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Abstract—In this paper, we analyze the maximum likelihood
decoding performance of Raptor codes with a systematic low-
density generator-matrix code as the pre-code. By investigating
the rank of the product of two random coefficient matrices, we
derive upper and lower bounds on the decoding failure probabil-
ity. The accuracy of our analysis is validated through simulations.
Results of extensive Monte Carlo simulations demonstrate that
for Raptor codes with different degree distributions and pre-
codes, the bounds obtained in this paper are of high accuracy.
The derived bounds can be used to design near-optimum Raptor
codes with short and moderate lengths.

Index Terms—Raptor codes; asymptotic analysis; maximum
likelihood (ML) decoding; decoding failure probability.

I. INTRODUCTION

Rateless codes have been increasingly used in many
telecommunication systems [1], [2], [3], [4], including cellular
networks and satellite communication systems. Recent work
has shown that, by employing rateless codes, wireless trans-
mission efficiency and reliability can be dramatically improved
[5], [6].

Rateless codes are a class of forward error correction (FEC)
codes with special properties, which were initially designed for
the binary erasure channel (BEC). Compared with conven-
tional FEC codes with a fixed code rate, rateless codes have
a number of advantages. Firstly, similar as low-density parity-
check (LDPC) codes, rateless codes can be implemented with
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far less complex encoding and decoding algorithms, which are
attractive for implementation. Secondly, as suggested by the
name, rateless codes are suitable for any code rate. They can
automatically adapt to instantaneous channel states and do not
require feedback channels [1], [3], [5]. This is because they can
generate a potentially limitless stream of coded symbols, and
all source symbols can be correctly decoded when there are
a sufficient number of successfully received coded symbols.
Hence, rateless codes are desirable for certain channels, such
as erasure multicast or broadcast channels, whose real-time
channel erasure probability is very difficult to capture or
estimate. Furthermore, they have the potential to replace the
conventional automatic repeat request (ARQ) mechanism as
a new mechanism of transmission control protocol [7].

Among the well-known rateless codes, two codes stand
out. One is the Luby transform (LT) codes [3], which are
the first class of practical digital fountain codes with an
average decoding cost in the order of O(k log(k)) where k
is the number of source symbols. The other is the Raptor
codes [1], which are the first class of fountain codes with
linear time encoding and decoding complexities. Raptor codes
are concatenated codes, which combine a traditional FEC
code with an LT code to relax the condition that all input
(source) symbols need to be recovered in an LT decoder.
Note that Raptor codes have already been standardized in the
3rd Generation Partnership Project (3GPP) [4] to efficiently
disseminate data over a broadcast/multicast network to provide
multimedia broadcast and multicast services.

Despite the successful application of Raptor codes in 3GPP,
our understanding of Raptor codes is still incomplete due to a
lack of complete theoretical analysis on their decoding error
performance. Without analytical results, the optimization of
the degree distribution and other parameters of Raptor codes
would be extremely difficult.

In this paper, we investigate the performance of Rap-
tor codes by theoretically analyzing their decoding failure
probability under maximum likelihood (ML) decoding. The
decoding failure probability is the probability that not all
source symbols can be decoded by ML decoding from a given
number of successfully received coded symbols. We consider
a Raptor code ensemble with a systematic (n, k, η) low-density
generator matrix (LDGM) code as the pre-code. In the case
of the erasure channel, ML decoding is equivalent to solving
a consistent system of m linear equations in k unknowns
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by means of Gaussian elimination (GE). In this paper, we
investigate the decoding failure probability of Raptor codes by
theoretically analyzing the rank of the product of two random
coefficient matrices and deriving tight analytical bounds. The
tightness of the bounds is confirmed by extensive Monte Carlo
simulations. More specifically, the contributions of this paper
are summarized in the following:
• Firstly, this paper provides analytical results (i.e. an

upper bound and a lower bound) on the decoding failure
performance of Raptor codes, using a systematic LDGM
code as the pre-code and assuming ML decoding.

• Furthermore, simulations are conducted to validate the
accuracy of the proposed bounds. That is, Raptor codes
with different degree distributions and pre-codes are
evaluated to verify the claims on the accuracy of the
derived upper and lower bounds.

The rest of the paper is organized as follows. Section II
reviews the related work. In Section III, a brief review of
the encoding and decoding process of Raptor codes is given.
In Section IV, a performance analysis of Raptor code is
conducted by deriving an upper bound and a lower bound on
the probability that not all source symbols can be successfully
decoded by a receiver with a given number of successfully
received coded symbols. Section V validates the analytical
results through simulations, followed by concluding remarks
in Section VI.

II. RELATED WORK

In this section, we review related work on the analysis of
the performance of Raptor codes.

In general, there are two inter-related metrics to measure the
performance of Raptor codes. One is the bit error probability
and the other is the decoding failure probability. To analyze
the bit error probability of Raptor codes, Rahnavard et al.
[7] proposed a method to compute the upper and the lower
bounds on the bit error probability of Raptor codes under ML
decoding over the binary erasure channels (BEC). Despite
the advances in [7], their work can be further improved in the
following aspects. Firstly, the authors in [7] used a stochastic
parity-check codes, i.e. (n, k, η) LDPC code, as the pre-code
of Raptor codes. All entries of the parity check matrix are
assumed to be independent and identically distributed (i.i.d)
Bernoulli random variables [7]. Contrary to this assumption,
in 3GPP standard [4], the pre-code of the standardized Raptor
codes is a systematic LDGM code. The use of the systematic
LDGM code as the pre-code is to guarantee that the parity
check matrix is a full-rank matrix. Secondly, Rahnavard et
al. assumed that the erasures on intermediate bit level are
independent. As explained in [8, Ch. 6.2.1], this assumption
would only hold if a very long interleaver was used. Using
an interleaver in this setup, however, is not reasonable. In
[9], the authors derived the upper and the lower bounds on
the bit error probability of Raptor codes over Rayleigh fading
channels assuming ML decoding.

