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Abstract—To alleviate the backhaul burden and reduce user-
perceived latency, content caching at base stations has been
identified as a key technology. However, the caching strategy
design at the wireless edge is challenging, especially when
both wired backhaul condition and wireless channel quality are
considered in the optimization. In this paper, taking into account
the conditions of the backhaul in terms of delay and wireless
channel quality, joint design and optimization of the caching
and user association policy to minimize the average download
delay, is studied in a cache-enabled heterogeneous network.
We first prove the joint caching and association optimization
problem is NP-Hard based on a reduction to the facility location
problem. Further, in order to reduce the complexity, a distributed
algorithm is developed by decomposing the NP-hard problem into
an assignment problem solvable by Hungarian method and two
simple linear integer subproblems, with the aid of McCormick
envelopes and Lagrange partial relaxation method. Simulation
results reveal a near-optimal performance that performs up to
22% better in term of delay compared to those in the literatures
at a low complexity of O

(
nm3

/
ε2
)
.

Index Terms—Caching placement, user association, backhaul
condition, facility location problem, lagrange partial relaxation
method

I. INTRODUCTION

ACCORDING to the prediction of Cisco, global mobile
data traffic will increase by a factor of 40 over the next

five years, from the current level of 93 Petabytes to 3600
Petabytes per month [1]. The explosive growth of mobile data
traffic, especially mobile video streaming, has imposed a heavy
burden on backhaul links, which connect local base stations
to the core network. Furthermore, in massive content delivery
scenarios, e.g., in populated areas or during peak traffic hours,
user may experience excessively long delay to content delivery
due to the congestion in backhaul links, and thus the overall
quality of experience (QoE) of users is degraded. To alleviate
the backhaul burden and reduce user-perceived latency, one
promising approach is to deploy caches at the small cell base
stations (SBS) [2], [3].

The role of caching in the fifth generation (5G) has been
recognized [2]–[4], and some decentralized caching architec-
tures have been proposed [2]–[7]. The main idea of deploying
caches at SBSs is to cache popular content items on the SBS
closest to their respective users so that most of the requests
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can be served from local caches, instead of forwarding the user
requests over the expensive and bandwidth-limited backhaul
links. In the cache-enabled network, users (UE) can obtain
the requested content from the candidate SBSs directly if the
content is cached in the SBS, which is obviously beneficial to
enhance the user experience. To get the better performance,
whether the SBS caches the required content may be regarded
as a novel important consideration of user association strategy.
It follows that the operator may explicitly devise the user
association strategy, together with the caching strategy, to
improve the user perceived network performance (in terms
of delay). In particular, the efficiency of the caching strategy
depends largely on the user association rule such that there
is a strong correlation between caching strategy and user
association strategy.

So far, several literatures have investigated the design of
caching policy to improve the efficiency of cache [6]–[8],
where caching policies are developed taking into account
the given user association rule. For example, In [6] and [7],
Shanmugam et al propose firstly caching at small-cell base
stations and design the optimal caching policy to maximize
the cache-hit-ratio. In [8], a distributed caching placement
algorithm is formulated to minimize the downloading latency
with the aid of a factor graph. In [9], the UE-SBS association
is formulated as a one-to-many matching game to maximize
the average download rate based on the given caching policy.
These literatures [6]–[9] don’t optimize jointly the user asso-
ciation and cache-content management, leading the system to
inefficient operating point.

There are also a few existing works, done on the joint design
of cache policy and user association strategy in the cache-
enabled heterogeneous network. Considering the bandwidth
capacity constraints of SBS, [10] designs the joint user associ-
ation and data caching strategy to minimize the requests served
by the macro base stations (MBS). [11] gives the joint design
of video caching and user association scheme to minimize the
user experienced delay, considering users with different quality
requirements and video encoding policy. [12] proposes an
online algorithm to solve the optimum tradeoff between load
balancing and content availability, in a way to design network
costs. [13] focuses on analyzing complexity of the joint user
association and caching scheme. [14] designs joint caching,
routing, and channel assignment over coordinated small-cell
cellular systems to maximize the throughput of the system by
utilizing the column generation method.

However, most of these works ignore the heterogeneity
of users, such as the difference of wireless channel quality
of different users. Furthermore, They don’t jointly take into
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account the wired backhaul condition and wireless channel
quality when designing the caching and association strategy.
Consequently, ignoring the effect of backhaul condition or
wireless channel quality may result in inadequate performance
gain.

