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Missing Data Estimation for Traffic Volume
by Searching an Optimum Closed Cut

in Urban Networks
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Abstract— Traffic data imputation has drawn significant atten-
tion from both academia and industry because traffic data often
suffer from data missing problems, caused by temporary deploy-
ment of sensors, detector malfunction, and lossy communication
systems. To fully exploit the spatial-temporal correlation and road
topological information in an urban traffic network, we propose
an optimum closed cut (OCC)-based spatio-temporal imputation
technique, which is implemented in two stages: a) employing
graph theory to search the OCC in the road network, for which
the traffic on roads intersected by the closed cut has the maxi-
mum correlation with that on the target road while minimizing
the number of intersected roads; and b) estimating the missing
data on the target road using OCC-based Kriging estimator,
incorporating both the road topological information and flow con-
servation law to improve the estimation accuracy. Experimental
results using traffic data collected on real roads indicate that the
OCC search algorithm can effectively capture the optimum set of
neighboring sensors. An OCC-based estimator can provide more
accurate imputation results compared with nearest historical
average and correlative k-NN (k-nearest neighbors) methods. The
road topological information and flow conservation law can be
explored to further improve the estimation performance while
reducing the number of sensors involved in the data imputation,
hence improving the computational efficiency.

Index Terms— Traffic data imputation, optimum closed cut,
NHA, k-NN.

I. INTRODUCTION

TRAFFIC flow refers to the number of vehicles passing
through a certain fixed point within a unit time. Traffic

flow information plays a vital role in Intelligent Transportation
Systems (ITS). For example, the Advance Traveler Infor-
mation Systems (ATIS), which acquire, analyze and present
information to assist travelers navigating from the source to
the destination, and the Advance Traffic Management Sys-
tems (ATMS), which integrate various technology to improve
the road traffic flow and road safety, both rely heavily on reli-
able, accurate and consistent traffic flow information to provide
users with up-to-date traffic information and guidance [1].

Missing data problem, where some subsets of traffic data
become missing, has greatly hindered the collection and
subsequent analysis, estimation and prediction of traffic flow
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data. Traffic data may become missing due to temporary
deployment of sensors, detector malfunction or lossy commu-
nication systems. Specifically, due to high deployment costs,
permanent traffic sensors may be installed on a subset of
roads only [2] and some other roads may only be equipped
with temporary sensors, which can provide traffic data within
limited time periods. Furthermore, failures, caused by detector
malfunction and lossy communication systems, may also result
in incomplete traffic data [3], [4]. It was reported in [5] that
at hundreds of detection points within PeMS (Performance
Measurement System) traffic flow database, more than 5% of
data are missing. The missing data has severe impact on many
ITS applications, most of which rely on reliable, accurate and
complete data [6]–[8]. For instance, traffic flow prediction
relies on the complete historical data and the prediction
performance will reduce sharply with incomplete data [6].
Therefore, developing methodologies to precisely estimate the
missing data, i.e, traffic data imputation, is an important task.

A number of imputation methods have been proposed in the
recent decade. Existing imputation techniques can be generally
classified into three categories: interpolation based, prediction
based and statistical learning based methods [5].

Some well known interpolation based methods include
correlative kNN (k Nearest Neighbor) scheme [9], sectional
kNN scheme [10] and LLS (Local Least Squares) scheme [11].

Prediction based methods only rely on known traffic predic-
tion methods, e.g., Auto-regressive Integrated Moving Aver-
age (ARIMA) [12], [13], Seasonal ARIMA (SARIMA) [14],
Space-Time ARIMA (ST-ARIMA) [15], [16].

The most frequently used statistical learning methods are
Probabilistic Principal Component Analysis (PPCA) [3], Ker-
nel Probabilistic Principal Component Analysis (KPPCA) [5]
and tensor completion techniques [17]–[19].

Most existing traffic data imputation methods suffer from
the following shortcomings: 1) there are few studies trying
to find the optimum subset of detectors before imputation.
It is well known that choosing all detector measurements
may improve the accuracy of imputation but significantly
increase the computational complexity, which consequently
results in the imputation method becoming non-scalable; 2)
the spatial correlation of the traffic data has not been fully
utilized; 3) previous work mostly neglects the road topological
information, which can be further exploited to improve the
accuracy of the traffic data imputation.

Vehicles traveling through a specific road during a certain
time interval can be classified into three portions: i) vehi-
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cles arriving from some neighboring roads equipped with
detectors (termed measured roads), ii) vehicles coming from
some neighboring roads without detectors (termed unmeasured
roads), iii) vehicles coming from sources or traveling to sinks
within some specific sections (termed flow generation or dis-
sipation). The first portion can be read from the detectors
while sum of the second and the third one can be estimated
from the empirical data. The road topology gives the sufficient
information about on-ramp and off-ramp of each measured and
unmeasured roads and thus can be exploited to alleviate the
missing data problem.

Intuitively, when drawing a close circuit, or a closed cut,
on a road map, the total amount of long-term traffic entering
into the closed circuit must be equal to the total amount of
long-term outgoing traffic. This implies that traffic on the roads
intersected by the closed circuit must be correlated. Indeed,
an equality can be established that relate traffic on those
intersected roads. Motivated by the intuition and the afore-
mentioned shortcomings of existing imputation techniques,
in this paper, we propose an Optimum Closed Cut (OCC)
based spatio-temporal imputation technique, where the OCC
satisfies the following conditions: a) the close cut intersects
the target road; and b) traffic on other intersected roads has
the maximum correlation with that on the target road; and c)
the number of intersected roads is minimized. The proposed
technique then uses the spatio-temporal correlation of traffic on
roads intersected by the OCC to estimate the missing data on
the target road. The proposed technique utilizes both the road
topological information and the spatio-temporal correlation
among road traffic for imputation, while using a minimal num-
ber of sensor measurements. Therefore, it strikes a fine balance
between imputation accuracy and computational complexity.
Specifically, the main contributions of this paper are:

1) an optimum closed cut based spatio-temporal imputation
technique is proposed that allows us to explicitly incor-
porate road topology information into imputation while
using a small number of sensor measurements;

2) a graph-based technique is developed to select the
optimum closed cut that achieves an optimum trade-off
between the number of sensor measurements employed
and the set of measured roads whose traffic has maxi-
mum correlation with that of the target road;

3) a spatial Kriging estimator is developed to explore
the spatio-temporal correlation among road traffic for
imputation.