In [1], Shokrollahi analyzed the decoding failure probability
of Raptor codes with a finite length assuming belief propaga-
tion (BP) decoding. The analysis relies on the computation of

the failure probability of the LT codes under BP decoding,
which was derived in [10]. ML decoding, on the other hand,
is more computationally demanding than BP decoding for
codes with a large length. The analysis of the decoding
failure probability assuming ML decoding is however both
important and significant, because it provides a benchmark on
the optimum system performance that can be used to gauge the
performance of other decoding schemes. Furthermore, in [8]
a pseudo upper bound on the performance of Raptor codes
under ML decoding was derived, under the assumption that
the number of erasures correctable by the pre-code is small.
This approximation is accurate only when the rate of the
pre-code is sufficiently high. For the more general case, the
decoding failure probability of Raptor codes still remains an
open problem. In [11] it is shown that the rank profile of the
constraint matrix of a Raptor code depends on the rank profile
of the pre-code parity check matrix and the generator matrix
of the LT code. The rank profile of the Raptor code cannot be
determined if the rank profile of an LT code with a general
degree distribution is unknown. In our previous work [6], we
analyzed the rank profile of an LT code with a general degree
distribution.

In this paper, we present theoretical analysis on the decoding
failure probability of Raptor codes under ML decoding. We
consider a Raptor code ensemble with a systematic (n, k, η)
LDGM code as the pre-code to guarantee that the parity check
matrix is a full-rank matrix. Furthermore, we take into account
the fact that the residual erasure events after LT decoding are
not independent, thereby deriving tighter bounds.

III. BACKGROUND OF RAPTOR CODES

This section is provided to familiarize the readers with
the basic idea of Raptor codes, their encoding and decoding
algorithms.

The encoding process of a Raptor code [1] is carried out in
two phases: a) encode k source symbols with a (n, k) error
correction code, which is referred to as the pre-code C, to
form n intermediate symbols; b) encode the n intermediate
symbols with an LT code. Each coded symbol is generated
by the following encoding rules of LT codes [3]. Firstly, a
positive integer d (often referred to as the “degree” of coded
symbols) is drawn from the set of integers {1, ..., n} according
to a probability distribution Ω = (Ω1, ...,Ωn), where Ωd is
the probability that d is selected and

∑k
d=1 Ωd = 1. Then, d

distinct intermediate symbols are selected randomly and inde-
pendently from the n intermediate symbols to form the coded
symbol to be transmitted using the XOR operation, where
each intermediate symbol is selected with equal probability.
A Raptor code with parameters (k, C,Ω) is an LT code with
distribution Ω = (Ω1, ...,Ωn) on n symbols which are the
output symbols of the pre-code C.

An illustration of a Raptor code is given in Fig. 1. In prac-
tice, the parity check matrix of the pre-code of Raptor codes is
a deterministic matrix. For example, in 3GPP standard [4], the
parity check matrix of the pre-code of the standardized Raptor
codes is a systematic deterministic matrix. Using a systematic
deterministic matrix as the pre-code ensures that the parity
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Figure 1. Two-stage structure of a Raptor code with a systematic pre-code.

check matrix of the pre-code is a full-rank matrix. However,
it is difficult to obtain tractable analytical results of decoding
performance for such Raptor codes. Therefore, in this paper
we adopt a Raptor code ensemble with a semi-random (n, k, η)
LDGM code as the pre-code for analytical tractability while
ensuring that the parity check matrix of the pre-code is a full-
rank matrix. The generator matrix of the pre-code, denoted by
Gpre
n×k, can be written as Gpre

n×k = [Ik|Pk×(n−k)]
T , where Ik

is an identity matrix of size k, and Pk×(n−k) is a k by (n−k)
matrix whose entries are i.i.d. Bernoulli random variables with
parameter η. Such a code is denoted as an (n, k, η) LDGM
code. Furthermore, we can obtain the parity check matrix of
this LDGM code as H(n−k)×n = [P(n−k)×k|I(n−k)](n−k)×n.

Let m, (m ≥ k), be the number of coded symbols that have
already been successfully received by a receiver and γ = m

k ,
(γ ≥ 1) be the overhead of reception. When a coded symbol
is received by a receiver, we use a 1 × k binary row vector
gLT
i Gpre to represent the coding information contained in the

coded symbol, where GLT is a kγ×n binary matrix, gLT
i is the

ith row vector of GLT and Gpre is a n× k binary matrix. Let
[G]i,j be the entry in the ith row and the jth column of the
matrix G. Particularly,

[
gLTi

]
1,j

is 1 if the coded symbol is a
result of the XOR operation on the jth intermediate symbol
(and other intermediate symbols); otherwise

[
gLTi

]
1,j

equals
0. For [Gpre]i,j , it is 1 if the ith intermediate symbol is a
result of the XOR operation on the jth source symbol (and
other source symbols); otherwise [Gpre]i,j equals 0. Therefore,
a random row vector in this paper refers to the row vector of
a randomly chosen coded symbol where the coded symbol is
generated using the Raptor encoding process described above.
Recall that s = (s1, s2, ..., sk) represents the k source symbols
to be transmitted. The coded symbol can be expressed as:
yi = gLT

i GpresT , where “sT ” is the transpose of s.
Raptor codes can be decoded using a variety of decoding

algorithms. A commonly used decoding algorithm for Raptor
codes is the so-called “LT process” [3], but it is well known
that the LT process is unable to decode all source symbols
which can be possibly recovered from the received coded
symbols. For example, the LT process relies on the existence
of at least one degree-one coded symbol to be received in order

to start the decoding process. For Raptor codes with limited
lengths, ML decoding algorithm [12] has been proposed to
replace the LT process. The performance of ML decoding is
the same as the Gaussian elimination. One way to apply the
Gaussian elimination on Raptor codes is to solve a system of
linear equations given in the following.

GLT
kγ×nGpre

n×ks
T
k×1 = ykγ×1,

where ykγ×1 = (y1, y2, ..., ykγ)T . Then we can obtain the
following Lemma.

Lemma 1. A receiver can recover all k source symbols from
the kγ coded symbols under ML decoding if and only if
(GLT

kγ×nGpre
n×k)kγ×k is a full-rank matrix, i.e. its rank equals

k [1].