In summary, to fully exploit the gain of cache, an efficient
caching and association strategy needs to be designed joint-
ly by properly considering backhaul condition and wireless
channel quality. In this paper, joint design of the caching and
user association policy is optimized to minimize the average
delay of small cell users in the cache-enabled heterogeneous
network. More specifically, the main contributions of this
paper are:

1) The joint design of the optimal caching and association
strategy is studied by formulating an integer non-linear
optimization problem aiming at minimizing the average
download delay. Specially, the optimized strategy takes
wireless channel quality into consideration and is ful-
ly aware of the propagation delay over the backhaul.
Further, we prove that the joint optimization problem is
NP-Hard based on a reduction to the Unsplittable hard-
Capacitated Metric Facility location problem.

2) To reduce the complexity and obtain a near-optimal so-
lution, a distributed algorithm is proposed to decompose
the NP-Hard problem into an assignment problem solved
by Hungarian method and two simple linear integer
subproblems, with the aid of McCormick envelopes and
Lagrange partial relaxation method.

3) Simulations are conducted which show that the proposed
algorithm has a low complexity and can achieve compa-
rable performance to exhaustive search. Furthermore, the
proposed algorithm can significantly reduce the average
download delay, more specifically up to 22% less delay
compared to that of the conventional scheme.

The rest of the paper is organized as follows. In Section II,
the system model is presented and the joint caching and asso-
ciation optimization framework is formulated. In Section III,
we present the reduction to the Unsplittable hard-Capacitated
Metric Facility location problem. In Section IV, the decen-
tralized algorithm is proposed. In Section V, the simulation
results and the corresponding discussions are presented, and
we conclude the paper in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a heterogeneous cellular network (HCN) consist-
ing of a single MBS, N SBSs and U UEs randomly located
in the network. The MBS is indexed by M . The set of
the SBSs is denoted by B= {B1, B2, · · ·, BN}, where Bn

, n ∈ N = {1, 2, · · ·, N} represents the n-th SBS. It is
possible to have overlapping area between SBSs in ultra-dense
deployment. Furthermore, we denote the set of the UEs by
J = {J1, J2, · · ·, JU}, where Ju, u ∈ U = {1, 2, · · ·, U}
represents the u-th UE. The MBS is connected to the core
network through high-capacity backhaul such as optical fiber.
Each SBS is connected to the core network through a wired
backhaul link of limited capacity. Additionally, each SBS is

Core Network
Limited backhaul link

Cache

Optical Fiber

MBS

SBS

SBS

SBS

SBS

Fig. 1. The two-layer HCN architecture.

equipped with a storage capacity of bytes Gn ≥ 0. The two-
layer architecture is described in Fig. 1.

The SBSs reuse the downlink resources of the MBS to
serve the transmission to UE. As a result, there exists the
interference between the SBSs and the MBS. Further, we
assume that neighboring SBSs can be also allocated orthogonal
frequency band or employ enhanced inter-cell interference
coordination techniques (eICIC) proposed in LTE Rel.10 [15].
Each SBS Bn has a downlink bandwidth Wn, which is divided
into An subchannel of bandwidth w. Each user access only
one subchannel at a slot. Thus, the maximum number of active
users of SBS Bn is An, where An =Wn/w.

To achieve load balancing, the “SBS-First” constraint is
considered, such that each UE will try to download files from
its adjacent SBSs unless the capacity of these adjacent SBSs is
not sufficient. In this case, UE will turn to the MBS to deliver
these files.

Denote the transmission power of the SBS Bn, the trans-
mission power of the MBS M and the noise power at each
UE as Pn, PM and σ2 respectively. Let hn,u be the channel
gain between UE Ju and SBS Bn. Therefore, the signal-
to-interference-plus-noise ratio (SINR) between UE Ju and
SBS Bn is γu,n =

Pnhn,u

σ2+PMhM,u
. Denote by H (u) the set of

available SBSs for UE Ju, which are capable of providing
higher SINR for UE Ju.