4) experiments are conducted using real traffic data pro-
vided by Sydney Roads and Maritime Services (RMS),
which validates the developed OCC based spatio-
temporal imputation technique and demonstrates that the
proposed technique can provide more accurate imputa-
tion compared with those in the literature.

This rest of the paper is organized as follows: Section II
reviews the related work. Section III formulates the missing
data imputation problem. Section IV presents the OCC based
spatio-temproal imputation technique. Section V establishes
the performance and validity of the proposed imputation
strategy and compares its performance to those in the
literature. Section VI concludes the study.

Notation: In this paper, bold capital characters stand for
matrices, while bold and non-bold lowercase characters stand
for vectors and scalars, with IN ∈ CN×N being an identity
matrix. The symbol “T” denotes matrix transpose operation.
The symbols E (·) and var (·) represent expectation and
variance, respectively, and f (·, ·) represents the flow between
two vertices. The symbols “⊗” and “⊗V ” denote convolution
operation and vector convolution operation, respectively.

II. RELATED WORK

A number of studies have been carried out in exploiting spa-
tial information to improve imputation performance. Tak et al.
proposed sectional k-NN (Nearest Neighbor) method, which
impute missing data based on road sections sharing the same
traffic property [10]. Cai et al. [9] introduced the correlative
k-NN model which was superior than the original k-NN
model because it replaces physical distances by the equivalent
distances, which are determined by both the physical distance
and the correlation coefficient between the historical traffic
data of the two roads.

In [17] and [18], the Tan et al. and Asif et al. explored
the ability of tensor based method for multi-loop detec-
tor’s missing data imputation, which completes the missing
data by tensor decomposition. Qu et al. [3] proposed the
PPCA (Probabilistic Principal Component Analysis)-based
method which integrated MLE (Maximum Likelihood Esti-
mation) into traditional PCA (Principal Component Analy-
sis) approach. Li et al. [5] compared PPCA method and
KPPCA (Kernel Probabilistic Principal Component Analy-
sis) method, which assumes a nonlinear relationship between
observed samples and latent variables.

The aforementioned review reveals that most existing stud-
ies did not consider the problem of finding the optimum set
of sensors for imputation. They either collected traffic data
from all detectors or consider the detectors satisfying some
given (often arbitrarily set) conditions.

Wang and Pagageorgiou utilized the macroscopic traffic
flow model and the extended Kalman-filtering (EKF) method
to estimate the freeway traffic state [20]. The considered free-
way is subdivided into N segments. Traffic flow at boundary
of each segment and some important parameters constitute
the state vector. The key differences from our technique are
that [20] mainly utilized the time evolution and measure-
ments to estimate the state vector whereas our technique
utilizes spatial-temporal correlation to estimate the missing
data. Ng proposed a strategy which aims at determining the
smallest subset of links in a traffic network for counting
sensor installation in order to infer flows on all remaining
links [21]. Ng presented the condition that all link flows can
be inferred and proposed the inference method. Viti et al. [22]
studied the network sensor location problem (NSLP), which
considered the case that the variables are partially observed.
Castillo et al. [23] dealt with the over-specified network
observability problem, which aims at determining link flow
based on a subset of observed OD-pair and link flows. The
key differences between our technique and the three literature
are that [21]–[23] dealt with network observability problem,
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which aims at optimizing the sensor location and determining
link flow based on a subset of observed OD-pair and link
flows, whereas our technique tries to utilize the spatial-
temporal correlation between each crossed link and the target
link to estimate the missing data caused by temporary sensor
failure based on the empirical measured data.

III. PROBLEM FORMULATION

In this subsection, we will give a formal definition of the
problem being considered in this paper. We consider an urban
traffic network with a total of Nl links. Suppose there are Nm
roads equipped with permanent or temporary detectors while
the rest have no detector, Furthermore, each detector measures
the data with the same sampling rate and delivers maximal M
data points each day, and there are K observed days. Then,
the traffic data can be viewed as a tensor T ∈ RNm×M×K .
Denote the set of missing data in T by Qmiss and let Nmiss be
cardinality of Qmiss. Each element of Qmiss can be represented
as qnmk (true value of the missing data), where the subscripts
n, m and k are the n-th road, m-th data point and k-th
day, respectively. The missing data imputation aims at finding
a function of the available measured data fnmk (T \Qmiss)
to obtain the most likely estimates of Qmiss to minimize
MAPE (Mean Absolute Percentage Error) and RMSE (Root
Mean Squared Error) of the estimates, defined by

MAPE = 1

Nmiss

∑

qnmk∈Qmiss

| fnmk (T\Qmiss) − qnmk |
qnmk

(1)

RMSE =
√∑

qnmk∈Qmiss
| fnmk (T\Qmiss) − qnmk |2

Nmiss
(2)

IV. OCC BASED STRATEGY

In this section, we introduce the OCC based spatio-temporal
imputation technique. Prior to explaining the OCC based
strategy, we will firstly review the SRE (Spatial Random
Effects) model, which has been applied in [1] and [24]. Then,
we will apply the SRE model to the OCC search algorithm.
Cressie et al. defined the SRE model as a summation of the
large-scale spatial variation, smooth small-scale spatial varia-
tion and the measurement error, where the unknown random
variables are fixed in number, statistically independent, and
coefficients of known but not-necessarily-orthogonal spatial
basis function [25]. In a traffic network, the measured traffic
flow Z (s) at a finite number of locations s = { s1 · · · sN } can
be expressed by [1] and [26]

Z (s) = X (s)T β + B (s)T η + ξ (s) + ε (s) (3)

where the product of X (s)T and β can be understood as the
weighted sum of the average traffic flow from the L selected
neighboring roads, the length of β represents the number of
selected neighboring roads, B (s)T η can be interpreted as the
fluctuation caused by the varied traffic flow from the L selected
neighboring roads, ξ (s) can be understood as a fine-scale
variability on s due to the nugget effect and flow genera-
tion or dissipation within some specific sections, and ε (s)
denotes the measurement error. In geostatistics, nugget effect

Fig. 1. Illustration of a two-dimensional urban network with sensors.

represents the discontinuity at the beginning of semivariogram
graphs, which is generally caused by inadequate sampling
size [27].

