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Abstract—Crowd distribution is a challenging issue in the
management and design levels. This paper provides a passive
method to derive the crowd density distribution using Wi-Fi
measurements on a real scenario. Six WiFi access points (AP)
were deployed across two co-located platforms at a train station to
monitor the platforms for a week. Based on the probability maps
that are built using RSSI measurements and prior knowledge,
the crowd distribution is calculated on the platform to increase
the accuracy of the estimations in scenarios with sparse data
collection. The estimated distribution results are compared with
distributions acquired from CCTV images and final density
heat maps correlate well with the acquired results from CCTV
cameras.

Index Terms—Crowd Estimation, WiFi, Crowd Density, Crowd
distribution.

I. INTRODUCTION

Understanding crowd behavior and its distribution plays
an increasingly important role in planning, management and
safety for architects and safety officials involved in the design
and organisation of urban spaces, transport facilities and public
events.. To this end, there is a need to detect people and map
them into the area to be able to determine the density and
its distribution. There are several methods to detect people
such as CCTV camera images [9], [4], RFID tags [19], device
probing using Wi-Fi [2], [8], [18], [15] or Bluetooth [1],
[16]. Analyzing the images of CCTV cameras can provide
an accurate estimation of the number of people in the area.
However, the coverage of video cameras is limited and it’s
not possible to install them everywhere. Moreover, processing
video streams from video cameras is computationally expen-
sive. Tracking RFID tags, requires participation from people
being measured as they need to carry the tags. Further RFID
readers need to be deployed quite densely to be able to detect
the RFID tags. More recently, mobile phones have become
increasingly pervasive enabling alternative and more effective
scanning methods for detecting people.

Using WiFi scanning raises two main challenges. First
challenge is to provide an accurate estimation of the number of
people within the scanning range, considering the probability
of having unavailable or undiscovered WiFi nodes. To address
this issue, we introduce a parameter called penetration rate
which is defined as the ratio of available devices over the total
number of people. Second challenge in using WiFi scans, is
to locate the detected nodes and map it into the area to derive
the density distribution map. Researchers have been focused
in localizing the node using WiFi signals for the last decade.

Most of the localization methods are based on the RSSI
measurements and channel modeling to estimate the location
[6], [20], [17], [12]. WiFi fingerprints used for localization,
also relies upon RSSI sampling at different locations and com-
paring the fingerprints with measured values [15], [13], [5].
These measurements are usually done on the carrying device,
such as mobile phones, to estimate the location of the user.
This approach is not applicable in crowd density estimation,
since the scanners (WiFi Access Points) should collect data
and locate the nodes. However, due to the symmetry of the
measurements, WiFi fingerprints on the AP side can be used
to locate the nodes in the area.

An issue with using any of the methods described so far,
is that they require a significant number of data samples to
be able to locate a node effectively. Therefore, the accuracy
of localization with a limited number of samples is limited.
People getting off the train are usually walking fast to reach
the gates as soon as possible. So, the measurements and RSSI
values can change quickly during this period, resulting in
sparse data samples.All these will result in having a sparse
data samples.

This chapter presents a method to estimate crowd density
and its spatial distribution based on RSSI measurements on
Wi-Fi access points on a train platform at Redfern station, Syd-
ney. Considering the limited number of measurement samples,
a probabilistic method is introduced to create a probability
map instead of an exact fingerprint map to help localize nodes
derive the density distributions. The main contributions of this
paper can be summarized as:

1) Localizing the nodes based on the received signal
strength measurements on each AP using probability
map which is constructed using fingerprint map.

2) Crowd Density Estimation using multiple using multiple
scans from multiple WiFi APs.

3) Determining spatial distribution of the crowd.
To interpret the spatial distribution of a crowd, it is important
to measure RSSI accurately and compensate for non-guassian
noise from interference, reflection, and fading. The remainder
of this paper is organized as follows. Section II defines the
problem and challenges. Proposed solution is described in
Section III. Section IV describes the experiments and discusses
outcomes of the research. Section V, concludes.

II. PROBLEM STATEMENT

Ubiquity of WiFi technology and representation of specific
characteristics in different situations made it a practical solu-
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Figure 1. Test environment and problem statement.

tion in crowd estimation and device localization. Leveraging
characteristics such as location-specific RSSI values enables
one to determine the spatial distribution of available devices.
Although WiFi probes are very useful in detecting available
nodes, locating the nodes while they are not engaged is
quite challenging. To define the problem, the scenario on
the platform has been described and then the challenges are
specified.