Note that in this paper, all algebraic operations and the
associated analysis are conducted in a binary field GF (2).

IV. PERFORMANCE ANALYSIS OF RAPTOR CODES

Denote by Akkγ the event that a receiver can successfully
decode all k source symbols conditioned on the event that the
receiver has successfully received kγ coded symbols. Obvi-
ously the event that (GLT

kγ×nGpre
n×k)kγ×k is a full-rank matrix

is equivalent to the event Akkγ . Let Akγk be the complement of
event Akkγ . The main results of this paper are summarized in
Theorems 2 and 3.

In this section, we shall analyze the probability Pr
[
Akγk

]
.

The analysis of decoding failure probability PDFk,n,γ =

Pr
[
Akγk

]
is conducted by analyzing the probability that the

rank of (GLT
kγ×nGpre

n×k)kγ×k is not k.

A. Upper Bound on the Decoding Failure Probability of
Raptor Codes

In this subsection, we will derive an upper bound on the
decoding failure probability of Raptor codes with a systematic
(n, k, η) LDGM code as the pre-code. The upper bound is
formally stated in the following theorem.

Theorem 2. When a receiver successfully receives kγ coded
symbols generated using the Raptor code (k, C,Ω(x)), where
C is an (n, k, η) LDGM code, and the coded symbols received
at the receiver are decoded using ML decoding, the probability
that not all k source symbols can be successfully decoded
by a receiver with the kγ, (kγ ≥ k) , received coded symbols,
denoted by PDFk,n,γ , is upper bounded by

PDFk,n,γ ≤
k∑
i=1

(
k
i

) n−k+i∑
r=i

(J (r))
kγ
D (i, r) , (1)

where

J(r) =
n∑
d=1

Ωd

∑
s=0,2,...,2b d

2 c(
r
s)(

n−r
d−s )

(nd )
(2)
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and

D(i, r) =
(
n−k
r−i

) [1 + (1− 2η)i

2

]n−k−r+i
×
[

1− (1− 2η)i

2

]r−i
(3)

and Ωd is the degree distribution of LT codes.

Proof: See Appendix A.

B. Lower Bound on the Decoding Failure Probability of
Raptor Codes

In addition to the upper bound in the previous subsection,
in the following paragraphs, we derive a lower bound on the
decoding failure probability of Raptor codes which is formally
stated in the following theorem.

Theorem 3. When a receiver successfully receives kγ coded
symbols generated using the Raptor code (k, C,Ω(x)), where
C is an (n, k, η) LDGM code, and the coded symbols received
at the receiver are decoded using ML decoding, the probability
that not all k source symbols can be successfully decoded
by a receiver with the kγ, (kγ ≥ k) , received coded symbols,
denoted by PDFk,n,γ , is lower bounded by:

PDFk,n,γ

≥
k∑
i=1

(ki )

n−k+i∑
r=i

(J(r))kγD(i, r)

−1

2

k∑
i=1

(ki )
i∑

w0=0

∑
w1=i−w0

k−i∑
w2=0

1(w0 + w2)1(w1 + w2)

× (iw0
)(k−iw2

){
n−k+w0∑
r0=w0

n−k+w1∑
r1=w1

n−k+w2∑
r0=w2

D(w0, r0)D(w1, r1)

× D(w2, r2)[J(r0)J(r1)J(r2) + J(r0)J(r1)J(r2)]}kγ , (4)

where 1(x) is an indicator function, 1(x) = 0 if x = 0 and
1(x) = 1 otherwise, J(·) = 1− J(·), D(w0, r0) is defined in
Eq. (3) and J(r0) is defined in Eq. (2).

Proof: See Appendix B.

C. A Special Case of the Derived Bounds

When we apply a special degree distribution - a binomial
degree distribution [13] with Ωd =

(nd )
(2n−1) , 1 ≤ d ≤ n, Eq. (1)

can be further simplified into a much less (computationally)
complex expression, for which Theorem 2 can be restated as
the following Corollary.

Corollary 4. When a receiver successfully receives kγ coded
symbols generated using the Raptor code (k, C,Ω(x)) where
C is an (n, k, η) LDGM code, Ω(x) =

∑n
d=1

(nd )x
d

(2n−1) , and the
coded symbols received at the receiver are decoded using ML
decoding, the probability that not all k source symbols can
be successfully decoded by a receiver with the kγ, (kγ ≥ k) ,
received coded symbols, denoted by PDFk,n,γ , satisfies

PDFk,n,γ ≤ (2k − 1)(
(2n−1 − 1)

(2n − 1)
)kγ . (5)

Proof: See Appendix C.
For Theorem 3, we can simplify the lower bound into a

less (computationally) complex expression as well. This is
summarized in the following Corollary.

Corollary 5. When a receiver successfully receives kγ coded
symbols generated using the Raptor code (k, C,Ω(x)) where
C is an (n, k, η) LDGM code, Ω(x) =

∑n
d=1

(nd )x
d

(2n−1) , and the
coded symbols received at the receiver are decoded using ML
decoding, the probability that not all k source symbols can
be successfully decoded by a receiver with the kγ, (kγ ≥ k) ,
received coded symbols, denoted by PDFk,n,γ , satisfies

PDFk,n,γ

≥ (2k − 1)

[
(2n−1 − 1)

(2n − 1)

]kγ
− (2k − 1)(2k−1 − 1)

×

{[
(2n−1 − 1)

(2n − 1)

]3
+

[
1− (2n−1 − 1)

(2n − 1)

]3}kγ
. (6)

Proof: See Appendix D.
Compared with the general expressions in Theorems 2 and

3, the simplified expressions in Corollaries 4 and 5 allow us
to easily observe the relationship between the decoding failure
probability and the parameters of the encoding rules, i.e., k, n
and γ. Additionally, the computation complexity of the derived
upper bound can be reduced from O( 1

2n
2k(n− k)) to O(1).

As for the lower bound, the computation complexity can be
reduced from O( 1

8n
6k3(n− k)3) to O(1).

V. SIMULATION RESULTS

In this section, we shall validate the accuracy of the ana-
lytical results and the tightness of the proposed bounds, using
MATLAB simulations. Each point shown in the figures is the
average result obtained from 106 simulations. For clarity, the
simulation parameters adopted in this section are summarized
in Table I.