A. Traffic Flow Analysis With a Closed Cut

Consider a two-dimensional traffic network with Nl single
lane bi-directional roads (Fig.1), which are composed of Nm
roads with detectors and Nun roads without detectors, Nl =
Nm + Nun.

The target road is defined as the road, on which the traffic
flow should be estimated. The flow on the target road toward
one direction is caused by the flow on its neighboring roads
and the flow directly injected to sinks or dissipated from
sources within some specific sections. For instance, the flow on
the target road toward north consists of portion of eastbound
flow from road 8, westbound flow from road 2, northbound
flow from road 9 and the missing flow, where the flow from
road 2 can be acquired from the detector while the road 8 and
road 9 show a lack of data. To investigate the flow relation
between the target road and its neighboring roads, we propose
Theorem 1, which gives the mathematical expression for the
continuous flow relation between two roads.

Theorem 1: Consider a simple case of two directional roads
and define q1 (τ ), q2 (τ ), μ1 (τ ) and μ2 (τ ) as traffic flow and
traffic density on the two roads, respectively. Further assume
that traffic flow on road 2 all comes from road 1, the case
that traffic from road 1 may divert to other roads is allowed.
Assume that μ1 (τ ) and μ2 (τ ) are smaller than μm defined
by the limiting density [28]. Then the relation between q1 (τ )
and q2 (τ ) can be approximated by

q2 (τ ) ≈ q1 (τ ) ⊗ h12,m (τ, t)

=
∫ τ

0
q1 (t) h12,m (τ − t, t) dt (4)
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where “⊗” is two-dimensional convolution operation and
h12,m (τ, t) is a time-varied correlation coefficient function
between two links.

Proof: Partition the input flow stream on road 1 into
N cells, each of which is with a short distance δx . Thus,
the length of input flow stream L1 can be expressed by
L1 = Nδx and there are μ1 (τ ) δx vehicles traveling through
road 1 at τ -th time slot. For an arbitrarily selected cell, its
length may expand to δx ′ when the cell arrives at the sensor
2 because of the speed variation and difference of the vehicles
within the cell. Here we only consider the case that δx ′ > δx ,
because shrink of the partial stream length can be viewed as
overlap of two adjacent expanded cells. The density within the
short distance δx and δx ′ are assumed to be constant because
δx and δx ′ are small enough. Thus, there are μ1 (τ ) δx and
μ2 (τ ) δx ′ vehicles traveling through the road 1 and 2 at τ -th
time slot, respectively. Then, the number of vehicles traveling
through road 2 at τ -th time slot can be expressed by

μ2 (τ ) δx ′ =
∑

i=1···N
μ1 (τi ) δx pi,12,m (τ ) (5)

where τi is the time slot in which the i-th cell travels through
road 1, pi,12,m (τ ) is a function that represents the fraction of
vehicles expanding over time zone for the i-th cell arriving at
road 2, and then for each cell, it has

⎧
⎪⎨

⎪⎩

pi,12,m (τ ) = 0 if the i-th cell is diverted to other

links∫ ∞
0 pi,12,m (τ ) = 1 if the i-th cell arrives at the link 2

When δx, δx ′ → 0, (5) can be transformed as

μ2 (τ ) = limδx,δx ′→0

(
∑

i=1···N
μ1 (τi )

δx

δx ′ pi,12,m (τ )

)

= X
∫ τ

0
μ1 (t) h12,m (τ − t, t) dt (6)

where h12,m (τ, t) is a time-varied correlation coefficient func-
tion between road 1 and 2. If μ1 (τ ) and μ2 (τ ) are smaller
than the limiting density, the mean speed will be unaffected
and flow-density curve is closed to linearity [28]. Thus, (4) can
be obtained via multiplying both sides of (6) with the mean
speed at the input and output streams, respectively. �

Remark 1: It is worth noting that Theorem 1 is also valid
for the case that the two roads are not adjacent to each
other. In such case, all road segments between the two roads
traveled through by the input stream can be virtualized as an
intersection with a delay function. Any congestion occurring
between roads 1 and 2 has no impact on the validity of
Theorem 1. In that case, the time delay caused by congestion
occurring between the two roads is given by the time-varying
correlation coefficient function between two roads h12,m (τ, t).
In the case that there is congestion on road 1 or road 2,
Theorem 2 can be slightly modified to express a relation in

terms of traffic volume between each road, instead of flow:
∫

q2 (τ ) dτ =
∫ ∫ τ

0
q1 (t) h12,m (τ − t, t) dtdτ

=
∫

q1 (t)
∫ τ

0
h12,m (τ − t, t) dτdt

= g12,m

∫
q1 (τ ) dτ

where g12,m is the correlation coefficient in terms of traffic
volume between two roads, and can be expressed by

g12,m =
∫

q1 (t)
∫ τ

0 h12,m (τ − t, t) dτdt∫
q1 (t) dt

In this paper, the assumption in Theorem 1 is fulfilled because
our employed data shows that no congestion occurs on the
inspected roads. Suppose the number of selected feeding
sources of the target road is K , which consists of Km measured
roads and Kun unmeasured roads. From Theorem 1, the flow
on the target road can be expressed by

qT (τ ) ≈ q̄T (τ ) + CT,i (τ, t) C−1
i,i (t)

⊗V (qi (τ ) − q̄i (τ )) + wT (7)

where q̄T (τ ) is the average flow on the target road at τ -th time
slot, wT is the missing flow and can be modeled as a stationary
non-zero mean Gaussian variable, qi (τ ) and q̄i (τ ) are K × 1
vectors containing the instantaneous and average flow on the K
feeding sources, CT,i (τ, t) and Ci,i (t) are a time-varied 1 ×
K Cross Correlation Matrix (CCM) between qT (τ ) and qi (τ ),
and a time-varied K × K Auto Correlation Matrix (ACM) of
qi (τ ), respectively. By the definition, CT,i (τ, t) and Ci,i (t)
can be expressed by

CT,i (τ, t) = E
(
(qT (τ ) − q̄T (τ )) (qi (t) − q̄i (t))T

)

Ci,i (t) = E
(
(qi(t) − q̄i (t)) (qi (t) − q̄i (t))T

)
(8)

