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Abstract— Traffic data estimation plays an important role
because traffic data often suffers from missing data problems,
caused by a variety of reasons, i.e., temporary deployment of
sensors, sensor malfunction and communication failure. Existing
research on missing data estimation has mostly focused on using
data-driven or model-driven models to estimate the missing data,
and there is a lack of study on the achievable estimation accuracy
and the conditions to achieve accurate missing data estimation.
In this paper, we investigate the fundamental limits of missing
traffic data estimation accuracy in urban networks using the
spatial-temporal random effects model. We derive the squared
flow error bound (SFEB) for the cases of the Fisher matrix
being a singular and non-singular matrix, respectively. We show
that the sufficient and necessary condition of the existence of an
unbiased estimator is that the number of missing points is less
than or equal to the rank of the Fisher matrix. For the case that
no unbiased estimator can be found, we derive an inequality for
the SPEB and show that the SFEB is readily determined by the
covariance matrix of the unknown (missing) parameter vector,
flow correlation between the unknown and the available data, and
the sensor locations. Furthermore, we develop an optimal spatial-
temporal Kriging estimator which is efficient in both cases where
the causal relationship among available data points exists or does
not exist. Our theoretical findings can be used to develop a sensor
location optimization strategy to minimize the SFEB.

Index Terms— Cramer-Rao lower bound (CRLB), squared flow
error bound (SFEB), fisher matrix, spatial-temporal kriging.

I. INTRODUCTION

TRAFFIC data plays an important role in the development
and implementation of ITS (Intelligent Transportation

Systems). For example, both the ATIS (Advance Traveler
Information System) which acquires, analyzes and presents
information to assist travelers navigating from the source to
the destination, and the ATMS (Advance Traffic Management
System) which integrates various technology to improve the
road traffic flow and road safety, rely heavily on highly
accurate traffic data to provide users with up-to-date traf-
fic information and guidance and for real-time traffic con-
trol [1]. Furthermore, accurate and relevant real-time traffic
data can lead to a lot of improvements in many areas such
as dynamic traffic control [2]–[7], improvement of incident
management [8], [9] and traffic congestion detection and
reduction [10].
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Missing data problem has greatly hindered the collection
and subsequent analysis, estimation and prediction of traffic
flow data. Traffic data may become missing due to temporary
deployment of sensors, detector malfunction or lossy commu-
nication systems. Specifically, due to high deployment costs,
permanent traffic sensors may be installed on a subset of
roads only [11] and some other roads may only be equipped
with temporary sensors, which provide traffic data within
limited time periods. Furthermore, failures, caused by detector
malfunction and lossy communication systems, may also result
in incomplete traffic data [12], [13]. It was reported in [14]
that at hundreds of detection points within PeMS traffic flow
database, more than 5% of data are missing. Qu et al. reported
that about 10% of daily traffic flow is usually missing in
Beijing [13]. In another study [15], almost a quarter of data
from San Antonio, Texas, were found to be missing. The miss-
ing data has severe impact on many ITS applications, most of
which rely on reliable, accurate and complete data [16]–[18].
For instance, traffic flow prediction relies on the complete
historical data and the prediction performance will reduce
sharply with incomplete data.

To tackle the missing data problem, a number of imputation
methods have been proposed in the recent decade. Existing
imputation methods can generally be classified into the follow-
ing four categories: historical neighboring imputation methods,
interpolation based methods, prediction based methods and
statistical learning based methods [14].

The historical neighboring methods are naive methods
which fills a missing data point with a known data point
collected on the same site at the same time but from a
neighboring day [19], [20]. The interpolation based meth-
ods estimate the missing data by arithmetic or weighted
average of the available data, which is temporally, spa-
tially, or both temporally and spatially close to the miss-
ing data. Some well known interpolation based meth-
ods include multiple imputation scheme [21], correlative
kNN (k Nearest Neighbor) scheme [22], sectional kNN
scheme [23] and LLS (Local Least Squares) scheme [24].
Prediction based methods directly apply the traffic predic-
tion methods to fill in the missing data, including Auto-
regressive Integrated Moving Average (ARIMA) [25], [26],
Seasonal ARIMA (SARIMA) [27], Space-Time ARIMA
(ST-ARIMA) [28], [29] and Feed-Forward Neural Network
(FFNN) [18], [30]. The main limitation of the prediction based
methods is that data points measured after the missing data
cannot be utilized to improve the imputation performance.
Accurate imputation becomes difficult if there is no sufficient
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measured data points before the missing points or a consec-
utive sequence of data points are lost. The most frequently
used statistical learning methods are Probabilistic Principal
Component Analysis (PPCA) [13], Kernel Probabilistic Prin-
cipal Component Analysis (KPPCA) [14] and tensor com-
pletion techniques [31]–[34]. The PPCA and KPPCA can
be considered as an orthogonal projection of data onto the
principal subspace, in a way that maximizes the variance of the
projected data [13]. Tensor completion techniques incorporate
the measured traffic data into a tensor and then estimate the
missing data using Tucker decomposition based imputation
method (TDI).

To the authors’ knowledge, existing research efforts mostly
deal with developing certain data-driven or model-driven
methods for missing data estimation. There is a lack of study
on the achievable estimation accuracy and the conditions to
achieve accurate estimation results. In this paper, we charac-
terize estimation accuracy in terms of a performance measure
called the Squared Flow Error Bound (SFEB) and focus on
the study of the fundamental limits of missing data estimation
accuracy by using Fisher matrix to derive SFEB. The Fisher
matrix is an important tool for evaluating the accuracy of
the parameter estimation technique. The inverse of the Fisher
matrix yields the Cramer-Rao Lower Bound (CRLB) which
provides asymptotically a lower bound for the covariance
matrix of unbiased estimators [35]. We investigate the fun-
damental limits of missing data estimation accuracy under
different scenarios: the Fisher matrix is a full-rank matrix,
which is the sufficient condition to find an efficient estimator
or a singular matrix, with which an efficient estimator can be
found under certain conditions. We also investigate the impact
of relationship between the number of missing points and
rank of the Fisher matrix on the fundamental limits. We show
the performance optimality of the spatial-temporal Kriging
estimator proposed for missing data estimation.