A. Experiments and data collection

The experiments and data collection, have been done on a
train platform (Platform 2/3) in Redfern station, Sydney. Fig.
1 represents the test environment with a small cabin, available
seats, and six APs installed on the platform for scanning
purposes. Part of the platform that is covered with metallic
shades are also indicated in Fig. 1. During the experiment,
the whole platform is divided into 1m × 1m grids; which
the centers are indicated by dots. All APs scan the area
continually and record timestamps and RSSI values for any
detected device. To satisfy privacy preservation, any individual
node indicated with a unique hash ID.

To determine crowd density, the easiest way is to count
the number of available individual devices appear in each
AP as scans its coverage environment. However, there is
a high chance of missing a node due to packet collision,
signal attenuation or blockage. Furthermore, a recent feature
on phones which enable them to create dynamically changing
MAC addresses can result in multiple detections of the same
node over a specified period of time.

B. Spatial-Temporal variation of signal

Recorded RSSI values are the main characteristics to local-
ize a node. However, the received value of signal strength can

vary in time due to various reasons such as blockage, OS of
the devices, and battery level of the device. While WiFi or
Bluetooth sampling provides a potentially effective means of
detecting devices, the use of WiFI security and power saving
techniques implemented in the IEEE 802.11 standards can
severely degrade this capability. The IEEE 802.11 standard
defines how devices associate with a WiFi AP. A WiFi AP will
transmit periodic beacon frames to advertise itself - typically
every 100ms. Devices upon receiving beacon advertisements
attempt to associate with the WiFi AP. If the device does not
associate with the AP, then it will go to sleep for a random
period of time. This process can cause issues in localizing
devices due to the detection period.

III. PROPOSED APPROACH

To estimate crowd distribution, two steps are required. First
step is to have an understanding of the number of nodes on
the platform. The second step, the location of each device is
determined and mapped to the area (e.g. train platform).

A. Localization

As previously described, each AP listens to the probe
requests of devices and records RSSI values of the receiving
packets. To find the location of a node based on the RSSI
packet measurements several methods have been introduced
in the literature. Use of fingerprint map based on prior mea-
surements is one of the more promising techniques [10], [7],
[3], [11][14]. In this technique, WiFi signal are measured in
the space time domain and then, new measurements will be
compared to the recorded values to estimate the location of the
node. In this section, we described the WiFi signal fingerprint
map construction approach and its issues dealing with limited
sample numbers of data. A new approach will be introduced to
minimize the uncertainty of fingerprint map based localization
in dealing with a sparse dataset.

Fingerprint and Probability map construction : The exper-
iments in this project were based on passive scanning process
[1] which results in a sparse set of data obtained during rush
hours; while people are leaving or entering a train as quickly as
possible. Considering the average speed of people during these
hours and WiFi power save protocols the number of samples
that can be recorded are limited. The limited number of data
leads to a very challenging issue in terms of localization and
node mapping.

Given a set of APs, AP = {AP1, AP2, AP3,..., APN}
where N is the number of APs in the test field F ⊆ R2. The
field, F , is divided into 1m× 1m grids and large number of
received signal strength samples is recorded in each AP from
a device on the cell, Cij . Where i and j are indicators of row
i and column j in the grid. So, the signal signature of any Wi-
Fi device on each cell can be described as Signature(Cij) ={
S1
ij , S

2
ij , ..., S

N
ij

}
. SNij represents recorded signal strength on

APN from a device at cell ij. Assuming the receiving signal
from cell i and j in AP N as

xNij = SNij + n (1)
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Where SNij is the actual value of the receiving signal and
n is a spatially uncorrelated zero mean Gaussian noise. The
probability of the location can be formulated as a Gaussian
probability:

Pr(Lij | xNij ) =
1

σ
√

2π
exp(

1

σ2
‖ xNij − SNij ‖2) (2)

During this project, we assume that the node k is on a
2D environment and its position at time t can be described
as Xk

t =
[
xk yk

]T
which is mapped to the center of cell

that it’s associated. Assuming that the average value for signal
strength can be measured from any AP within each cell. Then,
we have a tensor describing WiFi RSSI measurements within
each cell. To determine the position of each node, we define
the probability function of the position as f(Xk

t = xkt ). Thus,
considering the measurements of each AP and assuming that
measurements are i.i.d, the probability of having the node in
cell Cij will be

f
(
Xk
t = Cij | measurements

)
=

N∏
l=1

f
(
Slij | xij

)
(3)

Having measurements for device k at time t as zkt , we aim to
estimate node’s position, x̂kt , for the state xkt . Thus, assuming
Markov properties for the system, we can model it as follows;
using particle filters:

xkt = g
(
xkt−1, w

k
t

)
zkt = h

(
xkt , v

k
t

)
Where g (·) is the transition function from state xkt−1 to

xkt and h (·) is the measurement function. wkt ∼ N (0, Q)
and vkt ∼ N (0, R) are noise with covariance matrices Q =
diag

(
σ2
x, σ

2
y

)
and R = diag

(
σ2
1 , ..., σ

2
N

)
, respectively.