Note that “⊗V ” is vector convolution operation. For example,
given two vectors a and b with the elements ai,i=1···N (t) and
bi,i=1···N (t), respectively. Then the convolution of two vectors
can be expressed by

aTb = [
a1 (t) a2 (t) · · · aN (t)

] ⊗V

⎡

⎢⎢⎢⎣

b1 (t)
b2 (t)

...
bN (t)

⎤

⎥⎥⎥⎦

=
∑

i=1···N
ai (t) ⊗ bi (t)

Remark 2: Note that (7) is valid no matter whether the
corresponding road traffic is statistically independent or corre-
lated. Equation (7) gives a general form to express the relation
between the target flow and its neighboring flows for both
statistically independent and correlated cases. In the case of
correlated traffic, C−1

i,i (t) is a K × K auto correlation matrix,
CT,i (τ, t) is a 1×K vector. It follows that CT,i (τ, t) C−1

i,i (t)
is a 1×K vector, each element of which can be represented as
hTl (τ, t). In the case of independent traffic, Ci,i (t) becomes
a diagonal matrix and thus hTl (τ, t) becomes the correlation
coefficient.
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Then (7) can be rewritten as

qT (τ ) ≈ q̄T (τ ) +
Km∑

l=1

q̃l,m (τ ) ⊗ hTl,m (τ, t)

+
Kun∑

j=1

q̃ j,un (τ ) ⊗ hT j,un (τ, t) + wT − μw (9)

where q̃l,m (τ ), q̃ j,un (τ ), hTl,m (τ, t) and hT j,un (τ, t) are
the flow variation on the l-th measured and j-th unmeasured
roads, and the time-varied correlation coefficient function
between the target and the l-th measured and j-th unmeasured
roads, respectively. The flow variation q̃l,m (τ ) and q̃ j,un (τ )
denote the gap between the instantaneous flow and the
average flow on the l-th and j-th roads, wT is a non-zero
mean Gaussian variable and wT ∼ N (μw, σw). Note that
ql,m (τ ) and q j,un (τ ) are stochastic process which varies day
to day at the same time slot. By the assumption of ql,m (τ )
and q j,un (τ ) keeping constant over a short time interval, (9)
can be rewritten as

qT (τ ) ≈ q̄T (τ ) +
Km∑

l=1

q̃l,m

∫ τ

0
hTl,m (τ − t, t) dt

+
Kun∑

j=1

q̃ j,un

∫ τ

0
hT j,un (τ − t, t) dt + wT − μw (10)

where q̄T (τ ) corresponds to the element of X (s)T β in (3), the
sum of the second and the third terms can be transformed to
the element of B (s)T η via Karhunen-Loeve expansion. Note
that ε (s) in (3) is neglected because the measurement process
is assumed to be identical to the hidden process. For simplicity,
we define gTl,m (τ ) = ∫ τ

0 hTl,m (τ − t, t) dt and gT j,un (τ ) =∫ τ
0 hT j,un (τ − t, t) dt . Then (10) can be rewritten as

qT (τ ) ≈ q̄T (τ ) +
Km∑

l=1

q̃l,mgTl,m (τ )

+
Kun∑

j=1

q̃ j,ungT j,un (τ ) + wT − μw (11)

where the average target flow q̄T (τ ) and gTl,m (τ ) can be
obtained from the empirical data, q̃l,m can be acquired by
sensor measurements, q̃ j,un, gT j,un (τ ) and wT are unknown
parameters. By modeling sum of

∑Kun
j=1 q̃ j,ungT j,un (τ ) and

wT − μw as a zero-mean Gaussian variable with variance of
σ 2

η , the probability function of qT (τ ) by given q̄T (τ ) and∑Km
l=1 q̃l,mgTl,m (τ ) can be expressed by

Pr

(
qT (τ ) |q̄T (τ ) ,

Km∑

l=1

q̃l,mgTl,m (τ )

)

= 1√
2πση

exp

⎛
⎜⎜⎜⎝−

(
qT (τ ) − q̄T (τ )

−∑Km
l=1 q̃l,mgTl,m (τ )

)2

2σ 2
η

⎞
⎟⎟⎟⎠ (12)

To maximize the conditional probability, the neighboring
measured roads should be selected to minimize

E

((
qT (τ ) − q̄T (τ ) − ∑Km

l=1 q̃l,mgTl,m (τ )
)2

)
, i.e., ESEE

(Expected Squared Estimation Error), and meanwhile the
neighboring unmeasured roads should be selected to minimize
ση. However, ση is an unknown parameter. To tackle the
problem, flow conservation law is utilized to find optimum set
of neighboring unmeasured roads. In graph theory, the sum
of flows entering the vertex (or a closed curve) is equal to
the sum of flows leaving the vertex (the closed curve) if the
vertex is neither (the closed curve does not contain) a source
nor a sink [29]. We next will apply the flow conservation law
to the road network depicted in Fig.1.

We model the Fig. 1 as a directed graph G (V , E) with a
source set S and a sink set T , where V is the set of vertices and
E ∈ V × V is the set of edges (road segments), respectively.
A vertex vi ∈ V models a road intersection or an end of a road.
An edge e

(
vi , v j

)
, which connects two vertices, represents a

directed network segment. The size of source set and sink set
are KS and KT, respectively. Then we can obtain Theorem 2.

Theorem 2: Let us create an arbitrary closed cut in
G (V , E) and define the flow on each intersected edge (road
segment) as fi , i = 1 · · · KC, where KC is the total number
of edges intersected by the closed cut. Furthermore, let KT,in

and KS,in be the number of sinks and sources located inside of
the closed cut, respectively, and let f (v, tk) and f (sl , u) be
a flow from the vertex v to a sink tk and a flow from a source
sl to the vertex u, respectively. Then, the following equality
should hold:

KC,in∑

k=1

fk −
KC,out∑

l=1

fl =
KT,in∑

k=1

∑

v∈V

f (v, tk) −
KS,in∑

l=1

∑

u∈V

f (sl , u)

(13)

where KC = KC,in + KC,out and KC,in, KC,out are the number
of flows entering the closed cut and leaving the closed cut,
respectively.