Furthermore, almost all proposed historical neighboring
imputation methods, interpolation based methods and predic-
tion based methods only dealt with either single missing data
imputation or the case that the number of missing data is not
large. The imputing performances of the proposed methods
greatly depend on the surrounding observed data of the miss-
ing points. Thus, their performances suffer when the missing
ratio goes high. Although the proposed PPCA/KPPCA based
imputation methods utilize all observed data to fit missing
points and theoretically can cope with multiple detector cases,
the aforementioned limitations remain.

In a presence of a large data set with a high missing ratio,
some available data may have weak spatio-temporal correla-
tion with the missing data. PPCA/KPPCA based approaches
have dominant overfitting problem. The adopted interpolation
based approaches, i.e., original kNN or correlative kNN, are
not able to work well because a large portion of missing data
leads to difficult selection of nearest neighbors. Intuitively,
the missing data physically close to the observed data has
a relatively high correlation and thus can be estimated with
relatively high accuracy, then the imputing results can be
considered as additional observed data in the next iteration
for estimating missing data further away. Motivated by the

intuition and the aforementioned shortcomings of existing
imputation techniques, in this paper, we propose an iterative
multiple-point spatial-temporal Kriging technique, which can
greatly reduce the computational complexity when the size of
the observed parameter vector becomes large and is proved to
be optimal in estimation accuracy under certain conditions.

The following is a detailed summary of our contributions:

• Considering an arbitrary traffic network, we derive the
Squared Flow Error Bound (SFEB) for the case of
the Fisher matrix being a full-rank or singular matrix,
respectively;

• We show the sufficient and necessary condition for the
existence of an unbiased estimator is that the number of
missing points is less than or equal to the rank of the
Fisher matrix;

• In the case that no unbiased estimator can be found,
we show an inequality for the SFEB; and

• the SFEB is readily determined by the covariance matrix
of the unknown (missing) parameter vector, flow corre-
lation between the unknown data and the available data,
and the sensor locations.

• We further show that the spatial-temporal Kriging estima-
tor is optimal in both cases where a causal relationship
among available data points exists or does not exist;

The rest of the paper is outlined as follows: Section II reviews
the related work. Section III proposes the system model and
derives the SFEB for missing data estimation. Section IV
proposes the optimal and iterative spatial-temporal Kriging
estimator, and prove the optimality of the iterative spatial-
temporal Kriging estimator. Section V validates our theoretical
findings using real traffic data. Section VI concludes the paper.

II. RELATED WORK

A number of missing data imputation methods have been
investigated in the recent decade. Beretta et al. assessed the
performance of the nearest neighbor algorithm, quantifying
the effect imputation yields on the data structure and on
inferential and predictive statistics [19]. Tak et al. proposed
a sectional k-NN method, which imputes missing data based
on road sections sharing the same traffic property [23]. Cai
et al. [22] introduced the correlative k-NN model which was
superior to the original k-NN model because it replaces
the physical distance by both the physical distance and the
correlation coefficient between the historical traffic data of
the two roads. Tan et al. [31], explored the ability of tensor
based method for multi-loop detector’s missing data impu-
tation, which completes the missing data by tensor decom-
position. Qu et al. [13] proposed the PPCA based method
which integrated MLE (Maximum Likelihood Estimation) into
traditional PCA approach. Li et al. [14] compared PPCA
method and KPPCA (Kernel PPCA) method, which assumes
a nonlinear relationship between observed samples and latent
variables.

The aforementioned literature only focuses on developing
a certain method to improve estimation accuracy. To authors’
knowledge, there is still no literature dealing with the fun-
damental limits for traffic data estimation and systematical
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comparison of different methods. CRLB, as a well-known cri-
terion, has been widely used in various applications for perfor-
mance evaluation. For instance, Shen et al. derived the squared
position error bound (SPEB) via equivalent Fisher informa-
tion (EFI) for a general framework and cooperative wide-
band localization systems [36], [37]. Yu and Dutkiewicz [38]
derived CRLB for mobile tracking in non-line-of-sight (NLoS)
environment when measurements of distance, heading angle,
and velocity are employed to estimate the mobile position.

III. SYSTEM MODEL AND ERROR BOUND

ON MISSING DATA ESTIMATION

A. Road Map

In this section, we will firstly propose the urban traffic net-
work model and the spatial-temporal random effects (STRE)
model. Based on the proposed urban traffic network model,
we will derive the SFEB of parameter vector estimation and
show the relation among SFEB, the co-variance matrix of the
real flow vector and the co-variance matrix of the observed
flow vector. Furthermore, we will present the relation between
rank of the Fisher Information Matrix (FIM) and the number of
missing points, and give the sufficient and necessary condition
of existence of unbiased estimator.

B. Network Model

Consider a two-dimensional traffic network with Nl roads,
which are composed of Nm roads with detectors and Nu roads
without detectors, Nl = Nm + Nu . At a time instant t, the
traffic flow measured by the well-functioned detectors is repre-
sented as q1,w,t, q2,w,t · · · qM,w,t , while those flow over the rest
Nm − M roads with malfunctioned detectors and Nu unmea-
sured roads are represented as q1,m,t, q2,m,t · · · qNm−M,m,t and
q1,u,t , q2,u,t · · · qNu ,u,t , respectively. The letters “w”, “m” and
“u” denote well-functioned, malfunctioned and unmeasured
roads, respectively. The data structure can be more clearly
viewed by formulating the traffic flow on each road over con-
secutive time instants into a spatial-temporal matrix (see (3),
shown at the top of the next page). Our task is to estimate the
missing traffic data on the malfunctioned roads and unmea-
sured roads at each missing time instant. The set of missing
data on all malfunctioned roads and unmeasured roads at all
time instants is denoted by ND = �

1, 2, · · · ND
�

� NM∪NU,
where ND is the total number of missing points on the mal-
functioned roads and unmeasured roads, NM and NU denote
the set of missing points on the malfunctioned roads and the
unmeasured roads, respectively. In this paper, we model the
traffic process in urban networks with the spatial-temporal
random effects (STRE) model by which the observations can
be represented as a sum of a deterministic function, small-scale
variation, fine-scale variation caused by the nugget effect in
geostatistics, and measurement error [1], [39], that is