Deriving the fingerprint map based on the experiments helps
to determine locations more accurately. However, localization
with this method requires sufficient number of measurements
due to temporal variation of the RSSI measurements. To
overcome this issue, probability map is introduced. Using this
method, a probability will be assigned for every measurement
and the expected value for each cell will be calculated using
assigned probabilities.

It is noteworthy to mention that in this map, the grids that
are blocked with different obstacles will receive the value of
zero as the probability of existence.

B. Leveraging prior knowledge

As mentioned above having limited number of samples
of received signal strength poses tremendous challenges in
finding the location of each node. Leveraging prior knowledge
can help to compensate the lack of samples. To acquire this
knowledge, the platform is monitored for a day. It is noted
that people trying to avoid the middle of platform due to the
obstacles such as pillars and seats. They also tend to stay on
the side that train stops. However, some try the other side

Figure 2. Distribution on the X axes of the platform.

of platform to be able to walk faster and avoid other people.
Considering all these observations, the distribution on the X-
axes of the platform (as illustrated in Fig. 1), according to
the trains’ timetables, can be modeled using Gaussian mixture
model with variable variance values as shown in Fig. 2.

f(x) = (1− α)g1(x) + αg2(x) (4)

Where gi(x) = φθj (x), θj = (µj , σ
2
j ).

On the other hand, people form a nearly uniform distribution
as reaching the concourse as shown in Fig. 3. This phenomena
can be modeled by defining variance of the Gaussian mixture
model as a function of Y-axes (distance from concourse).
So, a multi-dimentional model obtained which provides the
distribution of the platform.

f(x) =

K∑
i=1

αiN(x | µi,Σi) (5)

N(x | µi,Σi) =
1√

(2π)
k | Σ |

×

exp

(
−1

2
(x− µi)

T
Σ−1
i (x− µi)

)
(6)

This probability function is used to adjust the final proba-
bility map of crowd distribution aiming for better accuracy.

C. Crowd estimation and crowd distribution

The most straightforward method to estimate the crowd
around each AP is to run a scan for any nearby device and
assuming that each discovered device is indicating a person
within a given radius. However, even with this assumption,
device detection is a function of random variables due to
synchronization and signal propagation with distance and there
is a possibility of miss-detection. Furthermore, considering
real world situation, this method may not be accurate due to
undiscoverable devices. To take undiscoverable devices into
account, we define penetration rate (ρ) as the ratio of discov-
erable devices to the total number of people within radius R.
This ratio would be obtained through field experiments.
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Figure 3. Distribution on the concourse entrance.

ρ ,
Number of people with discoverable Bluetooth devices

Total number of people
(7)

Considering the probability of having a node in cell i and
j, the expected value of the number of people in each cell is
determined as

E(Number of people) =

M∑
i

1 Pr(Lij) (8)

IV. EXPERIMENTS

The experiments are done on platform 2/3 of Redfern
station, Sydney. Fig. 4 provides layout of the platforms in
the station. Sydney Trains provided facilities and managed
data collection on the platform during the experiments. The
experiments were divided into two sections. In the first section,
we have recorded data to extract fingerprints and probability
map of the platform. As it is clear, there is a small gap between
platforms, around 13 meters. Therefore, adjacent platforms (1
and 4/5) also considered during the experiments and initial
data collection. Then, CCTV images and WiFi data is collected
for a week to provide and estimate the crowd density map.
Final results are compared with the results of CCTV images
to validate the approach.

A. Fingerprint map extraction

To drive the fingerprint map for the platform and consider-
ing our limited access to the data collection systems, we have
to design series of experiments to derive the RSSI values at
the center of the grids as described in Fig. 1. To collect RSSI
values, three participants with six different mobile phones
followed predefined paths with specific rules. Each person had
a Nexus 6p and one other phone (Samsung, Apple, Sony). The
platform divided into three section for the measurements and
defined different paths for each person as shown in Fig. 5.
Each person followed the defined paths while standing steady
at the centre of each cell for a minute. This process enabled us

Figure 4. Map of Redfern train station.
[https://www.triposo.com/poi/N__603520919]

Figure 5. Grids and paths during the experiments for fingerprint map.

to record enough data samples to extract the fingerprint map
of the platform.