UEs request files from a set I = {1, 2 · ··, F} of |I| = F
content items. Let qu,i ∈ {0, 1} denote whether user u requests
file i. We have qu,i = 1 if user u requests file i, and
qu,i = 0 otherwise. Assume that each request is entirely
served by one base station. Without any loss of generality, we
assume all these files have the same size L. This is because
files can be divided into blocks of the same length or by
leveraging advanced coding techniques [7]. Thus, each SBS
Bn is equipped with a limited storage capacity of Sn files,
where Sn = Gn/L.

B. Problem Formulation

Let xni ∈ {0, 1} be a binary decision variable, which
represents whether the SBS Bn caches i-th file or not. We have
xni = 1 if SBS Bn caches i-th file, and xni = 0 otherwise.
The caching policy matrix is defined as follows:

x = {xni : n ∈ N , i ∈ I } . (1)
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To indicate the association relationship between UE and
SBS, we introduce binary decision variable pu,n ∈ {0, 1}. The
variable pu,n denotes whether UE Ju is associated with the
SBS Bn. The UE-SBS association can be described through
the following matrix:

p = {pu,n : u ∈ U , n ∈ N} . (2)

Next, we need to calculate the delay for UE Ju to download
file i when associating with SBS Bn. The main components of
the delay are the wireless transmission delay and the backhaul
delay. The wireless transmission delay between UE Ju and
SBS Bn is calculated as:

D1
u,n =

L

wu,n log2(1 + γu,n)
, (3)

where L represents the file size, and wu,n indicates the
bandwidth of UE Ju allocated by SBS Bn. The wireless
transmission delay from SBS to UE depends on the bandwidth
and SINR.

Another main component of delay is the backhaul delay.
We denote the backhaul delay of UE Ju connected to SBS
Bn as DB

u,n. For wired backhaul, the backhaul delay of SBSs
is related to the average link distance, the average traffic
load and the average number of SBSs connecting to a single
small cell gateway. It can be modeled to be an exponentially
distributed random variable with a mean value of DB [16].
When the requested content is cached in the nearby SBS, the
user can fetch directly the content from the local caches of
SBS, without the need for going through the backhaul. Thus,
it doesn’t incur extra delay over the backhaul. In other words,
whether the delay of UEs contains the backhaul delay depends
on whether the requested content is cached. Thus, when user
requests file i, the backhaul delay between UE Ju and SBS
Bn is calculated as

D2
u,n = (1− xni)D

B
u,n. (4)

Consequently, the delay for UE Ju to download file i when
associating with SBS Bn is written as

Du
i,n = D1

u,n +D2
u,n

=
L

wu,n log2(1 + γu,n)
+ (1− xni)D

B
u,n.

(5)

The average delay of small cell users can be calculated as

D =
1

|U |
∑
u∈U

∑
n∈N

∑
i∈I

qu,ipu,nD
u
i,n. (6)

With the consideration of transmission bandwidth capacity
constraint and storage capacity constraint, the joint caching
and user association problem to minimize the average delay
of small cell users is formulated as

min
p,x

D̄ (7)

Subject to:
∑
i∈I

xni ≤ Sn , ∀n ∈ N , (8)

∑
n∈H(u)∪{M}

pu,n = 1, ∀u ∈ U , (9)

∑
u∈U

pu,n ≤ An, ∀n ∈ N , (10)

xni ∈ {0, 1} ,∀n ∈ N , i ∈ I, (11)

pu,n ∈ {0, 1},∀u ∈ U , n ∈ N . (12)

The objective of the optimization problem is to minimize the
average download delay. The constraints of the optimization
are specified in (8)-(12). The inequality (8) denotes the storage
capacity constraint of each SBS. The equality (9) indicates that
each UE can only associate with one SBS in H (u) or MBS M
and avoid partial association. The inequality (10) reveals the
transmission bandwidth constraint of each SBS. Finally, (11)
and (12) dictate discrete and binary nature of optimization
variables.

Note that the optimization problem defined in (7)-(12) is
non-linear combination optimization problem since both of
the caching variable and user association variable are integer
values. Furthermore, the objective function is a non-linear
function since there is mutual dependency between the caching
variable and user association variable. In the next section, by
resorting to a reduction to facility location problem, we prove
that the optimization problem is NP-Hard.