Z (s; t) = μt (s) + St (s)� ηt + ξ (s; t) + ε (s; t) (1)

ηt+1 = Ht+1ηt + ζt+1 (2)

In a traffic network, Z (s; t) represents the traffic flow on
a finite number of road segments s = �

s1 · · · sN
�

at the

time instant of t, μt (s) represents the average flow on s
at the t-th time instant, St (s)� ηt can be interpreted as the
flow fluctuation caused by the flow variation from L selected
neighboring roads, ξ (s; t) represents the variation on s at
time instant t caused by nugget effect and flow generation
or dissipation within some specific sections, ε (s; t) is the
measurement error on s at time instant t, ξ (s; t) and ε (s; t)
can be modeled as independent white Gaussian process with
mean zero and variances σ 2

ξ and σ 2
ε , respectively, Ht+1 is

a first-order auto-regressive matrix and ζt+1 is a innovation
vector. In the next subsection, we will derive the squared flow
error bound (SFEB) based on (1) and (2).

C. Error Bound on Missing Data Estimation

Based on (1), the traffic flow on each road segment can
be expressed by a weighted sum of flows on its neighbor-
ing roads and independent random variations. Note that the
neighboring roads not only include adjacent road segments,
but also include the so-called l-th order neighbors, where
l represents the spatial order of neighbors. For example,
the first-order neighbors are those links that directly incident
to the target road segments, while the second-order neighbors
are indirectly connected to target road segments, via the
first-order neighbors [40]. Yang it et al. [41] underlined that
positive correlations exist among traffic collected at hundreds
of sensors distributed on the entire road network sparsely, not
just the neighborhood surrounding the target road segments.

Let us define an unknown parameter vector θ1 that includes
all missing datum on the Nm − M malfunctioned roads, and
an unknown parameter vector θ2 that includes all unmeasured
data points on Nu unmeasured roads, and a known parameter
vector θ3 that includes all measured data points on Nm − M
malfunctioned roads and M measured roads, i.e.,

θ1 = �
q1,m q2,m · · · qKm,m

�T

θ2 = �
q1,u,1 · · · qNu,u,1 · · · q1,u,T · · · qNu,u,T

�T

θ3 = �
q1,w,1 · · · qM,w,1 · · · q1,w,T · · · qM,w,T

q1,m,av q2,m,av · · · qKav,m,av
�T

where Km and Kav are the number of missing data points
caused by temporary failure of detectors and available data
points on the malfunctioned roads, respectively. Let us define
R1 and R2 as the data missing ratio and the failure rate of
detectors, respectively, then the relation between R1 and R2,
and Km, Kav can be expressed by

R1 = Nm + (Nm − M) (1 − R2)

Nm + Nu
Km = (Nm − M) R2T

Kav = (Nm − M) (1 − R2) T (4)

Then the following theorem can be obtained:
Theorem 1: An unbiased estimator of the parameter vector

θ = [
θT

1 θT
2 θT

3

]T
with finite variance exists iff (if only if)

AT R−1
� A + R†

θ
is a full-rank matrix, where A is the scaling

matrix and R� is the error co-variance matrix given by (8)
and (9), respectively, Rθ is the co-variance matrix of the real
flow vector, R†

θ
is the Moore-Penrose pseudo-inverse of Rθ .
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G =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎣

q1,w,1 · · · qM,w,1 q1,m,1 · · · qNm−M,m,1 q1,u,1 · · · qNu,u,1
q1,w,2 · · · qM,w,2 q1,m,2 · · · qNm−M,m,2 q1,u,2 · · · qNu,u,2

...
. . .

...
...

. . .
...

...
. . .

...
q1,w,t · · · qM,w,t q1,m,t · · · qNm−M,m,t q1,u,t · · · qNu,u,t

q1,w,t+1 · · · qM,w,t+1 q1,m,t+1 · · · qNm−M,m,t+1 q1,u,t+1 · · · qNu,u,t+1
...

. . .
...

...
. . .

...
...

. . .
...

q1,w,T · · · qM,w,T q1,m,T · · · qNm−M,m,T q1,u,T · · · qNu,u,T

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎦

(3)

Based on the given condition, the mean squared error (MSE)
matrix of θ̂ by any estimators satisfies the following inequality

Eqo,θ

�
θ̂ − θ

� 
θ̂ − θ

�H
�

� Rθ − Rθ AT R−1
qo

ARθ

where M1 � M2 means M1 − M2 is positive semi-definite,
Rqo is the co-variance matrix of the observed flow vector.

Proof: For simplicity, we abbreviate the n-th road segment
and the t-th time instant as the (n, t)-th point. Recall that
equations (1) and (2) give us the information that in a traffic
network, traffic flow on each (n, t)-th point can be represented
as the summation of a mean value, variation and error term.
The variation is caused by the variation on its neighboring time
instant and road segments, and evolves with time. By Kriging
technique [42], the observed traffic flow on the (n, t)-th point
can be expressed by

qn,t = qn,t,r + ξ (n; t) + ε (n; t)

= q̄n,t,r + rT
n,t G−1

n,t


θn,t,r − θ̄n,t,r

�
+ ζ (n; t)

+ ξ (n; t) + ε (n; t) (5)

where qn,t,r and q̄n,t,r are the (n, t)-th instantaneous flow and
average flow, respectively, rn,t is a [(Nm + Nu) T − 1]×1 col-
umn vector containing the empirical cross correlation between
the (n, t)-th data point and the rest spatial-temporal data points�
n�, t �

� = (1 · · · Nm + Nu , 1 · · · T ) ,
�
n�, t �

� �= (n, t), Gn,t
is a [(Nm + Nu ) T − 1] × [(Nm + Nu) T − 1] empirical co-
variance matrix consisting of co-variance between each pair
of spatial-temporal data points in the rest spatial-temporal data
set, θn,t,r is a [(Nm + Nu) T − 1]×1 column vector containing
instantaneous flow at all unmeasured data points and measured
data points, θ̄n,t,r is the [(Nm + Nu ) T − 1] × 1 average
real flow vector, ζ (n; t) is the flow variation introduced by
measurement error on rest spatial-temporal data points and
flow generation or dissipation within some specific sections,
ξ (n; t) is the flow variation caused by nugget effect and
ε (n; t) is the measurement error for the (n, t)-th observation.
For simplicity, we define a new [MT + Kav − 1] × 1 column
vector θ

(n,t)
3 obtained by removing the (n, t)-th element from

θ3. Then rn,t , Gn,t and θn,t can be expressed by

θn,t =
�
θT

1 θT
2 θ

(n,t)T
3

�T

rn,t = E

��
qn,t − q̄n,t

� 
θn,t − θ̄n,t

��

= E

⎡

⎢
⎣
�
q̃n,t + εn,t

�

⎛

⎜
⎝

θ̃1 + ξ1 + ε1

θ̃2 + ξ2 + ε2

θ̃
(n,t)
3 + ξ3 + ε

(n,t)
3

⎞

⎟
⎠

⎤

⎥
⎦

=
�

rT
n,t,θ1

rT
n,t,θ2

rT
n,t,θ(n,t)

3

�T

Gn,t = E

�
θn,t − θ̄n,t

� 
θn,t − θ̄n,t

�T
�

= E

⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

⎛

⎜
⎝

θ̃1 + ξ1 + ε1

θ̃2 + ξ2 + ε2

θ̃
(n,t)
3 + ξ3 + ε

(n,t)
3

⎞

⎟
⎠

×
⎛

⎜
⎝

cθ̃1 + ξ1 + ε1

θ̃2 + ξ2 + ε2

θ̃
(n,t)
3 + ξ3 + ε

(n,t)
3

⎞

⎟
⎠

⎤

⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

= Rθn,t,r +
(
σ 2

ξ + σ 2
ε

)
I

where rn,t,θ is the flow correlation between the (n, t)-th data
point and θ , Rθkθl is the co-variance matrix between θk and
θl , σ 2

ξ is variance of nugget effect and flow generation or
dissipation, σ 2

ε is variance of the measurement error, q̃n,t is
the flow variation at the (n, t)-th data point, θ̃1,θ̃2 and θ̃

(n,t)
3

are the flow variation vectors for θ1,θ2 and θ
(n,t)
3 , respectively.

Note that the co-variance with the data vector on the
malfunctioned road segments can be determined by historical
data because of the temporary failure of detectors. The co-
variance with the data vector on the unmeasured road segments
can be determined by historical data measured by temporarily
installed detectors on those road segments. In the case that
some unmeasured road segments have no temporary detectors
installed previously, θ2 can be considered as a latent parameter

vector, and θn,t becomes
�
θT

1 θ
(n,t)T
3

�T
.

The variance of the flow variation ζ (n; t) can be determined
by

var (ζ (n; t)) = var
�
qn,t,r

� − rT
n,t G−1

n,t Rθn,t,r G−T
n,t rn,t

= var
�
qn,t,r

� − rT
n,t Uθn,t,r 	θn,t,r UH

θn,t,r
rn,t

where Rθn,t,r is the co-variance matrix of the real instanta-
neous flow vector θn,t , 	θn,t,r contains non-zero Eigenvalues
of λk

λk+σ 2
ε
, k = 1 · · · Kn,t in its diagonal, λk is the non-zero

Eigenvalues of Rθn,t,r , Uθn,t,r is the Eigenspace of Rθn,t,r

dedicated to λk, k = 1 · · · Kn,t . Recall that ξ (n; t) and ε (n; t)
are independent white Gaussian process in space and time with
mean zero and variance σ 2

ξ and σ 2
ε , then (5) can be rewritten

as

qn,t = q̄n,t,r + rT
n,t G−1

n,t


θn,t,r − θ̄n,t,r

�
+ �n,t

= rT
n,t G−1

n,tθn,t,r + q̄n,t,r − rT
n,t G−1

n,t θ̄n,t,r + �n,t (6)
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where �n,t is an i.i.d zero-mean Gaussian process with variance
of var

�
qn,r

�− rT
n,t Uθn,t,r 	θn,t,r UH

θn,t,r
rn,t +σ 2

ξ +σ 2
ε . Formulat-

ing MT + Kav observations into a system of linear equations
(SLE), which can be expressed by

qo = Aθ + u + � (7)

where qo is a [MT + Kav] × 1 observation flow vector, θ

is a (Nm + Nu) T × 1 instantaneous real traffic flow vector
containing flow on each road segment at T time instants, A
is a [MT + Kav] × (Nm + Nu ) T scaling matrix obtained by
rT

n,t G−1
n,t , n = 1 · · · Nm +Nu , t = 1 · · · T , u is a [MT + Kav]×

1 bias vector and � is the measurement error vector, that is

A = �
Ai A j A
1

�

Ai =

⎡

⎢
⎣
�
G−T

1

�Km

1 r1 · · · �
G−T

MT

�Km

1 rMT
� �� �

MT

�
G−T

MT+1

�Km

1×rMT+1

· · ·
�

G−T
MT+Kav

�Km

1×rMT+Kav� �� �
Kav

⎤

⎥
⎥
⎥⎥
⎦

T

A j =

⎡

⎢
⎢
⎢
⎣

�
G−T

1

�Km+NuT
Km+1

×r1
· · ·

�
G−T

MT

�Km+Nu T
Km+1

×rMT
� �� �

MT

�
G−T

MT+1

�Km+Nu T

Km+1
×rMT+1

· · ·
�

G−T
MT+Kav

�Km+NuT

Km+1
×rMT+Kav� �� �

Kav

⎤

⎥
⎥⎥
⎥
⎥
⎦

T

[A
1]MT +Kav
k=1

=
⎡

⎢
⎣

�
G−T

k

�Km+NuT +k−1
Km+NuT +1 rk

0
�
G−T

k

�Km+Nu T +MT +Kav−1
Km+Nu T +k rk

⎤

⎥
⎦

T

(8)

θ =
�
θT

1,r θT
2,r θT

3,r

�T
, AT R−1

� A+ R†
θ
u= q̄r− Aθ̄

� = �
�1 · · · �MT +Kav

�T
, q̄r =

�
q̄1,r · · · q̄MT+Kav,r

�T

(9)

where [G]k2
k1 denotes the sub-matrix that extracts [k1 ∼ k2]-

th rows of G, θ̄ is the real average traffic flow vector, R� is
[MT + Kav]× [MT + Kav] diagonal matrix with the n-th ele-
ment on its diagonal var

�
qn,t,r

�−rT
n,t Uθn,t,r 	θn,t,r UH

θn,t,r
rn,t +

σ 2
ξ + σ 2

ε .