Table I
SIMULATION PARAMETERS

Rateless codes encoding parameters
Number of source symbols k 20, 40, 70 and 100

Number of intermediate symbols n 21, 42, 73 and 105
Parameter for Bernoulli random variables η 0.3, 0.7

Pre-code C (n, k, η) LDGM code
Degree distributions

Standard degree distribution Ω3GPP (x)

Binomial degree distribution Ωd =
(nd )

(2n−1)
, 1 ≤ d ≤ n

Ideal soliton degree distribution Ωd = 1
d(d−1)

, 2 ≤ d ≤ n
and Ω1 = 1

n

A. Verification of the Derived Bounds

In this subsection, the number of source symbols is set to
be k = 20 and the degree distribution of Raptor codes follows
the widely used ideal soliton degree distribution [3]. Besides,
the pre-code C is assumed to be (21, 20, 0.3) and (21, 20, 0.7)
LDGM codes respectively.

In Fig. 2(a) and 2(b), both analytical and simulation results
are presented on PDFk,n,γ , the probability that not all k = 20
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Figure 2. The decoding failure probabilities of Raptor codes with ideal
soliton degree distribution and (n, k, η) LDGM codes as the pre-code versus
overhead γ. Parameter for Bernoulli random variables η is set as 0.3 and 0.7.

source symbols can be successfully decoded by a receiver, for
different values of the reception overhead γ = m/k. As shown
in Fig. 2(a) and 2(b), our analytical results, i.e., the upper
bound and the lower bound, match the simulation results very
well. This validates the accuracy of the analysis. However,
when the overhead γ is small, there is still a gap between the
upper (lower) bound and simulation results in Fig. 2(a) and
2(b). The gap between the exact value and the upper bound
is caused by the approximation used in Eq. (1), and the gap
between the exact value and the lower bound is caused by Eq.
(4).

B. Investigation of the Impact of Degree Distribution on the
Decoding Failure Probability

In this subsection, we investigate the performance for dif-
ferent distributions of LT codes when we fix the pre-code C
to be (21, 20, 0.7). The investigated degree distributions are
divided into three cases.
• Case 1 uses the binomial degree distribution [13].
• Case 2 investigates the widely used ideal soliton degree

distribution [3].
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Figure 3. The decoding failure probabilities of Raptor codes with (n, k, 0.7)
LDGM codes as the pre-code and different degree distributions versus
overhead γ. The degree distributions of Raptor codes are chosen as ideal
soliton degree distribution [3], the standardized degree distribution in 3GPP
[4, Annex B] and binomial degree distribution [13].

• Case 3 is the standardized degree distribution in 3GPP
[4, Annex B]:

Ω3GPP (x) = 0.0099x+ 0.4663x2 + 0.2144x3

+0.1152x4 + 0.1131x10 + 0.0811x11.

As shown in Fig. 3(a) and 3(b), for different degree dis-
tributions, our analytical bounds agree very well with the
simulation results. The performance of Raptor codes with the
binomial degree distribution outperforms those obtained with
the other three degree distributions. Furthermore, the decoding
failure probability of Raptor codes with the binomial degree
distribution in Corollaries 4 and 5 are less computationally de-
manding compared with those in Theorems 2 and 3. Therefore,
we will use Raptor codes with the binomial degree distribution
in the following simulations.

C. Investigation of the Impact of k on the Decoding Failure
Probability of Raptor Codes

When the number of source symbols k varies from 20 to
100, our analytical results still match the simulation results
very well. As shown in Fig. 4(a) and 4(b), at a larger value
of the source symbols, a less reception overhead γ = m/k
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Figure 4. The decoding failure probabilities of Raptor codes with the
binomial degree distribution and (n, k, 0.7) LDGM codes as the pre-code
at different values of the overhead γ. The number of source symbols k is set
to be 20, 40, 70 and 100 respectively.

is required to achieve the same performance on the decoding
failure probability.

VI. CONCLUSION

In this paper we studied the performance of finite-length
Raptor codes with a systematic LDGM code as the pre-
code, and derived an upper bound and a lower bound on
the decoding failure probability of Raptor codes under ML
decoding. Due to the concatenated coding structure of Raptor
codes, we analyzed the rank behavior of the product of two
random matrices to obtain the decoding failure probability.
Furthermore, by considering a special degree distribution, i.e.
the binomial degree distribution, we derived the simplified
upper and lower bounds. On the basis of the results presented
in the paper, we shall explore the optimum degree distribution
and optimal parameter setting of Raptor codes in different
channels as our future work.
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APPENDIX A

PROOF OF THEOREM 2

In this appendix, we prove Theorem 2.
According to the property of the matrix product [14, Eq.

(4.5.1)], we have

rank(GLT
kγ×nGpre

n×k)

= rank(Gpre
n×k)− dim{N(GLT

kγ×n) ∩R(Gpre
n×k)}, (7)

where N(•) is the right-hand null space of a matrix, R(•) is
the column vector space generated by a matrix and dim{V}
represents the number of vectors in any basis for a vector
space V . It follows from the definition of Gpre

n×k given earlier
that the rank of Gpre

n×k is k. It can then be readily obtained
that

PDFk,n,γ = Pr[rank(GLT
kγ×nGpre

n×k) 6= k]

= Pr[dim{N(GLT
kγ×n) ∩R(Gpre

n×k)} 6= 0]. (8)

For convenience, let Wkγ,n,k be the event that
dim{N(GLT

kγ×n) ∩ R(Gpre
n×k)} 6= 0. Now we need to

analyze PDFk,n,γ = Pr[Wkγ,n,k]. Provided that Gpre
n×k is the

generator matrix of a systematic (n, k, η) LDGM code, the
event dim{N(GLT

kγ×n)∩R(Gpre
n×k)} 6= 0, denoted by Wkγ,n,k,

is equivalent to the event that at least one column vector from
R(Gpre

n×k) is in N(GLT
kγ×n), i.e., ∪x∈R(Gpre

n×k)
GLT
kγ×nx = 0,

where x is a column vector of R(Gpre
n×k). It can be readily

shown that

Pr[Wkγ,n,k] = Pr
[
∪x∈R(Gpre

n×k)
GLT
kγ×nx = 0

]
≤

∑
x∈R(Gpre

n×k)