III. THE REDUCTION TO FACILITY LOCATION PROBLEM

The connection between the unsplittable hard-capacity facil-
ity location problem and the joint caching and user association
problem is non-trivial. In fact, previous work in the literature
that established reductions of caching problem to facility
location problem focused on the simple case that users only
are connected to the base station with the requested file already
cached, and the cost of communication between any base
station and user pair is same [10]. Our model considers the
case that users with different wireless channel quality may
be associated with any base station within its communication
range. Thus, the connection relationship and cost value of the
facility location problem need to be redesigned.

Lemma 1. The optimization problem is polynomial-time
reducible to the unsplittable hard-capacity facility location
problem.

Proof. The unsplittable hard-capacity facility location problem
is described as follows. Given a set of locations L, there is
a subset A ⊆ L of facilities and a subset B ⊆ L of clients
that must be assigned to some open facilities. For each client
j ∈ B, there is a positive integer demand dj , which can only
be served by a single facility (unsplittable). For each facility
i ⊆ A, it can serve a total demand at most Ci ≥ 0 (hard-
capacity). The cost of serving one unit of demand of client j
by facility i is ci,j ≥ 0. The cost of opening facility i ⊆ A is
fi ≥ 0. The facility location problem aims to decide the set
of facilities and find the optimal assignment of each client to
facilities so as to minimize the total cost incurred.

The reduction of the optimization problem to the unsplit-
table hard-capacity facility location problem is as follows:

The set of facility A contains two parts: the first part is
named aM for the MBS, and the second part is ani, which
is for every SBS n ∈ N and every file i ∈ I. The set of
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Fig. 2. A example of the reduction to the facility location problem.

client B consists of the following subsets: (i) B1 contains |U |
clients, denoted as bu, bu ∈ U . Those clients in B1 indicates
the cellular users. (ii) B2 contains |F − Sn| virtual clients,
denoted as b′n,1 b′n,2 etc, ∀n ∈ N . (iii) the subset of B3

contains |(Sn − 1) ∗An| virtual clients, denoted as b′′n,1, b′′n,2
etc, ∀n ∈ N . For each facility, the capacity of the facility aM
is equal to +∞ and the capacity of the facility ani for each
SBS n ∈ N and each file i ∈ I is set to An. For each client,
the demand of the client bu ∈ B1 and b′′q ∈ B3 is equal to 1.
In addition, the demand of the client b′c ∈ B2 is set to An,
which is unsplittable. UE Ju only can have a relationship of
connection with these SBSs in H (u). The cost of opening
facility is equal to 0. The cost for each pair of facility and
client is specified as follows:

1) The cost of each pair of the form (ani, bu) is calculated
as the delay of UE Ju connected to the SBS Bn with file i
cached. Therefore, the cost is calculated as cost(ani, bu) =

L
wu,n log(1+γu,n)

+ (1− qu,i)D
B
u,n.

2) The cost of each pair of the form (ani, b′c) and the
form (ani, b′′q ) is set to very small positive constant d,
d ≪ min(cost(ani, bu)). The setting of parameter d is to
ensure that all clients in the subset of B2 and B3 are associated
with the facility ani. Consequently, exactly Sn of the facilities
are uncovered by the virtual users of B2, corresponding to the
cached files. Meanwhile, a total of An cellular users can be
accessed to SBS Bn, corresponding to the capacity constraint
of SBSs.

3) The cost of each pair of the form (aM , bu) is set to very
large positive constant h, h≫ max(cost(ani, bu)). The setting
of parameter h is to ensure that all clients in the subset of B1

will choose firstly to access the facility ani. Only when ani
can’t serve more clients, the client choose to access the facility
aM , which is consistent with the hypothesis of “SBS-First”.

Based on the above description, we formulate the unsplit-
table facility location problem. In addition, based on the proof
in reference [10], we can obtain the following two conclusions:

1) When the cost of the feasible solution for the facility
location problem is D, there exists a corresponding feasible
solution for the optimization problem with cost C, satisfying

D = C +

(
U −

N∑
n=1

An

)
h

+
N∑

n=1

((F − Sn)An + |(Sn − 1)An|)d.

(13)

2) When the cost of the feasible solution for the optimization
problem is C, there exists a corresponding feasible solution for

the facility location problem at cost D, satisfying

C = D −

(
U −

N∑
n=1

An

)
h

−
N∑

n=1

((F − Sn)An + |(Sn − 1)An|)d.