Proof: The closed cut C partitions the graph into two
disjoint vertex sets, denoted by V1 and V2. By defining a flow
function between two sets of vertices X and Y as f (X, Y ) =∑

x∈X
∑

y∈Y f (x, y), the left side of (13) can be expressed
by f (V1, V2). Reference [29] shows that for all X ∈ V ,
f (X, X) = 0, and for all X, Y, Z ∈ V with X

⋂
Y = φ,

f
(
X

⋃
Y, Z

) = f (X, Z) + f (Y, Z) and f
(
Z , X

⋃
Y
) =

f (Z , X) + f (Z , Y ) . Hence, we have

f (V1, V2) = f (V1, V ) − f (V1, V1)

= f (V1, V )

= f (Sin, V ) + f (Tin, V ) + f (V1\ {Sin, Tin} , V )

(14)

From the flow conservation law, f (V1\ {Sin, Tin} , V ) = 0.
Hence, (13) can be rewritten as

f (V1, V2) = f (Sin, V ) + f (Tin, V )

=
KT,in∑

k=1

∑

v∈V

f (v, tk) −
KS,in∑

l=1

∑

u∈V

f (sl , u) (15)

Theorem 2 is proved. �
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Remark 3: It is worth noting that Theorem 2 ignored the
storage capacity of roads, i.e., vehicles stored in the road
segments enclosed by the closed cut. Therefore, strictly speak-
ing, the relationship depicted in Theorem 2 only applies
to long-term traffic flows where the storage capacity is of
negligible impact. When Theorem 2 is applied to short-term
traffic flows, the equality no longer holds strictly. Moreover,
the loop detectors may also create some uncertainties about
the number of the passing vehicles. The mismatch between
incoming and outgoing traffic flows caused by storage capacity
and measurement uncertainties caused by loop detectors can be
captured by an error term or can be modeled by a source/sink
inside the closed cut.
A closed cut (dotted line) is shown in Fig. 1 as a dotted line,
which intersects the target road, road 7, road 11, road 10, road
9 and road 2. Applying Theorem 2, we have

qT + q7,out + q11,out + q10,out + q9,out + q2,out

= qT,in + q7,in + q11,in + q10,in + q9,in + q2,in + ws + wt

(16)

where qT is the missing target flow and ws and wt are
the (total) source flow and sink flow within the closed cut,
respectively. Note that each vehicle will spend a different
amount of time traveling from an entrance to an exit of the
closed cut. Then for each arbitrary closed cut crossing the
target road, we can get the following relation:

qT +
Km∑

k=1

qk,out +
Kun∑

l=1

ql,out =
Km∑

k=1

qk,in +
Kun∑

l=1

ql,in + ws + wt

The above equation can be further rewritten in the following
form:

qT +
Km∑

k=1

qk,out −
Km∑

k=1

qk,in =
Kun∑

l=1

ql,in −
Kun∑

l=1

ql,out + ws + wt

(17)

where the right side of (17) is unknown and it has strong
impact on σ 2

η given by (12). Combined with (12), the opti-
mization objective function to find the OCC can be expressed
by

Cocc (T)

= argmin
C(T)

⎧
⎪⎨

⎪⎩
E

⎡
⎢⎣

(
qT − q̄T − ∑Km

k=1 q̃k,mgTk,m

)2 +
+

(
qT + ∑Km

k=1 qk,out − ∑Km
k=1 qk,in

)2

⎤
⎥⎦

⎫
⎪⎬

⎪⎭

= argmin
C(T)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−2
∑Km

k=1 gTk,mrTk,m + gH
T,m RC(T) gT,m

+∑Km
k=1 rk,out + ∑Km

k=1

∑Km
l=1,l 
=k rkl,out

+2
∑Km

k=1 rTk,out − 2
∑Km

k=1 rTk,in−
−2

∑Km
k=1

∑Km
l=1 rkl,in,out + ∑Km

k=1 rk,in

+∑Km
k=1

∑Km
l=1,l 
=k rkl,m

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(18)

where the first part of (18) is to maximize the conditional
probability and the second part is to minimize the expected
squared unknown metrics, rTk,m, RC(T), rk,out, rkl,out, rTk,out,
rTk,in, rkl,in,out, rk,in and rkl,m are co-variance between the
target flow and the k-th inflow, co-variance matrix of the Km

input flows, variance of the k-th outflow, co-variance between
the k-th and l-th outflow, co-variance between the target flow
and the k-th outflow, co-variance between the target flow
and the k-th inflow, co-variance between the k-th inflow and
the l-th outflow, variance of the k-th inflow and co-variance
between the k-th inflow and the l-th inflow, respectively, and
can be straightforwardly obtained by the empirical data. The
equation (18) will be used in the next subsection to find the
OCC.

B. Novel OCC Search Algorithm

It shows in (18) that the optimization procedure is a
minimum cut finding problem. Stoer–Wagner algorithm is a
classical recursive algorithm which can find the minimum cut
in an un-directed graph [30]. Unfortunately, the algorithm
cannot be applied in our scenario because we need find a
minimum weighted closed cut in a directed graph. The closed
cut should start and end at the target edge. Brute-force solution
is to check all possible neighboring edges and select the one
minimizing (18). However, the search complexity will increase
exponentially with the number of edges. To tackle the problem,
we propose an iterative searching strategy which is a Modified
version of Viterbi Algorithm (MVA). VA is a recursive optimal
solution to the problem of estimating the state sequence of a
discrete time finite-state Markov process observed in memory-
less noise [31]. The finite-states and transition probabilities in
VA are deterministic while MVA has non-deterministic states
and transition probabilities for each iteration. Our computer
validation shows that the OCC can be efficiently captured for
each target link.