Pr
[
GLT
kγ×nx = 0

]
. (9)

The column vector space R(Gpre
n×k) is partitioned into k

subspace (V1,V2, . . . ,Vk) and Vi is the subspace that contains
all the column vectors which are summation of i column
vectors of Gpre

n×k. We denote ÎŞi as the set of indices of the
column vectors in Vi and there are (ki ) elements in ÎŞi. Let
xia be the ath, a ∈ ÎŞi column vector in Vi. It can be shown
that∑
x∈R(Gpre

n×k)

Pr[GLT
kγ×nx = 0] =

k∑
i=1

∑
a∈ÎŞi

Pr[GLT
kγ×nxia = 0].(10)

Observe that xia = Ga
n×i1i where Ga

n×i is the matrix formed
by i column vectors selected from k column vectors of Gpre

n×k
and 1i represent a i×1 all one column vector. Let

∣∣xia∣∣ be the
weight of column vector xia, using the law of total probability,
we have

Pr[GLT
kγ×nxia = 0]

=
n∑
r=0

Pr
[
GLT
kγ×nxia = 0

∣∣∣ ∣∣xia∣∣ = r
]

Pr
[∣∣xia∣∣ = r

]
. (11)

Firstly, we need to calculate Pr
[∣∣xia∣∣ = r

]
. Provided Gpre

n×k =
[Ik|Pk×(n−k)]

T , in the first k entries of Ga
n×i1i there are i
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ones. If
∣∣xia∣∣ = r, then there are r − i ones in the last n− k

entries of Ga
n×i1i, .i.e, Pa

(n−k)×i1i. Hence we can obtain that

Pr
[∣∣xia∣∣ = r

]
= Pr

[∣∣∣Pa
(n−k)×i1i

∣∣∣ = (r − i)
]
, (12)

and i ≤ r ≤ n − k + i. The rows of Pa
(n−k)×i, i.e.,

pj , 1 ≤ j ≤ (n − k), are random binary row vectors,
which are generated independently. Each entry of Pa

(n−k)×i is
i.i.d. Bernoulli random variable with parameter η. Therefore,
Pr[pj1i = 0] = Pr[pk,k 6=j1i = 0]. The event that the jth

entry in xia is zero is equivalent to the event that there are
even number of ones in row vector pj . Thus we have

Pr[pj1i = 0] = Pr [|pj | is even ]

=
∑

s=0,2,...,2b i
2c

(is)η
s(1− η)(i−s)

=
[(η + (1− η))i + (−η + (1− η))i]

2

=
1 + (1− 2η)i

2
. (13)

There are (n−kr−i ) possible combinations for r − i ones in the
last n− k entries. It follows that

Pr
[∣∣∣Pa

(n−k)×i1i

∣∣∣ = (r − i)
]

= (n−kr−i ){Pr[pj1i = 0]}n−k−r+i

×{1− Pr[pj1i = 0]}r−i. (14)

Combining Eq. (12), (13) and (14), we can obtain that

D(i, r) = Pr
[∣∣xia∣∣ = r

]
=

(
n−k
r−i

) [1 + (1− 2η)i

2

]n−k−r+i
×
[

1− (1− 2η)i

2

]r−i
. (15)

For xia,x
i
b,b6=a ∈ Vi, Pa

(n−k)×i and Pb
(n−k)×i have

the same probability to form the same matrix formation.
So we can obtain that Pr

[∣∣∣Pa
(n−k)×i1i

∣∣∣ = (r − i)
]

=

Pr
[∣∣∣Pb

(n−k)×i1i

∣∣∣ = (r − i)
]
, which in turn leads to the con-

clusion that Pr
[∣∣xia∣∣ = r

]
= Pr

[∣∣xib∣∣ = r
]
. Now, we calcu-

late Pr
[
GLT
kγ×nxia = 0 |

∣∣xia∣∣ = r
]
. The rows of GLT

γk×n, i.e.,
gLT
j , 1 ≤ j ≤ kγ, are random binary row vectors, which are

generated independently. We have

Pr
[
GLT
kγ×nxia = 0

∣∣∣ ∣∣xia∣∣ = r
]

=
{

Pr
[
gLT
j xia = 0

∣∣∣ ∣∣xia∣∣ = r
]}kγ

. (16)

The degree of gLT
j , i.e. the number of non-zero elements of

gLT
j , is chosen according to the pre-defined degree distribution

Ω = (Ω1, ...,Ωn) and each non-zero element is then placed
randomly and uniformly into gLT

j . It can be readily obtain that

Pr
[
gLT
j xia = 0

∣∣∣ ∣∣xia∣∣ = r
]

=
n∑
d=1

Ωd Pr
[
gLT
j xia = 0

∣∣∣ ∣∣xia∣∣ = r,
∣∣gLT
j

∣∣ = d
]
. (17)

Let rij = (gLT
j1x

i
a1,g

LT
j2x

i
a2, ...,g

LT
jnxian), where gLT

jk is
[
gLT
j

]
1,k

and xiak is
[
xia
]
k,1

. Then, we can obtain that

Pr
[
gLT
j xia = 0

∣∣∣ ∣∣xia∣∣ = r,
∣∣gLT
j

∣∣ = d
]

= Pr
[∣∣rij∣∣ is even

∣∣∣ ∣∣xia∣∣ = r,
∣∣gLT
j

∣∣ = d
]

=

∑
s=0,2,...,2b d

2 c(
r
s)(

n−r
d−s )

(nd )
. (18)

Combining Eq. (17) and (18), we can obtain that

J(r) = Pr
[
gLT
j xia = 0

∣∣∣ ∣∣xia∣∣ = r
]

=
n∑
d=1

Ωd

∑
s=0,2,...,2b d

2 c(
r
s)(

n−r
d−s )

(nd )
. (19)