(14)

Thus, the reduction from the optimization problem defined
in (7)-(12) to the above proposed unsplittable facility location
problem holds. There exists a reduction from the optimization
problem to the unsplittable hard-capacity facility location
problem, which is known to be NP-Hard [17].

Fig. 2 presents an example of the reduction based on the
above description. Here, the parameters of the system are set as
follows: |N | = 2, |U| = 6, |I| = 4, |S1| = |S2| = 2, |A1| =
|A2| = 2. Therefore, each SBS Bn contains four facilities.
In addition, user 3 and user 4 are in overlapping coverage
area of SBS 1 and SBS 2, so these users have relationship of
connection with the facility a1i and a2i.

IV. DECENTRALIZED ALGORITHM

The problem defined in (7)-(12) is NP-Hard and the com-
plexity is extremely high. To reduce the complexity of the
problem, a distributed algorithm is proposed in this section.
Firstly, the optimization problem is transformed equivalently
with the aid of McCormick envelopes. Secondly, we use the
method of Lagrange partial relaxation to solve the transformed
problem and decompose the problem into several subproblems.

It can be shown that the caching variable and user associa-
tion variable are tightly coupled in the objective function of the
optimization problem, which causes the problem hard to solve.
To conquer the challenge, we introduce a new variable zui,n,
zui,n = (1−xni)pu,n that allows us to rewrite the optimization
problem defined in (7)-(12) as follows:

min
p,x,z

1

|U |
∑
u∈U

∑
n∈N

∑
i∈I

qu,i

[
Lpu,n

wu,n log2(1 + γu,n)
+ zui,nD

B
u,n

]
(15)

Subject to: (8)-(12),

zui,n = (1− xni)pu,n, ∀u ∈ U , i ∈ I, n ∈ N . (16)

To obtain the convex relaxation, we replace the non-convex
constraint zui,n = (1 − xni)pu,n with its McCormick convex
relaxation by using McCormick envelopes [18], which is given
by

zui,n ≥ pu,n − xni ,∀u ∈ U , i ∈ I, n ∈ N , (17)

zui,n ≥ 0 , ∀u ∈ U , i ∈ I, n ∈ N , (18)

zui,n ≤ pu,n , ∀u ∈ U , i ∈ I, n ∈ N , (19)

zui,n ≤ 1− xni , ∀u ∈ U , i ∈ I, n ∈ N . (20)

Specially, due to the discrete and binary nature of optimiza-
tion variables xni and pu,n, it can be readily established that
the equality zui,n = (1 − xni)pu,n is equivalent strictly to the
constraints (17)-(20), which is shown in Table I.
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TABLE I
THE PROOF OF THE TRANSFORMATION FROM EQUALITY TO INEQUALITY

pu,n xni zui,n max (pu,n − xni, 0) min (pu,n, 1− xni)

0 0 0 0 0
0 1 0 0 0
1 0 1 1 1
1 1 0 0 0

Thus, the optimization problem can be further expressed as

min
p,x,z

1

|U |
∑
u∈U

∑
n∈N

∑
i∈I

qu,i

[
Lpu,n

wu,n log2(1 + γu,n)
+ zui,nD

B
u,n

]
(21)

Subject to: (8)-(12), (17)-(20).
In order to solve the new optimization problem, we use the

method of Lagrange partial relaxation [19]. Specially, we relax
the constraints (17), (19), (20) and introduce the respective set
of dual Lagrange multipliers:

µu
i,n ≥ 0 ∀u ∈ U ,∀i ∈ I, ∀n ∈ N , (22)

λui,n ≥ 0 ∀u ∈ U , ∀i ∈ I, ∀n ∈ N , (23)

ψu
i,n ≥ 0 ∀u ∈ U , ∀i ∈ I, ∀n ∈ N . (24)

Hence, the Lagrange function is expressed as

L(µ,λ,ψ,p,x, z) =
1

|U |
∑
u∈U

∑
n∈N

∑
i∈I

[
qu,iLpu,n

wu,n log2(1 + γu,n)

+ qu,iz
u
i,nD

B
u,n + µu

i,n(pu,n − xni − zuin)

+ λui,n(z
u
i,n − pu,n)+ψ

u
i,n(z

u
i,n + xni − 1)].