To describe MVA more clearly, we firstly start from the
scenario that all edges are equipped with detectors and the
empirical data are available for all roads. Then we will extend
MVA to the scenario of low density of detectors. For the
former scenario, we only aim at minimizing ESEE given by
the first term in (18). MVA can be interpreted as an iterative
searching solution initiating from the target edge and try to
find the optimal detector at each iteration which can minimize
ESEE. Let us define the finite-states at the i-th iteration as Si ,
which contains Ni neighboring edges of li−1 defined by the
selected edge at the i-1-th iteration. The transition probability
from the selected edge li−1 to the si -th state is defined by
πli−1si , which is 1/Ni . The ESEE at the i-th iteration for the
ni -th selected neighbor is represented by Vi,ni . From (18), Vi,ni

can be determined by

V1,T = 0

Vi,ni = min
li−1

⎛

⎜⎝
Vi−1,li−1 + gTni ,mrH

li−1ni
gTli−1,m+

gH
Tli−1,mrli−1ni gTni ,m+

gTni ,mrni gH
Tni ,m

− 2rTni gTni ,m

⎞

⎟⎠

Rni =
[

Rli−1 rli−1ni

rH
li−1ni

rni

]

gH
Tni,,m =

[
gH

Tli−1,m gTni ,m

]
(19)

where li−1 contains all selected roads at the i-1 -th iteration,
rli−1ni , rni and rTni are the co-variance vector between li−1
and ni , variance of ni and co-variance between T and ni . Then
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MVA can be described by Algorithm 1. In the line 3, a queue
is created to store the ESEE and the selected road at the initial
iteration, the “while” loop from the line 13 to line 23 selects
each crossed edge by minimizing the ESEE at each iteration,
and the OCC can finally be determined by tracing each edge
back to its parent which is defined by the selected edge in the
last iteration.

Algorithm 1 MVA for the Former Scenario
1: Input: target road T, graph G
2: Output: optimum closed cut OCC
3: Initialize an empty OCC, empty edge array Ecell and a new

queue Q with the initial information about T,V1,T = 0;
4: While Q is not empty do
5: Get the ESEE Vi−1 and the crossed edges li−1 at i − 1-th

iteration, pop Q
6: For nl = 1, 2, ..., Li−1 do
7: Find the neighboring edges Si for li−1,nl

8: For ni = 1, 2, ..., number of neighboring edges do
9: If Si,ni approaches the target road

10: Then remove Si,ni and continue
11: Else update Vi−1,li−1 to Vi,ni via (19)
12: Search the minimum ESEE Vi,ni ,min through Q
13: If Vi,ni = Vi,ni ,min
14: Then Vi = [Vi−1 Vi,ni ],li = [li−1 Si,ni ]
15: Else remove Si,ni and continue
16: If Si,ni is a new edge
17: Then add the new edge to Ecell
18: End For
19: If li is not empty
20: Then construct a new element info with Vi and li
21: push info into Q
22: End For
23: End While
24: OCC is the concatenation of the parent field of each Ecell

element

For the latter scenario, a number of the unmeasured roads
appear in the network. The flow conservation given by (18)
need to be utilized to improve the estimation performance
because of the lack of detectors. However, algorithm 1 cannot
be directly applied to the latter scenario because the second
term in (18) cannot be determined unless a cut is pre-given.
It makes impossible for algorithm 1 to iteratively incorpo-
rate the flow conservation during the searching procedure.
To tackle the problem, an approximation is made for (18)
aiming at minimizing the number of crossed unmeasured roads
while minimizing the first term in (18). We try to select the
edge at each iteration being able to provide the maximum
average Variance of the Hypothetical Means (VHM), which
is interpreted as the difference between the variance and the
conditional variance, then divided by the number of crossed
roads. From the law of total variance, the variance of the target
flow can be expressed by

var (qT) = Eqm

(
varqT (qT|qm)

) + varqm

(
EqT (qT|qm)

)

= ESEE + VHM (20)

The dual problem of ESEE minimization is to maximize the
VHM at each iteration. Thus, Vi,ni for the latter scenario
should be expressed by

Vi,ni

= max
li−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ni−1 Vi−1,li−1 −
−wni

(
gTni ,mrH

li−1ni
gTli−1,m − 2rTni gTni ,m+

+gH
Tli−1,mrli−1ni gTni ,m + gTni ,mrni g

H
Tni ,m

)

Ni

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)

where wni = 1 if there is detector at the ni -th road and wni =
0 if there is no detector, Ni−1 and Ni are the number of the
crossed roads at the i-1 -th and i-th iterations, respectively.
The modified algorithm can be found in algorithm 2.

Algorithm 2 MVA for the Latter Scenario
The following modifications should be made:
line 11: update Vi−1,li−1 to Vi,ni via (21)
line 12: Search the maximum expected variance improvement
Vi,ni ,max through Q
line 13: if Vi,ni = Vi,ni ,max
The rest lines are identical to those in algorithm 1.

Remark 4: Note that the number of cuts being found for the
given area is determined by the empirical data and topological
information. Therefore, the number of determined cuts varies
with different target road segment. For each target road seg-
ment, there is only one optimal cut which is used to estimate
the missing data. For an example, for the target roads “Snowy
Mountains Highway” and “Monaro Highway”, there are 4 and
18 closed cuts being determined via the proposed algorithm,
respectively.

C. OCC Based Novel Estimator

This subsection proposes the OCC based Kriging estimator
and the OCC based novel estimator which incorporates the
flow conservation law. After that OCC is determined by algo-
rithm 2, the missing data at the target road can be estimated
via a Kriging estimator [27].

q̂T,kriging = q̄T + gH
T,m (qm − q̄m) (22)

where qm and q̄m contains the instantaneous flow and average
flow for each crossed sensors, the vector gT,m consists of Km
scaling factors gTk,m;k=1···Km between the target flow and the
Km measured flows and can be straightforwardly obtained by
the empirical data. Then the conditional expectation E

(
q̂T|qm

)

and the conditional variance var
(
q̂T|qm

)
can be expressed by

E (qT|qm) = q̂T,kriging (23)

and

var (qT|qm) = var (qT) − gH
T,m Rqm gT,m (24)
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To our known, the conditional PDF (Probability Distribu-
tion Function) P (qT|qm) is a Gaussian function [32]. Thus,
the OCC based Kriging estimation can be formulated as

qT|qm = q̂T,kriging + ζ (25)

where ζ ∼ N (0, var (qT|qm)). To further reduce the uncer-
tainty, we try to incorporate the flow conservation law given
by (17). Let us define the OCC for the target road T as C (T).
From (17), qT can be written as

qT =
Km∑

k=1

qk,in −
Km∑

k=1

qk,out +
Kun∑

l=1

ql,in −
Kun∑

l=1

ql,out + ws + wt

=
Km∑

k=1

qk,in −
Km∑

k=1

qk,out + γ (26)

where

γ ∼ N

( ∑Kun
l=1 q̄l,in − ∑Kun

l=1 q̄l,out∑Kun
l=1 rl,in + ∑Kun

l=1 rl,out + rs + rt

)
,

rl,in, rl,out, rs and rt are the flow variance for the in and
out direction at the l-th crossed edge, and the variance of
generation flow and dissipation flow within the closed cut,
respectively. Then the conditional expectation E (qT|C (T))
and the conditional variance var (qT|C (T)) can be expressed
by