Incorporating Eq. (16) into (19), it can be established that

Pr
[
GLT
kγ×nxia = 0

∣∣∣ ∣∣xia∣∣ = r
]

= [J(r)]
kγ
. (20)

We can obtain that Pr[GLT
kγ×nxia = 0 |

∣∣xia∣∣ = r] is only
determined by the weight of xia rather than which i column
vectors is chosen from Gpre

n×k to obtain the summation xia. So
we can conclude that Pr[GLT

kγ×nxia = 0] = Pr[GLT
kγ×nxib =

0]. Recall that there are (ki ) indices in ÎŞi. Combining Eq.
(15), (20), (11) and Eq. (10), yields the following results

PDFk,n,γ = Pr[Wkγ,n,k]

≤
k∑
i=1

∑
a∈ÎŞi

Pr
[
GLT
kγ×nxia = 0

]

=

k∑
i=1

(ki )

n−k+i∑
r=i

(
n−k
r−i

) [ n∑
d=1

Ωd

∑
s=0,2,...,2b d

2 c(
r
s)(

n−r
d−s )

(nd )

]kγ

×
[

1 + (1− 2η)i

2

]n−k−r+i [
1− (1− 2η)i

2

]r−i
, (21)

which proves the theorem.

APPENDIX B

PROOF OF THEOREM 3

Similar as that in [7, Lemma 10], by using the Bonferroni
inequality [15], we can obtain a lower bound of Pr[Wkγ,n,k]
as

PDFk,n,γ = Pr[Wkγ,n,k]

= Pr[∪x∈R(Gpre
n×k)

GLT
kγ×nx = 0]

(a)

≥
∑

x∈R(Gpre
n×k)

Pr[GLT
kγ×nx = 0]

−1

2

∑
x,y∈R(Gpre

n×k),x6=y

Pr[GLT
kγ×nx = 0 ∩GLT

kγ×ny = 0],(22)

where x = Gpre
n×ka,a ∈ GF (2)k and y = Gpre

n×kb,b ∈
GF (2)k\a. The first term can be calculated by using Theorem
2. Recall that Vi is a subspace that contain all the column
vectors which are summation of i column vectors of Gpre

n×k,
ÎŞi is the set of indices of the column vectors in Vi and xia
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represents the ath, a ∈ ÎŞi column vectors in Vi. It can be
readily shown that∑

x,y∈R(Gpre
n×k),x6=y

Pr[GLT
kγ×nx = 0 ∩GLT

kγ×ny = 0]

=
∑

x∈R(Gpre
n×k)

∑
y∈R(Gpre

n×k)\x

Pr[GLT
kγ×nx = 0 ∩GLT

kγ×ny = 0]

=
k∑
i=1

∑
a∈ÎŞi

∑
y∈R(Gpre

n×k)\xi
a

Pr[GLT
kγ×nxia = 0 ∩GLT

kγ×ny = 0],(23)

where xia = Gpre
n×ka, |a| = i. Recall that y = Gpre

n×kb,b ∈
GF (2)k. We define three binary vectors z0, z1, and z2 ∈
GF (2)k such that for t = 1, ..., k, z0(t) = 1 if and only if
a(t) = 1 and b(t) = 1, z1(t) = 1 if and only if a(t) = 1 and
b(t) = 0, and z2(t) = 1 if and only if a(t) = 0 and b(t) = 1.
Let w0, w1 and w2 be the weights of vectors z0, z1, and z2,
respectively. For xia, we have z0 + z1 = a and z0 + z2 = b.
Hence we can obtain

Pr
[
GLT
kγ×nxia = 0 ∩GLT

kγ×ny = 0
]

= Pr
[
GLT
kγ×nGpre

n×kz0 = GLT
kγ×nGpre

n×kz1

∩GLT
kγ×nGpre

n×kz1 = GLT
kγ×nGpre

n×kz2∣∣∣ |z0| = w0 ∩ |z1| = w1 ∩ |z2| = w2

]
. (24)

Let Iz = {iz1, iz2, ..., izτ} be the set of indices such that
t ∈ Iz for z(t) = 1, we can obtain the sets of indices of
vectors z0, z1, and z2 as Iz0 , Iz1 and Iz2 . Corresponding to the
three sets Iz0 , Iz1 and Iz2 , each column of the matrix Gpre

n×k,
gprei , 1 ≤ i ≤ k, can be divided into four mutually exclusive
parts, gz0

, gz1
, gz2

and ∪1≤i≤kgprei \(gz0
∪ gz1

∪ gz2
), i.e.,

gz0
∩gz1

= {0}. Let gz0
be the subset of ∪1≤i≤kgprei such that

all the elements of this subset are selected from ∪1≤i≤kgprei

according to the indices in set Iz0 and Gpre
z0

be the matrix
whose columns are elements of gz0

. The length of gz0
is w0.

The same operation is applied to the formation of gz1
and gz2

,
in which the elements are selected according to the indices in
set Iz1 and Iz2 , and have lengths w1 and w2, respectively.
Let xw0 = Gpre

z0
1w0 , xw1 = Gpre

z1
1w1 and xw2 = Gpre

z2
1w2 .

Equivalently, Eq. (30) can be rewritten as,

Pr
[
GLT
kγ×nGpre

n×kz0 = GLT
kγ×nGpre

n×kz1

∩GLT
kγ×nGpre

n×kz1 = GLT
kγ×nGpre

n×kz2∣∣∣ |z0| = w0 ∩ |z1| = w1 ∩ |z2| = w2

]
= Pr

[
GLT
kγ×nxw0 = GLT

kγ×nxw1

∩GLT
kγ×nxw1 = GLT

kγ×nxw2
]
. (25)

Recall that the rows of GLT
kγ×n, i.e., gLT

j , 1 ≤ j ≤ kγ, are ran-
dom binary row vectors, which are generated independently.
We have

Pr
[
GLT
kγ×nxw0 = GLT

kγ×nxw1

∩GLT
kγ×nxw1 = GLT

kγ×nxw2
]

=
{

Pr
[
gLT
j xw0 = gLT

j xw1

∩gLT
j xw1 = gLT

j xw2
]}kγ

. (26)