When we collected the data provided by Sydney Trains
(according to the defined rules and recorded timestamps) we
extracted the averaged RSSI values for each point aiming to
build the fingerprint map. Fig. 6 shows the averaged values
of measured RSSI for each person from all the six APs. As
mentioned, each person follows a specific defined rules during
this stage. So, the measurement can be verified based on the
patterns of change and its values according to its distance from
each AP. Then, considering AP positions and defined paths for
each participant, the fingerprint map were created using the
average values of measurements to build the fingerprint map
for each AP through the platform.

Having new measurements, the probability map for each
node is calculated regarding each AP. The probability map
is created based on the probability of being in different cells
according to the fingerprint map. Considering the fact that
measurements from each AP are independent from each other,
all the probability maps are combined and the expected num-
ber of people for each grid is described in Eq.(8). Finally, the
density map is calculated according to the estimated numbers
for each cell.
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Figure 6. Averaged RSSI measurements for three different person in all the
six APs. (a) First person. (b) Second person. (c) Third person.

B. Density map extraction

CCTV images and RSSI measurements data were collected
for a week from the platform. The CCTV images are used
to extract the penetration rate (ρ) and validate the calculated
density map. Comparing both data, the penetration rate is
calculated as one device per four person on the average
(ρ = 4).

To extract the density map, the probability map for every
detected node is calculated regarding each AP and the final
probability map is created for each node. Then, all the proba-
bility values formed the final density map for one minute set
of measured data. Finally, using KNN (K-nearest neighbors)
method the final heat map is generated for every minute.
Fig. 7 shows samples results for the crowd distribution and
density map on the platform at four different time stamps on
27 June 2017. According to the definition provided by Sydney
Trains, more than five people in a square meter is considered
dangerously crowded. So, the density heat map reflects these
values by assigning blue color to zero (no one in a cell) and

Figure 7. Crowd distribution on the platform 2/3 of Redfern station. (a) 27
June 2017 at 16:02 (b) 27 June 2017 at 16:03 (c) 27 June 2017 at 16:31 (d)
27 June 2017 at 17:00

red color to six people in a cell.
Fig. 7(a), (b) and (c) shows three continuous intervals at

16:01, 16:02 and 16:03, respectively. The changes of the crowd
distribution in the platform before, during and after train arrival
can be seen. In Fig. 7(c) and (d) nearly uniform distribution
of the crowd density also can be noted near the concourse.
Another interesting point that can be seen in Fig. 7 is the
fixed high density cells on the sides of the platform which are
indicators of train doors.

The analysis results are compared with the results of analy-
sis of CCTV images. Fig. 8 shows the crowd density analysis
using CCTV images at 16:02, 16:03 and 16:31. Comparing
Fig. 8(a) and (b) with Fig. 7(b) and (c) that show the results for
16:02 and 16:03, respectively, proves that both are following
similar patterns in terms of density distribution. Fig. 8(c)
represents the distribution for 16:31 to compare with Fig. 7(d),
as well.

Considering the sparse measurements during the experi-
ments, it can be noted that using the proposed method for
calculating probability maps increases the accuracy of dis-
tribution estimation. Although the results are in good match
with recorded images, it should be mentioned that there is
a chance for discrepancy due to the resolution of data in
both approaches. Wi-Fi detection is highly depended upon the
number of available devices and the quality of images, while
camera placement plays an important role in counting people
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and estimating their locations.

V. CONCLUSION

In this paper, an experimental evaluation of WiFi crowd
estimation and a new approach in estimating its distribution
over the platform 2/3 in Redfern train station, Sydney is
presented. A probability map based on RSSI measurements
and prior knowledge is constructed which is used to determine
the location of new nodes and measurements. Final results are
compared to the density maps extracted from CCTV images
during same period and exhibits good accuracy. However,
it is noteworthy to mention that both methods have their
own shortcomings. Image based techniques rely on having
high quality images and camera deployment in proper angle
of view. WiFi measurement accuracy is also limited due to
power save methods and security measures. To address these
short comings an ideal solution would be to combine both
techniques thereby providing more accurate density maps.
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(a)

(b)

(c)
Figure 8. Crowd distribution based on CCTV images. (a) 27 June 2017 at 16:02 (b) 27 June 2017 at 16:03 (c) 27 June 2017 at 16:31