(25)
Thus, the dual problem can be given by

max
µ,λ,ψ

min
p,x,z

L (µ, λ, ψ, p, x, z) ,

Subject to: (8)-(12), (18), (22)-(24).
Interestingly, given the dual variables µ, λ, φ, the Lagrange

function can be written as

L (µ,λ,ψ,p,x, z) = f (p) + g (x) + h (z) , (26)

where f (p), g (x) and h (z) are the objective functions of P1,
P2, P3 respectively. Furthermore, the feasible region of dual
problem can be decomposed into three independent regions
(i.e. {(9), (10), (12)}, {(8), (11)} and {(18)}). Therefore,
the dual problem can be decomposed into three subproblems,
named as P1, P2, P3 respectively. The three subproblems are
given as follows:

P1 : min
p

∑
u∈U

∑
n∈N

∑
i∈I

qu,i

[
L

wu,n log2(1 + γu,n)

]
pu,n

+ µu
i,npu,n − λui,npu,n

Subject to: (9), (10), (12).

P2 : max
x

∑
u∈U

∑
n∈N

∑
i∈I

µu
i,nxni − ψu

i,nxni

Subject to: (8), (11).

P3 : min
z

∑
u∈U

∑
n∈N

∑
i∈I

(
qu,iD

B
u,n − µu

i,n + λui,n + ψu
i,n

)
zui,n

Subject to: (18).
Particularly, after the decomposition, the joint optimization

problem becomes essentially separate optimization problems
and the coupling between the association variable and the
caching variable disappears.

The first subproblem only involves the UE-SBS association
variable p. Here, we model the first subproblem as the assign-
ment problem. We view each base station Bn as a machine of
processing capacity An, and each UE Ju as a job that requires
one units of processing. When UE Ju is assigned to BS Bn, it
incurs a cost of dun, dun =

∑
i∈I

qu,iL
wu,nlog2(1+γu,n)

+ µu
i,n − λui,n.

Because the total processing capacity of all machines is not
equal to the number of jobs, a dummy variable is introduced,
either for a machine or a job, to make it balanced. In other
words, if

∑
n∈N

An > U , we add
∑

n∈N
An − U virtual jobs

to the job sets. The cost of these virtual jobs is zero. On
the other hand, if

∑
n∈N

An < U , we need to introduce a

virtual machine of processing capacity U −
∑

n∈N
An. Due to

the special structure of the assignment problem, the solution
can be found using a more convenient method called Hun-
garian method [20]. The second subproblem only involves the
caching variable x and the third subproblem only involves the
added new variable z. Both subproblems are the linear integer
optimization problem, which can be solved by the generic
linear integer programming method [17].

By solving the three subproblems and obtaining the values
of p, x, z, we use the subgradient method to update the dual
variables. In the t-th iteration, for ∀u ∈ U , i ∈ I, n ∈ N , the
dual variables are updated as follow:

µu
i,n (t+ 1) =

[
µu
i,n (t) + σ (t) d

(
µu
i,n (t)

)]+
, (27)

λui,n (t+ 1) =
[
λui,n (t) + σ (t) d

(
λui,n (t)

)]+
, (28)

ψu
i,n (t+ 1) =

[
ψu
i,n (t) + σ (t) d

(
ψu
i,n (t)

)]+
, (29)

where [x]
+
= max {0, x} and σ (t) is the step size of the t-th

iteration. And d (µ(t)), d (λ(t)), d (ψ (t)) are the subgradient
of dual problem with respect of µu

i,n(t), λ
u
i,n(t), ψ

u
i,n (t), given

by

d
(
µu
i,n(t)

)
= pu,n(t)−xni(t)−zui,n(t) , ∀u ∈ U , i ∈ I, n ∈ N ,

(30)
d
(
λui,n(t)

)
= zui,n(t)− pu,n(t), ∀u ∈ U , i ∈ I, n ∈ N , (31)

d
(
ψu
i,n (t)

)
= zui,n (t) + xni (t)− 1 , ∀u ∈ U , i ∈ I, n ∈ N .