According to the law of total probability, we have

Pr
[
gLT
j xw0 = gLT

j xw1

∩gLT
j xw1 = gLT

j xw2
]

=

n−k+w0∑
r0=w0

n−k+w1∑
r1=w1

n−k+w2∑
r0=w2

Pr[|xw0 | = r0]

× Pr[|xw1 | = r1] Pr[|xw2 | = r2]

× Pr
[
gLT
j xw0 = gLT

j xw1

∩gLT
j xw1 = gLT

j xw2∣∣∣ |xw0 | = r0 ∩ |xw1 | = r1 ∩ |xw2 | = r2

]
(27)

For Pr[|xw0 | = r0], this can be calculated by using Eq. (15).
Because all algebraic operations are conducted in a binary
field, gLT

j xw0 can only be 1 or 0. Eq. (27) can be further
written as :

Pr
[
gLT
j xw0 = gLT

j xw1 ∩ gLT
j xw1 = gLT

j xw2∣∣∣ |xw0 | = r0 ∩ |xw1 | = r1 ∩ |xw2 | = r2

]
= Pr

[
gLT
j xw0 = 0 ∩ gLT

j xw1 = 0 ∩ gLT
j xw2 = 0∣∣∣ |xw0 | = r0 ∩ |xw1 | = r1 ∩ |xw2 | = r2

]
+ Pr

[
gLT
j xw0 = 1 ∩ gLT

j xw1 = 1 ∩ gLT
j xw2 = 1∣∣∣ |xw0 | = r0 ∩ |xw1 | = r1 ∩ |xw2 | = r2

]
. (28)

Recall that xw0 = Gpre
z0 1w0

, xw1 = Gpre
z1 1w1

, xw2 = Gpre
z2 1w2

and the columns of Gpre
z0 , Gpre

z1 , Gpre
z2 are mutually exclusive to

each other. So event that |xw0 | = r0 is independent of event
that |xw1 | = r1 or |xw2 | = r2 and the event that gLT

j xw0 = 1
is independent of event that gLT

j xw1 = 1 or gLT
j xw2 = 1.

Conditioned on |xw0 | = r0, |xw1 | = r1, |xw2 | = r2, the first
part in Eq. (28) can be expressed as:

Pr
[
gLT
j xw0 = 0 ∩ gLT

j xw1 = 0 ∩ gLT
j xw2 = 0∣∣∣ |xw0 | = r0 ∩ |xw1 | = r1 ∩ |xw2 | = r2

]
= Pr

[
gLT
j xw0 = 0

∣∣∣ |xw0 | = r0

]
×Pr

[
gLT
j xw1 = 0

∣∣∣ |xw1 | = r1

]
×Pr

[
gLT
j xw2 = 0

∣∣∣ |xw2 | = r2

]
. (29)

Based on the previous analysis, we know that Pr[gLT
j xw0 =

0
∣∣∣ |xw0 | = r0] only relates to parameter r0. Let D(w0, r0) =

Pr[|xw0 | = r0] and J(r0) = Pr[gLT
j xw0 = 0| |xw0 | = r0]. For

J(r0), it can be calculated by using Eq. (17) and (18). Based
on the previous analysis„ we know that J(r0) only relates
to parameter r0 and D(w0, r0) is affected by parameter r0
and w0. Hence for the same parameters w0, w1 and w2, Eq.
(25) has the same result. Because xia 6= y, we can obtain that
w1 + w2 6= 0 and w0 + w2 6= 0. For xia, when |z0| = w0, we
have w1 = i−w0 and there are (iw0

) possible combinations of
z0. For z2, there are (k−iw2

) possible combination of z2 when
|z2| = w2. Inserting Eq. (25), (27), (27), (28) and (29) into
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(24), we can obtain:∑
y∈R(Gpre

n×k)\xi
a

Pr[GLT
kγ×nxia = 0 ∩GLT

kγ×ny = 0]

=
i∑

w0=0

∑
w1=i−w0

k−i∑
w2=0

1(w0 + w2)1(w1 + w2)(iw0
)(k−iw2

)

× {
n−k+w0∑
r0=w0

n−k+w1∑
r1=w1

n−k+w2∑
r0=w2

D(w0, r0)D(w1, r1)D(w2, r2)

[J(r0)J(r1)J(r2) + J(r0)J(r1)J(r2)]}γk, (30)

where 1(x) :=

{
0 if x = 0

1 otherwise
.

For xia,x
i
b,b6=a ∈ Vi, the probability∑

xi
a 6=y Pr

[
GLT
kγ×nxia = 0 ∩GLT

kγ×ny = 0
]

is
affected by parameter i. So we can obtain that∑

xi
a 6=y Pr[GLT

kγ×nxia = 0 ∩ GLT
kγ×ny = 0] =

∑
xi
b 6=y

Pr[GLT
kγ×nxib = 0 ∩GLT

kγ×ny = 0]. Recall that there are (ki )

indices in ÎŞ
i
. We can get that∑

x,y∈R(Gpre
n×k),x6=y

Pr[GLT
kγ×nx = 0 ∩GLT

kγ×ny = 0 ]

=
k∑
i=1

∑
a∈ÎŞi

∑
y∈R(Gpre

n×k)\xi
a

Pr[GLT
kγ×nxia = 0 ∩GLT

kγ×ny = 0]

=
k∑
i=1

(ki )
i∑

w0=0

∑
w1=i−w0

k−i∑
w2=0

1(w0 + w2)1(w1 + w2)

× (iw0
)(k−iw2

){
n−k+w0∑
r0=w0

n−k+w1∑
r1=w1

n−k+w2∑
r0=w2

D(w0, r0)D(w1, r1)

× D(w2, r2)[J(r0)J(r1)J(r2) + J(r0)J(r1)J(r2)]}kγ . (31)

This completes the proof of Theorem 3.

