The probability map is created based on the probability of being in different cells according to the fingerprint map. Considering the fact that measurements from each AP is independent from each other, all the probability maps are combined and the expected number of people for each grid as described in (8). Finally, the density map is calculated according to the estimated numbers for each cell.

B. Density map extraction

CCTV images and Wi-Fi probing data were collected for a week from the platform. The CCTV images are used to extract the penetration rate (ρ) and validate the calculated density map. Comparing both data, the penetration rate is calculated as one device per four person on the average ($\rho = 4$).

To extract the density map, the probability map for every detected node is calculated regarding each AP and the final probability map is created for each node. Then, all the probability values formed the final density map for one minute set of measured data. Finally, using KNN (K-nearest neighbors) method the final heat map is generated for every minute. Fig. 7 shows samples results for the crowd distribution and density map on the platform at four different time stamps on 27 June 2017. According to the definition provided by Sydney trains, more than five person in a square meter considered dangerously crowded. So, the density heat map reflects these values by assigning blue to zero (no one in a cell) and red to having six people in a cell.

Fig. 7(a), (b) and (c) shows three continuous intervals at 16:01, 16:02 and 16:03, respectively. The changes of the crowd distribution in the platform before, during and after train arrival can be seen. In Fig. 7(c) and (d) nearly uniform distribution of the crowd density also can be noted near the concourse. Another interesting point that can be seen in Fig. 7 is the fixed high density cells on the sides of the platform which are indicators of train doors.

The analysis results are compared with the results of analysis of CCTV images. Fig. 8 shows the crowd density analysis using CCTV images at 16:02, 16:03 and 16:31. Comparing
Fig. 8(a) and (b) with Fig. 7(b) and (c) that show the results for 16:02 and 16:03, respectively, proves that both are following similar patterns in terms of density distribution. Fig. 8(c) represents the distribution for 16:31 to compare with Fig. 7(d), as well. Although the results are acceptable, considering the resolution of data in both approaches but there is a chance for discrepancy due to the missing data. Wi-Fi detection is highly depended on the number of available devices and the quality of images and camera placement plays an important role in counting people and estimating their locations.

V. CONCLUSION

In this paper, an experimental evaluation of WiFi crowd estimation and a new approach in estimating its distribution over the platform 2/3 in Redfern train station, Sydney is presented. A probability map based on RSSI measurements and prior knowledge is constructed which is used to determine the location of new nodes and measurements. Final results are compared to the density maps extracted from CCTV images during same period and proves a good accuracy. However, it is noteworthy to mention that both methods have there own shortages. Image based techniques rely on having high quality images and camera deployment in proper angle of view. WiFi measurement accuracy is also limited due to miss detection and some security measures. Thus, a combination of both techniques can cover all possible shortcomings and help to provide more accurate density maps.

ACKNOWLEDGMENT

The authors would like to thank Sydney Trains for granting access to the platform during experiments and also providing data of CCTV images and WiFi scans.

REFERENCES