(32)
Denote g(t) = [d (µ(t)) , d (λ(t)) , d (ψ (t))]

T and set the
step size as σ (t) = vUB−q(t)

∥g(t)∥2 [21], where UB is the upper
bound on each iteration and v is a positive constant and q (t)
is the value of Lagrange function in the t-th iteration. The
UB can be found by simply finding a feasible solution of
the primary problem. Note that the step size is nonsummable
diminishing step length. Based on the proof in [22], the
algorithm is guaranteed to converge to the optimal value. The
method is summarized in Algorithm 1.
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Algorithm 1 Decentralized algorithm for the primal optimiza-
tion problem
Initialization:
t = 1, µu

i,n (1) = 0, λui,n (1) = 0, ψu
i,n (1) = 0, q (1) = 0,

UB=+∞, ε = 0.01, and tmax = 2000.
Iteration:

while
∣∣∣UB−q(t)

UB

∣∣∣ ≥ ε and t ≤ tmax do
Solve P1 and find the solution of pu,n.
Solve P2 and find the solution of xni.
Solve P3 and find the solution of zui,n.
Update UB.
q (t) = L (µ,λ,ψ,p,x, z) and σ (t) = vUB−q(t)

∥g(t)∥2 .
Update the dual variable µu

i,n (t+ 1), λui,n (t+ 1),
ψu
i,n (t+ 1) by using (27), (28), (29).

Update t = t+ 1.
end while

TABLE II
PARAMETER VALUES USED IN NUMERICAL RESULTS

Macrocell radius 400 (m)
Transmit power of SBS 23 (dBm)

Pass-loss model ITU-UMi model
Noise power spectrum density -174(dBm/Hz)

Shape parameter η 0.6
SINR threshold δ 0.1

Bandwidth of base station W 20(MHz)
File size L 10(Mbits)

Maximum number of active users An 20
Backhaul delay DB [0, 3]
Number of files F 6(small-scale system)

50(large-scale system)
Number of users U 50(small-scale system)

200(large-scale system)
Number of base stations N 2(small-scale system)

8(large-scale system)
Storage capacity Sn 1(small-scale system)

3(large-scale system)

V. SIMULATION

In this section, numerical results of the proposed algorithm
are presented. In Section V.A, we compare the performance
of the proposed algorithm with that of the exhaustive search,
establishing the performance of the proposed algorithm. In
Section V.B, we present the convergence analysis and discuss
the impact of various parameters on the proposed algorithm.
In Section V.C, the proposed algorithm is compared with
conventional scheme.

We numerically evaluate the algorithm by fixing the location
of MBS at the center of a macrocell with a radius 400m and
distribute SBSs randomly throughout the MBS coverage area.
The physical layer parameters such as the transmit power of
SBSs, the path-loss model, noise power are chosen according
to 3GPP standards. Each user requests one file based on the
Zipf distribution with shape parameter η = 0.6, where the
request probability of the i-th file is ρi = 1/iη∑F

i=1 1/iη
[23].

The range for the mean of the backhaul delivery delay DB

is selected based on measurements obtained from a practical
network [24]. To investigate the impact of backhaul delay, we
choose DB ∈ [0, 3]. The parameter v of Algorithm 1 is set to
0.5. The system parameters are summarized in Table II.
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Fig. 3. Performance comparison of the proposed algorithm and exhaustive
search.

A. Optimality test of the proposed algorithm

The performance of the proposed algorithm is evaluated
firstly. We compare the performance of the proposed algorithm
with the exhaustive search in a small-scale system. The
result obtained from the exhaustive search is adopted as a
benchmark, which is the lower bound of the average delay.
In the small-scale system, the file library has six files. There
are two SBSs and each has a capacity of one file. A total of
50 users are placed randomly, independently and uniformly
in the cell. We consider the performance averaged over five
thousand network instances. Fig. 3 shows that the performance
of the proposed algorithm is very close to that obtained using
the exhaustive search. In addition, it also can be observed that
as cache size increases slightly, the average download delay
reduce significantly, which shows that caching is beneficial to
enhance wireless network performance.

B. Convergence and Complexity

Convergence: The convergence of the proposed algorithm
in a large-scale system is depicted in Fig. 4. In the large-scale
system, the file library has 50 files. There are 8 SBSs and
each has a capacity of 3 files. A total of 200 users are placed
randomly, independently and uniformly in the cell. As it can be
seen, the proposed algorithm gradually improves the obtained
result and converges rapidly in less than a few hundreds steps.