E (qT|C (T)) =
Km∑

k=1

qk,in −
Km∑

k=1

qk,out +
Kun∑

l=1

q̄l,in −
Kun∑

l=1

q̄l,out

(27)

and

var (qT|C (T)) =
Kun∑

l=1

rl,in +
Kun∑

l=1

rl,out + rs + rt (28)

The better estimation can be obtained by maximizing the
joint probability function Pr (qT|qm, C (T)). With the Bayesian
theorem, the objective function can be expressed by

q̂T,ML = argmax
qT

(Pr (qT|qm, C (T)))

= argmax
qT

(
Pr (qm, C (T) |qT) Pr (qT)

Pr (qm, C (T))

)

= argmax
qT

(Pr (qm|qT) Pr (C (T) |qT) Pr (qT))

= argmax
qT

(Pr (qT|qm) Pr (qm) Pr (qT|C (T)) /Pr (qT))

= argmax
qT

⎛

⎜⎜⎜⎜⎜⎜⎝

− (qT − E (qT|qm))2

2var (qT|qm)

+ (qT − q̄T)2

2var (qT)

− (qT − E (qT|C (T)))2

2var (qT|C (T))

⎞

⎟⎟⎟⎟⎟⎟⎠
(29)

By setting the first derivative of (29) with regard to qT to zero,
q̂T,ML can be expressed by

q̂T,ML =
q̄T

var(qT) − E(qT|C(T))
var(qT|C(T)) − E(qT|qm)

var(qT|qm)

1
var(qT) − 1

var(qT|C(T)) − 1
var(qT|qm)

(30)

where E (qT|qm), E (qT|C (T)), var (qT|qm) and
var (qT|C (T)) are given by (23), (27), (24) and (28),
respectively, and they can be straightforwardly obtained by
the empirical data.

Note that (29) and (30) are based on the assumption
that the traffic flow on the crossed measured roads and the
unmeasured roads are independent i.e. Pr (qm, C (T) |qT) =
Pr (qm|qT) Pr (C (T) |qT). In real scenario, however, it can
depict the dependence between them. Thus, the conditional
probability should be rewritten as

Pr (qm, C (T) |qT) = Pr (qm|qT) Pr (C (T) |qm, qT) (31)

where the latter term represents the conditional probability of
sum of the unmeasured flow and the missing flow based on
input flow and the target flow, while the former term stands
for the conditional probability of the input flow by giving
the target flow. Because of the causal relationship between
flows [33], the crossed flows on the OCC can be classified into
causal flow and effect flow defined by the input and output
of the OCC. Recall that γ is a set of unobserved data and
can be modeled as a Gaussian variable, which is sum of the
unmeasured input flow, the unmeasured output flow and the
missing flow. The causal relation between qm and γ can be
utilized to obtain a more accurate PDF. Then the second term
of (31) can be transformed to

Pr (C (T) |qm, qT)

= Pr (qT|C (T) , qm) Pr (C (T) , qm)

Pr (qm, qT)

=

Pr (C (T) , qm) exp

⎛
⎜⎜⎜⎜⎝

−

⎛

⎝ qT − ∑Km
k=1 qk,out+∑Km

k=1 qk,in − E (C (T) |qm)

⎞

⎠
2

2var(C(T)|qm)

⎞
⎟⎟⎟⎟⎠

Pr (qm) Pr (qT)
√

2πvar (C (T) |qm)
(32)

The reason that we write Pr (qm, qT) = Pr (qm) Pr (qT) in (32)
is the dependence between qm and qT has been taken into
account in the first term of (31), and (32) only considers the
causal relation between qm and γ , qT and γ . Hence, (29) can
be improved as

q̂T,ML,improved

= argmax
qT

(Pr (qT|qm) Pr (qT|C (T) , qm) /Pr (qT))

= argmax
qT

⎛

⎜⎝
(qT−q̄T)2

2var(qT) − (qT−E(qT|qm))2

2var(qT|qm) −
(

qT−
(∑Km

k=1 qk,in−∑Km
k=1,k 
=T qk,out

)
−E(C(T)|qm)

)2

2var(C(T)|qm)

⎞

⎟⎠

(33)

Then q̂T,ML,improved can be expressed by

q̂T,ML,improved

=
q̄T

var(qT) −
(∑Km

k=1 qk,in−∑Km
k=1,k 
=T qk,out

)
+E(C(T)|qm)

var(C(T)|qm) − E(qT|qm)
var(qT|qm)

1
var(qT) − 1

var(C(T)|qm) − 1
var(qT|qm)

(34)
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Fig. 2. Selected map for experiment: Sydney South Area.

and

E (C (T) |qm) = γ̄ + σ γ,qmσ−1
qm,qm

(qm − q̄m)

var (C (T) |qm) = var (γ ) − gH
γ,m Rqm gγ,m (35)

where σ γ,qm and gγ,m are the co-variance matrix and condi-
tional correlation coefficients between γ and qm, respectively,
and can be easily obtained by the empirical data.

V. RESULTS AND DISCUSSION

In this section, we evaluate the proposed imputation strategy
by comparing to other two imputation methods, NHA (Near-
est Historical Average) and kNN. Various missing type and
missing ratio are observed in performance comparison among
the three imputation methods by MAPE and RMSE.

A. Data

Traffic flow data in this study was provided by Sydney
RMS (Roads and Maritime Services). The selected data was
collected by loop detectors on the arterial roads located in
Sydney south area over 198 days (Fig. 2). All measured roads
are single-lane bi-directional roads. Each detector provides the
flow data of 1-hour interval from 00:00 - 23:00h on each day.
Each green node in Fig. 2 represents a detector. The data can
be represented as a tensor T ∈ R

Nm×M×K , where Nm = 10,
M = 24 and K = 181. We choose K to be 181 instead
of 198 because the weekend and public days are removed due
to the different traffic pattern.