Let θ̂ denote an estimate of the vector θ based on obser-
vation qo. Then, the mean squared error (MSE) matrix of θ̂

satisfies the information inequality [43]

Eqo,θ

�
θ̂ − θ

� 
θ̂ − θ

�H
�

� J−1
θ,r (10)

Eqo,θ

 
� θ̂ − θ �2

!
≥ tr


J−1
θ,r

�
(11)

where Jθ,r is the Fisher Information Matrix (FIM) for the
parameter vector θ , A � B denotes that the matrix A − B
is a positive semi-definite matrix, � � � is the Euclidean norm
of its argument, tr {�}is the trace operation.

Note that the parameter vector θ is a random parameter and
Jθ,r is a Bayesian information matrix that does not depend on
any particular θ , but requires an average over all possible θ .

Initially, we will give the FIM for deterministic parameter
vector θ , then the PDF of parameters is incorporated to derive
the FIM for random parameter vector. Let us define f (qo|θ)
as the likelihood ratio of the observation vector qo conditioned
on θ , then the FIM for a deterministic parameter vector θ is
given by [43]

Jθ,d � Eqo

"�
∂

∂θ
ln f (qo|θ)

� �
∂

∂θ
ln f (qo|θ)

�T
#

(12)

From (7) to (9), the likelihood function can be expressed by

f (qo|θ) = exp
�− 1

2 (qo − Aθ − u)T R−1
� (qo − Aθ − u)

�

(2π)
(MT +Kav)

2 det
1
2 (R�)

∝ exp

�
−1

2


qT

o −θT AT − uT
�

R−1
� (qo − Aθ − u)

�

(13)

Substituting (13) in (5), we have the FIM Jθ,d as

Jθ,d = −Eqo

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
∂2

� �
qT

o −θT AT − uT
�

×R−1
� (qo − Aθ − u)

�

2∂θ2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(14)

= AT R−1
� A

=
⎡

⎣
AT

i R−1
� Ai AT

i R−1
� A j AT

i R−1
� A
1

AT
j R−1

� Ai AT
j R−1

� A j AT
j R−1

� A
1

AT

1 R−1

� Ai AT

1 R−1

� A j AT

1 R−1

� A
1

⎤

⎦ (15)

Then, a lower bound of co-variance matrix of θ̂ can be
straightly obtained by (10) and (11) when AT R−1

� A is a full-
rank matrix, that is MT +Kav = (Nm + Nu) T . Unfortunately,
AT R−1

� A is a singular matrix because A is a fat matrix.
Thus, an unbiased estimation of the entire parameter vector
is impossible to be found because some components in the
parameter vector may have infinite variance [44]. In such
scenario, (10) should be rewritten as

Eqo,θ

�
θ̂ − θ

� 
θ̂ − θ

�H
�

� J†
θ,d

where J†
θ,d is the Moore-Penrose pseudoinverse of Jθ,d. There

are three approaches coping with the case of the FIM being
a singular matrix, that is, incorporating the PDF of parameter
vector to covert the original deterministic parameter estimation
problem into a Bayesian estimation problem; posing deter-
ministic constrains on the parameter vector to reduce the
parameter dimension; using a biased estimator [44]. In this
paper, we focus on incorporating the a priori knowledge of
the parameter vector.

Let us define f (θ) as the PDF of parameter vector θ , then
the joint PDF of observation and parameter vector can be
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expressed by

f (qo, θ ) = f (qo|θ) f (θ)

where f (qo|θ) is given by (13), and thus the FIM becomes

Jθ,r = Eθ

�
Jθ,d + Jθ

�

where Jθ is the FIM for the a priori knowledge of the parameter
vector and can be expressed by

Jθ = Eθ

"�
∂

∂θ
ln f (θ)

� �
∂

∂θ
ln f (θ)

�T
#

= −Eθ

�
∂2

∂θ2 ln f (θ)

�

Let us define Rθ as the co-variance matrix of the real flow
vector, then the PDF of θ can be expressed by

f (θ) ∝ exp

�
−1

2

�
θ − θ̄

�
R†

θ

�
θ − θ̄

�T
�

where θ̄ has the same definition as (9), R†
θ

is the Moore-
Penrose pseudoinverse of Rθ . Note that Rθ has a possibility
of being a singular matrix because of the spatial-temporal
correlation between traffic at different road segments and time
instants. The rank of Rθ intuitively represents the number of
“sources” in the traffic network. Hence, the FIM for the a priori
knowledge of the parameter vector can be obtained by

Jθ = R†
θ

and the FIM for the joint PDF of observation and parameter
vector can be expressed by

Jθ,r = AT R−1
� A + R†

θ
(16)

where AT R−1
� A and R†

θ
are of the rank of MT + Kav and r ,

respectively. The rank of Jθ,r has the following relation

R
�
Jθ,r

� ≤ R


AT R−1
� A

�
+ R


R†

θ

�

= MT + Kav + r

= MT + (Nm − M) (1 − R2) T + r

Thus, the necessary condition that an unbiased estimator
of the entire parameter vector with finite variance exists is
that MT + (Nm − M) (1 − R2) T + r ≥ (Nm + Nu ) T . In
the following context, we will derive the lower error bound
assuming that Jθ,r is a full-rank matrix and a singular matrix,
respectively. The former means that there exists an unbiased
estimator with finite variance for the entire parameter vector θ

and the latter means that no unbiased estimator can be found
and thus parameter transformation or biased estimator should
be applied. Determining the error bound requires inverting the
FIM Jθ,r in (16), which can be rewritten as