Complexity: To guarantee the accuracy ε of subgradient
method, the proposed algorithm need O

(
1
/
ε2
)

iterations [19].
Furthermore, the time complexity of the proposed algorithm in
each iteration is the same, namely O

(
nm3

)
[20], where n de-

notes the maximum number of neighboring BSs a user can be
connected to and m denotes the number of users. As a result,
the complexity of the proposed algorithm is O

(
nm3

/
ε2
)
. In

Table III, the number of iterations and time complexity per
iteration of the proposed algorithm and exhaustive search are
summarized.
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TABLE III
NUMBER OF ITERATIONS AND TIME COMPLEXITY OF

ALGORITHMS
Number of iterations Time complexity

per iteration

Exhaustive search
(
CSn

F

)N
O

(
nm3

)
The proposed algorithm O

(
1
/
ε2

)
O

(
nm3

)
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Fig. 4. The convergence of the proposed algorithm.
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C. Parameter impact analysis of the proposed algorithm

We explore the effect of the steepness of the file request
pattern on the performance of the proposed algorithm in a
small-scale system. The shape parameter of the file popularity
is varied from the value 0.6 to 3. Fig. 5 shows the effect of
Zipf parameter on the average delay. It can be observed that
as the Zipf parameter increases, the average delay decreases.
In addition, it can be seen that as the Zipf parameter increases,
the effect of the backhaul delay on the average delay decreases.
This is because as popularity distribution gets steeper, a small
number of contents are more popular when Zipf parameter is
high, which improves the caching effectiveness. Thus, more
contents can be served directly from the local caches of BSs
and don’t have to travel through the backhaul, which decreases
the effect of backhaul delay.
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Fig. 6. Performance comparison of different schemes.

D. Comparison with other schemes

We compare the proposed algorithm with the Most Popular
Content-Maximum SINR (MPC-MS) scheme in a large-scale
system. The MPC-MS scheme is to cache the most popular
contents, which is a standard caching placement strategy
[25], [26], and users are associated with the SBS with the
maximum-SINR without considering the backhaul conditions
[27].

Fig. 6 demonstrates that the proposed scheme outperforms
the MPC-MS scheme and some important insights are al-
so revealed. Firstly, the backhaul delay affects significantly
the caching policy and user association scheme. When the
backhaul delay is very small, the proposed algorithm has a
similar performance as that achieved by the MPC-MS scheme.
On the other hand, when the backhaul delay is large, the
performance gap of the proposed algorithm and the MPC-MS
scheme increases. This is because backhaul delay becomes a
major component of delivery delay but the MPC-MS scheme
ignores the backhaul conditions, thereby achieving a higher
average download delay. The simulation result shows that the
proposed algorithm can reduce delay by up to 22% than the
conventional scheme.

Further, Fig. 7 shows the advantage of the proposed al-
gorithm from the perspective of delivery delay. It can be
observed that as backhaul delay is relatively small, wireless
transmission delay will dominate the average delay and be-
comes the limiting factor. In this case, the gap of the MPC-
MS scheme with the proposed algorithm is relatively small.
On the other hand, as backhaul delay increases gradually, the
average delay is mainly contributed by the backhaul delay
caused by constrained backhaul link. In this case, the proposed
algorithm is fully aware of the backhaul conditions and reduce
the larger backhaul delay. Therefore, it can be concluded that
the proposed algorithm achieves the efficient tradeoff between
the wireless transmission delay and backhaul delay.

VI. CONCLUSION

This paper designs the joint caching and association strategy
to minimize the average download delay. The joint strategy
takes into account wireless channel quality and is aware of
the transmission delay over the backhaul. We analyze the
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Fig. 7. Delay allocation of different schemes.

joint optimization problem by formulating an integer non-
linear optimization problem. The problem is proved to be NP-
Hard based on a reduction from the facility location problem.
In order to reduce the complexity, a distributed algorithm
is proposed by decomposing the NP-hard problem into an
assignment problem solved by Hungarian method and two
simple linear integer subproblems, with the aid of McCormick
envelopes and Lagrange partial relaxation method. Simulation
results show that the proposed algorithm can significantly
reduce the average download delay, approaching the low-
er bound of the average download delay but with a low
complexity. Moreover, the simulation results demonstrate the
necessity to consider the cache condition, i.e, whether the BS
caches the requested contents when deciding the best UE-
SBS association, especially when the backhaul condition is
poor. Therefore, it can be concluded that our work gives a
promising method to determine the optimal caching policy
and user association scheme, and provides some important
insights for understanding the complicated interaction between
the caching policy and user association strategy.
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