B. Generation of Missing Data

To evaluate the imputation performance of each methods,
the missing data are intentionally generated with different
missing ratio that ranges from 20% to 50% at every 10%
increment as usual in the research field ([34], [35]). To verify
the robustness of the proposed methods, we consider three
types of missing data in this research: 1) Missing Completely
at Random manner (MCR), where the missing points are inde-
pendently and uniformly distributed over the spatio-temporal
domain. This may occur due to temporary from power or
communication failures [36]. 2) Missing Group Randomly
in the Temporal domain (MGRT), where the missing points

appear as a group of fixed length sequential points lost at
one road, and the group is independently and uniformly
distributed over the temporal domain. This may occur due to
a prolonged physical damage, malfunction of communication
device or temporary detector deployment. 3) Not Missing
Randomly (NMR), where the occurrences of missing data are
scattered and simultaneous over different roads. NMR is often
caused by a long time malfunction of the loop detectors [3].

C. Imputation Techniques for Comparison Analysis

NHA is the most common method in the data imputation
because it shows a stable performance regardless of the miss-
ing data size with easy implementation [10]. NHA replaces
the missing data by arithmetic average or weighted average
of the nearest historical data [36]. NHA does not incorporate
the information from neighboring roads at the same day and
is based on the assumption that traffic pattern at the same
detector at the same time is similar from day to day. In this
study, we fill the missing data with the arithmetic average data
of the same time over 10 historical days.

The second comparison method is kNN method which has
been discussed in [9] and [10]. The original kNN method is
to fill the missing data with arithmetic or weighted average
of data on k neighboring roads. The k neighboring roads are
selected by searching for the data with close physical distances
with the target road. In [9], Cai et al. proposed the improved
kNN which replaced the physical distance with the equivalent
distance, which is related to the physical distance among roads
h, connective grade of a road g and correlation coefficient
between the historical time series of two roads r . The k
neighboring roads are selected by a given suitable threshold
of the equivalent distance. Then the missing data on the target
road is estimated by the arithmetic average of the data on the
k neighboring roads.

D. Results and Discussion

In this section, we examine the imputation performance of
our novel approaches: OCC based Kriging (22), OCC based
ML (30) and improved ML (34) and compare them to correla-
tive kNN [36] and NHA [9] in terms of MAPE over different
missing ratios and three missing patterns. The performance
of the proposed approaches was evaluated with 198 days of
the historical data. Missing data in testing were intentionally
produced from the available data sheet and compared with the
actual value for the performance evaluation.

Fig. 3 and Fig. 4 depict MAPE and RMSE of the three
novel imputation methods for MCR pattern, respectively. The
accuracy results of imputation represented by MAPE show that
the three novel imputation methods dominantly outperform the
correlative kNN and NHA over the missing ratio from 0.25 to
0.5. By incorporating the flow conservation law introduced
in Theorem 2, the imputation performance can be further
improved via OCC based ML and improved ML. Fig.5, 6
and Fig.7, 8 show the imputation performance for MGRT and
NMR patterns, respectively. As shown in Fig. 5, OCC based
ML and improved ML depict better estimation performance
than correlative kNN and NHA over almost whole scale of
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Fig. 3. MAPE of five different methods in MCR pattern.

Fig. 4. RMSE of five different methods in MCR pattern.

Fig. 5. MAPE of five different methods in MGRT pattern.

missing ratios while OCC based Kriging is more appropriate
for the missing ratio being lower than 0.35. Beyond 0.35, OCC
based Kriging shows a worse performance than the comparing
methods. For NMR pattern, the three novel approaches slightly
outperforms the comparing methods over almost whole scale
of missing ratio.

Comparing the three novel approaches, the improved ML
shows the best imputation performance for three missing
patterns because it incorporates the flow conservation law and
takes into account the dependence between the measured and
unmeasured roads.

Comparing the three missing patterns, three novel methods
depict the best imputation performance for MCR pattern while
the worst performance for NMR.

It is observed in Fig. 5 that the performance of OCC based
Kriging for MGRT pattern becomes worse than NHA and
correlative kNN when missing ratio is larger than 0.35. This

Fig. 6. RMSE of five different methods in MGRT pattern.

Fig. 7. MAPE of five different methods in NMR pattern.

Fig. 8. RMSE of five different methods in NMR pattern.

is mainly because for group missing pattern, the number of
the measured neighboring roads captured by OCC decreases
quickly with the increase of the missing ratio and thus the
correlation between the measured neighboring and the target
roads plays less role compared to the flow conservation for
the missing data imputation.

To summarize, our results show that the three novel methods
perform better than the comparing methods in almost all
missing pattern, with exception for MGRT for which the
OCC based Kriging performs worse than the two comparing
methods for the missing ratio being larger than 0.35. The
improved ML outperforms all other methods for all missing
patterns and missing ratios.

Remark 5: Although in this paper, we only considered
the non-congested case. Theoretically, congestion and non-
recurrent events pose no impact on the performance of our
methods as long as the sampling period is much larger than
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the travel time. Because in this case, almost all traffic flow
measured by the target detector originates from the flow
measured by its upstream detectors during the same time slot.
In the case that the travel time is much larger than the sampling
period due to congestion or non-recurrent events, the time lag
should be considered to improve the performance.

VI. CONCLUSION

In this paper, an OCC based imputation strategy has been
proposed for traffic flow incompleteness in urban network.
Based on the determination of optimum sensors for imputation
via novel OCC finding algorithm, we compare three different
estimators: OCC based kriging, OCC based ML (Maximum
Likelihood) estimator and improved ML estimator in terms of
MAPE for three missing patterns: MCR, MGRT and NMR.
In addition, our three novel methods are compared to NHA
and correlative kNN. From our experimental results, we can
conclude that

1) Our three novel methods outperforms NHA and kNN
for three missing patterns over almost all missing ratios
because the topological information was utilized and a
sophisticated OCC finding algorithm was designed to
determine the optimum sensors before imputation.

2) The two ML estimators can deliver a better estimation
performance than OCC based Kriging because the flow
conservation law has been incorporated.

3) By consideration of the dependence between the mea-
sured and unmeasured roads, the estimation accuracy
can be further improved. Therefore, the improved ML
estimator is the most appropriate imputation scheme for
all missing patterns.

VII. FUTURE WORK

Our proposed methods are evaluated with 1-hour data due to
unavailability of finer data. In future work, we will implement
the proposed methods in finer data (15 mins, 5 mins, 30 sec-
onds) and consider the effect of time-lag. The complexity of
the proposed algorithm can further be reduced.
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