Jθ,r = AT R−1
� A + R†

θ

With the Woodbury matrix identity, the inverse of Jθ,r can be
expressed by

J−1
θ,r =


R†

θ
+ AT R−1

� A
�−1

= Rθ − Rθ AT


R� + ARθ AT
�−1

ARθ

= Rθ − Rθ AT R−1
qo

ARθ (17)

From (11), the mean squared error can be obtained from the
trace of J−1

θ,r, that is

Eqo,θ

 
� θ̂ − θ �2

!
≥ tr (Rθ) − tr


Rθ AT R−1

qo
ARθ

�
(18)

Note that A in (11) is given by (8), which is determined by the
flow correlation between available data and the rest parameter
vector (partial available data and entire unknown data) rn,t ,
and the co-variance matrix of the rest parameter vector Gn,t .
In the case of appropriate selection of sensor locations so that
there is no causal relationship between each pair of available
data points, A can be directly expressed by a product of cross
correlation matrix between the available data and the unknown
parameter vector, and inverse matrix of co-variance matrix of
the unknown parameter vector. Then, (18) can be rewritten as

Eqo,θ

 
� θ̂u − θu �2

!
≥ tr

�
Rθu

� − tr


Rθu,qo R−1
qo

RH
θu,qo

�

(19)

where Rθu and Rθu,qo are the co-variance matrix of the
unknown parameter vector and cross correlation matrix
between the available data and the unknown parameter vector,
respectively. Then Theorem 1 is proved. �

When Jθ,r is a singular matrix, the following corollary can
be obtained:

Corollary 1: In the case that Jθ,r is a singular matrix,
an unbiased estimator of the unknown parameter vector θu
exists iff (if only if) the number of missing points is less than or
equal to the rank of Jθ,r i.e. (Nm + Nu) T − Kav − MT ≤ rJ ,
where rJ is the rank of Jθ,r. Based on the given condition,
the variance of θ̂u satisfies the following inequality

varθ

(
θ̂u

)
� �

I 0
�

U1Λ
−1
1 UH

1

�
I
0

�

where I is the identity matrix, Λ1 and U1 are the non-zero
eigenvalues and the corresponding eigenspace, respectively.
When (Nm + Nu ) T − Kav − MT > rJ , no unbiased estimator
can be found and the variance of θ̂u satisfies the following
inequality

Huvarθ

(
θ̂u

)
HH

u � HU1Λ
−1
1 UH

1 HH

+

σ 2

ξ + σ 2
ε

� 
Ha HH

a − 2H A† A†H HH
�

where H is an arbitrary scaling matrix whose row space is
orthogonal to the eigenspace dedicated to the zero eigenvalues
of Jθ,r, Hu and Ha are the sub-matrices of H corresponding
to θu and θa , respectively.

Proof: From [45], the general form of CRLB can be
expressed by

Eqo,θ

� �
α̂ − E

�
α̂
��×

�
α̂ − E

�
α̂
��H

�
� ∂ E

�
α̂
�

∂θ
J†
θ,r

+
∂ E

�
α̂
�

∂θ

,H

= ∂ E
�
α̂
�

∂θ


Rθ − Rθ AT R−1

qo
ARθ

�

×
+

∂ E
�
α̂
�

∂θ

,H

(20)
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where α = h (θ) and ∂ E(α̂)
∂θ

is a (Nm + Nu) T ×(Nm + Nu ) T
matrix. To guarantee the right side of (20) has no unbounded

eigenvalue on its diagonal, the row space of
∂ E(α̂)

∂θ
must be

orthogonal to the eigenspace dedicated to the zero eigenvalues
of Jθ,r. Assume that h is a linear function and α can be
expressed by α = Hθ . By unbiased estimation of α, (20) can
be rewritten as

Eqo,θ

 �
α̂ − E

�
α̂
�� �

α̂ − E
�
α̂
��H

!
� HJ†

θ,r HH (21)

Let U2 be the eigenspace dedicated to zero eigenvalues of Jθ,r,
then a sufficient condition that α̂ is a variance-limited unbiased
estimator is HU2 = 0. By utilizing the eigenvector/eigenvalue
representation of Jθ,r

Jθ,r = �
U1 U2

� �Λ1 0
0 0

�-UH
1

UH
2

.

the right side of (20) can be rewritten as HU1Λ
−1
1 UH

1 HH. By
an unbiased estimator α̂, we have

varθ

�
α̂
� � HU1Λ

−1
1 UH

1 HH

and

�
Hu Ha

�
-
θ̂u

θ̂a

.

= α̂ (22)

where θ̂u and θ̂a are the (Nm + Nu) T − Kav − MT × 1 and
Kav + MT × 1 vectors representing the estimated unknown
and available parameters, respectively. Let us define the rank
of Jθ,r as rJ . In the case that (Nm + Nu) T − Kav − MT ≤ rJ ,
the unbiased estimation of θ̂u can be obtained by

θ̂u =


HH
u Hu

�−1
HH

u
�
α̂ − Ha (θa + ξ + ε)

�

then

varθ

(
θ̂u

)
� �

I 0
�

U1Λ
−1
1 UH

1

�
I
0

�

=


HH
u Hu

�−1
HH

u HU1Λ
−1
1 UH

1 HH Hu


HH

u Hu

�−1

(23)

In the case that (Nm + Nu) T − Kav − MT > rJ , (23) does
not hold because Hu is no longer full-rank. The equation (23)
can be transformed into

Huθ̂u = α̂ − Ha (θa + ξ + ε)

then

Huvarθ

(
θ̂u

)
HH

u � HU1Λ
−1
1 UH

1 HH +

σ 2

ξ + σ 2
ε

�
Ha HH

a

− 2cov
�
α̂, Ha (ξ + ε)

�
(24)

Note that cov(α̂, Ha (ξ + ε)) depends on Ha and α̂, i.e.,
the applied estimator. It is well-known that a maximum
likelihood (ML) estimator is asymptotically efficient [45].
By introducing α = Hθ to (7), it can be transformed to

qo = AH†α + u + �

then

α̂ml =


AH†
�†

(qo − u)

= α + H A†�

Then (24) can be rewritten as

Huvarθ

(
θ̂u

)
HH

u � HU1Λ
−1
1 UH

1 HH +

σ 2

ξ + σ 2
ε

� 
Ha HH

a

− 2H A† A†H HH
�

(25)

Then Corollary 1 is proved. �
Note that Theorem 1 and Corollary 1 indicate that the

minimum mean squared error can be readily determined by
covariance of the unknown parameter vector, flow correlation
between the unknown parameter vector and the available data,
and the sensor locations. Thus Theorem 1 and Corollary 1 can
also be used to optimize the sensor locations in a large traffic
network when the number of available sensors is limited.