APPENDIX C
PROOF OF COROLLARY 4

When the binomial degree distribution (the expurgated
standard random ensemble) [8], [13], i.e., Ωd =

(nd )
(2n−1) , 1 ≤

d ≤ n, is inserted into Eq. (17), we can obtain that

Pr[gLT
j xia = 0 |

∣∣xia∣∣ = r]

= (2n − 1)−1
n∑
d=1

∑
s=0,2,...,2b d

2 c
(rs)(

n−r
d−s ). (32)

Similar to [13, Lemma 2], when the upper limit of the inner
summation is changed from 2

⌊
d
2

⌋
to 2

⌊
n
2

⌋
, it will not affect

the result of Eq. (32). This is because (n−rd−s ) with s > 2
⌊
d
2

⌋
equals 0.

Pr[gLT
j xia = 0 |

∣∣xia∣∣ = r]

= (2n − 1)−1
n∑
d=1

∑
s=0,2,...,2bn

2 c
(rs)(

n−r
d−s )

a
= (2n − 1)−1

∑
s=0,2,...,2bn

2 c
(rs)

n∑
d=1

(n−rd−s ). (33)

The reason why the order of the two summations in Eq. (33)
can be exchanged is because the inner summation variable s
is now independent of the outer summation variable d. Note
that 1 ≤ d ≤ n. Now we want to change the lower limit of
the inner summation of Eq. (33) from 1 to 0 without affecting
its result.

Pr
[
gLT
j xia = 0 |

∣∣xia∣∣ = r
]

= (2n − 1)−1{
∑

s=0,2,...,2bn
2 c
(rs)[

n∑
d=0

(n−rd−s )− (n−rd−s )d=0]}

b
= (2n − 1)−1[

∑
s=0,2,...,2bn

2 c
(rs)

n∑
d=0

(n−rd−s )− (rs)(
n−r
d−s )s=d=0].(34)

Step (b) is because the term (n−rd−s )d=0 equals 0 for s 6= 0.
Hence, only the case s = 0 needs to be considered. The terms
(n−rd−s ) restricts d to s ≤ d ≤ n− r + s, such that

n∑
d=0

(n−rd−s ) =
n−r+s∑
d=s

(n−rd−s ) =
n−r∑
d=0

(n−rd ) = 2n−r. (35)

Combining this term with the last expression for Pr[gLTj xia =
0 |
∣∣xia∣∣ = r] yields[

gLT
j xia = 0 |

∣∣xia∣∣ = r
]

= (2n − 1)−1

2n−r
∑

s=0,2,...,2bn
2 c

(rs)− 1


= (2n − 1)−1(2n−r2r−1 − 1) (36)

=
(2n−1 − 1)

(2n − 1)
, (37)

where we have used identity
∑
s even(rs) = 2r−1. We can

observe that Pr[gLT
j xia = 0 |

∣∣xia∣∣ = r] is independent from
the weight of xia, hence Pr[GLT

kγ×nxia = 0|
∣∣xia∣∣ = r] =

Pr[GLT
kγ×nxia = 0]. Combining Eq. (16), (37), (10) and (8),

we can obtain that

PDFk,n,γ = Pr[Wkγ,n,k]

= Pr
[
∪x∈R(Gpre

n×k)
GLT
kγ×nx = 0

]
≤

∑
x∈R(Gpre

n×k)

Pr
[
GLT
kγ×nx = 0

]
= (2k − 1) Pr

[
GLT
kγ×nx = 0| |x| = r

]
= (2k − 1)(

(2n−1 − 1)

(2n − 1)
)kγ . (38)

The proof of Corollary 4 is completed.

APPENDIX D

PROOF OF COROLLARY 5

When the binomial degree distribution is inserted into Eq.
(13), by using the result of Eq. (37), we can obtain that

J(r0) = Pr[gLT
j xw0 = 0| |xw0 | = r0]

=
(2n−1 − 1)

(2n − 1)
. (39)
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Insert Eq. (39) into Eq. (25), we can obtain that

Pr
[
GLT
kγ×nGpre

n×kz0 = GLT
kγ×nGpre

n×kz1

∩GLT
kγ×nGpre

n×kz1 = GLT
kγ×nGpre

n×kz2

| |z0| = w0 ∩ |z1| = w1 ∩ |z2| = w2]

=

n−k+w0∑
r0=w0

n−k+w1∑
r1=w1

n−k+w2∑
r0=w2

D(w0, r0)D(w1, r1)D(w2, r2)

× {[ (2
n−1 − 1)

(2n − 1)
]3 + [1− (2n−1 − 1)

(2n − 1)
]3}kγ

= {[ (2
n−1 − 1)

(2n − 1)
]3 + [1− (2n−1 − 1)

(2n − 1)
]3}kγ . (40)

Incorporating Eq. (40) into Eq. (30), we can obtain that∑
xi
a 6=y

Pr[GLT
kγ×nxia = 0 ∩GLT

kγ×ny = 0]

=
i∑

w0=0

∑
w1=i−w0

k−i∑
w2=0

1(w0 + w2)1(w1 + w2)(iw0
)(k−iw2

)

× {[ (2
n−1 − 1)

(2n − 1)
]3 + [1− (2n−1 − 1)

(2n − 1)
]3}kγ

= (2k − 2){[ (2
n−1 − 1)

(2n − 1)
]3 + [1− (2n−1 − 1)

(2n − 1)
]3}kγ . (41)

Combining Eq. (41), (23) and (22), we can obtain that

PDFk,n,γ = Pr[Wkγ,n,k]

≥
∑

x∈R(Gpre
n×k)

Pr[GLT
kγ×nx = 0]

−1

2

∑
x,y∈R(Gpre

n×k),x6=y

Pr[GLT
kγ×nx = 0 ∩GLT

kγ×ny = 0]

= (2k − 1)(
(2n−1 − 1)

(2n − 1)
)kγ − 1

2

k∑
i=1

(ki )(2k − 2)

×{[ (2
n−1 − 1)

(2n − 1)
]3 + [1− (2n−1 − 1)

(2n − 1)
]3}kγ

= (2k − 1)

[
(2n−1 − 1)

(2n − 1)

]kγ
− (2k − 1)(2k−1 − 1)

×

{[
(2n−1 − 1)

(2n − 1)

]3
+

[
1− (2n−1 − 1)

(2n − 1)

]3}kγ
. (42)

The proof of Corollary 5 is completed.
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