IV. OPTIMAL AND ITERATED SPATIAL-TEMPORAL

KRIGING AND PERFORMANCE ANALYSIS

In this section, we firstly propose an optimal spatial-
temporal Kriging estimator and conduct its error analysis
based on the data structure in (3). For simplicity of expression,
we formulate the unknown parameters θ1 and θ2 into a new
parameter vector θu, and the observed parameters into qo.
It is often the case that the mean flow value is not constant
over space and time in a traffic network. Thus, we utilize a
simple spatial-temporal Kriging estimator proposed in [42],
which can be expressed by

θ̂u = E (θu|qo)

= θ̄u + Rθu,qo R−1
qo


qo − θ̄o

�
(26)

= θ̄u + Rθu,qo

[
Rθo+(

σ 2
ξ

+ σ 2
ε

)
I

]−1 �
θo − θ̄o+

ξ + ε

�
(27)

where θ̄u and θ̄o are the (Nm + Nu) T − Kav − MT × 1
and Kav + MT × 1 average flow vectors for the unknown
parameters and the observed parameters, respectively, Rθu,qo

and Rqo are the co-variance matrix between θu and qo, and
auto correlation matrix of qo, respectively.

Remark 1: In this paper, it is assumed that the number of
samples is sufficiently large so that the perturbations can be
neglected. In practice, θ̄u, Rθu,qo , Rqo and θ̄o are perturbed by
small drifts due to the possibility of insufficient statistics of
the empirical data.

Equation (26) shows that spatial-temporal Kriging estimator
is biased towards θ̄u, rather than θu if the dimension of qo is
not sufficiently large. The mean squared error (MSE) of (26)
is given by

mse

θ̂u

�
= tr

�
E

�
θu − θ̂u

� 
θu − θ̂u

�H
��

= tr

⎧
⎨

⎩
Rθu − Rθu,qo

-
Rθo+(

σ 2
ξ

+ σ 2
ε

)
I

.−1

RH
θu,qo

⎫
⎬

⎭

= tr


Rθu − Rθu,qo R−1
qo

RH
θu,qo

�
(28)
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where Rθu is the auto correlation matrix of θu. Since

Rθu,qo

[
Rθo +

(
σ 2

ξ
+ σ 2

ε

)
I
]−1

RH
θu,qo

is a semi-positive def-

inite matrix, then mse

θ̂u

�
≤ tr

�
Rθu

�
.

Remark 2: Note that in (27) and (28), Moore-Penrose
pseudoinverse should be applied if Rθo +

(
σ 2

ξ
+ σ 2

ε

)
I is a

singular matrix.
Corollary 2: Spatial-temporal estimator proposed by (27)

is efficient for both cases where causal relationship among
available data points exists or does not exist.

Proof: In the case that there is no causal relationship
between each pair of available data points, it is straightforward
to show that (27) is efficient because (28) achieves the CRLB
proposed by (19). In the case that the causal relationship
among available points exists and Jθ,r is not a singular matrix,
the lower bound of MSE of θ̂u can be expressed by

Eqo,θ

 
� θ̂u − θu �2

!

≥ tr

�
�
I 0

� �
Rθ − Rθ AH R−1

qo
ARθ

�
�

I
0

��

= tr

�
Rθu − �

I 0
�

Rθ AH R−1
qo

ARθ

�
I
0

��
(29)

Compared with the MSE in (28), we have

tr

⎛

⎝
Rθu − Rθu,qo R−1

qo
RH

θu,qo
− Rθu

+ �
I 0

�
Rθ AH R−1

qo
ARθ

�
I
0

�
⎞

⎠

= tr

⎛

⎝
�

I 0
�

Rθ AH R−1
qo

ARθ

�
I
0

�

−Rθu,qo R−1
qo

RH
θu,qo

⎞

⎠

= tr

⎡

⎣

⎛

⎝ ARθ

�
I
0

�
�

I 0
�

Rθ AH

−RH
θu,qo

Rθu,qo

⎞

⎠ R−1
qo

⎤

⎦ (30)

Equation (30) indicates that the spatial-temporal estima-
tor can be shown to be efficient if we can prove

ARθ

�
I
0

�
�

I 0
�

Rθ AH = RH
θu,qo

Rθu,qo . Recall that A is a

MT + Kav × (Nm + Nu) T scaling matrix, each row of which
is actually a product of a flow correlation vector, an inverse
matrix of a cofactor matrix of Rθ and an insertion matrix.
Thus, the row vector of A can be rewritten as

Al = rT
l R∗−1

θ,l,l Bl (31)

where Al stands for the l-th row of A, R∗
θ,l,l is the (l, l)-th

co-factor matrix of Rθ and Bl is the l-th insertion matrix
inserting the (l + (Nm + Nu ) T − MT + Kav)-th column of
(Nm + Nu ) T ×(Nm + Nu) T identity matrix with zero vector.
By substituting (31) into (30), it is not hard to see that

rT
l R∗−1

θ,l,l Bl Rθ

�
I
0

�
is the flow correlation vector between the

l-th available point and the unknown parameter vector, and

thus ARθ

�
I
0

�
� RH

θu,qo
and Corollary 2 is proved. �

Corollary 2 reveals that (27) is an optimal estimator. Equa-
tion (28) shows that the optimal spatial-temporal estimator
requires an inverse operation of the auto correlation matrix

of the observed parameter vector, which leads to high com-
putational effort with a large size of the observed parameter
vector. To tackle the problem, we propose a sub-optimal itera-
tive multiple-points spatial-temporal Kriging technique, which
iteratively imputes the missing points via the most appropriate
available data. At each iteration, the most appropriate available
data being used for imputation is selected such that the flow
correlation with the missing points is maximum while the
covariance matrix of the available data is not ill-conditioned.
Note that the available data in the i-th iteration may be the
estimated value in the i − 1-th iteration.

Let us define kav and kim as the constant number of the
selected available data and the missing points being imputed
at each iteration, respectively. Let eχ be MSE of the iterated
spatial-temporal Kriging when a specific imputation order
χ ∈ � is used. The cardinality of imputation order set � is
determined by the number of total missing points Km + NuT
and the missing points being imputed at each iteration kim,
where

|�| =
�(Km+Nu T )/kim/

i=1

0
Km + NuT − ikim

kim

1

Then eχ can be expressed by

eχ = Eqo,θ

"
I2

i=1

� θ̂
i,χ
u − θ

i,χ
u �2

#

=
L2

i=1

Eqo,θ

 
� θ̂

i,χ
u − θ

i,χ
u �2

!
(32)

=
L2

i=1

ei,χ (33)

where L is the number of iterations, θ̂
i,χ
u and θ

i,χ
u are the

estimated and real unknown parameter vector of the i-th
iteration for the order χ . In what follows, we give the closed
form of eχ and investigate the relation between eχ and χ , kav
and kim.

By (28), at the i-th iteration for a specific order χ , the ei,χ

can be expressed by

ei,χ = tr


Ri,χ
θu

�
− tr


Ri,χ

θu,qav
R−1,i,χ

qav RH,i,χ
θu,qav

�

q i,χ
av = argmax

qav∈
 

qi−1,χ
av ∪θ̂

i−1,χ
u

!

�
tr


Ri,χ
θu,qav

R−1,i,χ
qav RH,i,χ

θu,qav

��
(34)

where Ri,χ
θu

, Ri,χ
qav and Ri,χ

θu,qav
are the kim × kim, kav × kav

and kim × kav auto correlation matrix of the selected unknown
parameter vector, available parameter vector and covariance
matrix between the selected unknown parameter vector and
the available parameter vector, respectively. Note that q i,χ

av
in (34) is the most appropriate available data at the i-th
iteration. Substituting (34) into (33), eχ can be rewritten
by

eχ = tr
�
Rθu

� −
I2

i=1

tr


Ri,χ
θu,qav

R−1,i,χ
qav RH,i,χ

θu,qav

�
(35)
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Remark 3: Note that at the i -th iteration, where i > 1, ei,χ

may be slightly different from that given by (34), because there
is possibility that some elements of θ̂

i−1,χ
u are selected to be

the available data. In such case, θ̂
i,χ
u should be rewritten by

θ̂
i,χ
u = θ̄

i,χ
u + Ri,χ

θu,qav
R−1,i,χ

qav


q i,χ

av − θ̄
i,χ
av

�

= θ̄
i,χ
u + Ri,χ

θu,qav
R−1,i,χ

qav


θ

i,χ
av − θ̄

i,χ
av + � i,χ

�
(36)

and

ei,χ = tr

�
E

�
θ

i,χ
u − θ̂

i,χ
u

� 
θ

i,χ
u − θ̂

i,χ
u

�H
��

= tr

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E

-
θ

i,χ
u − θ̄

i,χ
u −

Ri,χ
θu,qav

R−1,i,χ
qav


θ

i,χ
av − θ̄

i,χ
av + � i,χ

�
.

×
-

θ
i,χ
u − θ̄

i,χ
u −

Ri,χ
θu,qav

R−1,i,χ
qav


θ

i,χ
av − θ̄

i,χ
av + � i,χ

�
.H

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= tr

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

Ri,χ
θu

− 2Ri,χ
θu,qav

R−1,i,χ
qav

RH,i,χ
θu,qav

−
Ri,χ

θu,�
R−1,i,χ

qav RH,i,χ
θu,qav

−
Ri,χ

θu,qav
R−1,i,χ

qav RH,i,χ
θu,�

+
Ri,χ

θu,qav
R−1,i,χ

qav

+
Ri,χ

θav
+

Λ
i,χ
�

,

R−1,i,χ
qav RH,i,χ

θu,qav

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

(37)

where � i,χ is the error term of the available data at the i-th
iteration for the order χ , Λ

i,χ
� is the co-variance matrix of

� i,χ , Ri,χ
θu,�

is the co-variance matrix between θ
i,χ
u and � i,χ .

Remark 3 shows that equation (37) reveals the same result
as (34) when Λ

i,χ
� =

(
σ 2

ξ
+ σ 2

ε

)
I , i.e. all selected available

data is observed data, rather than containing the available
data estimated from the i − 1-th iteration, where I is the
identity matrix. For i = 1, it is clear that � i,χ only consists
of the measurement error ξ + ε from the observed data. But
for i > 1, � i,χ may contain the estimation error delivered
in the i − 1-th iteration due to the available data selection
in the current iteration. The estimation error can be traced
back to the observed data and can be classified into two
types: measurement error propagation and error caused by
insufficient statistics. The measurement error of the observed
data can propagate with the evolution if the estimated value at
the previous iteration is used as the available data at the current
iteration. Error caused by insufficient statistics is attributable to
that for some missing points at specific iterations, the selected
available data may not cover all available information relating
to the missing points. For example, in a specific iteration, there
are k �

av + u observed data having spatial-temporal correlation
with the missing points. However, the kav selected available
data can only be traced back to k �

av related observed data. The
rest u observed data is not utilized and thus leads to additional
estimation error.

From (37), eχ can be expressed by

eχ = tr
�

Rθu

�−
I2

i=1

tr


Ri,χ
θu,qav

R−1,i,χ
qav

RH,i,χ
θu,qav

�

− 2
I2

i=1

tr


Ri,χ
θu,�

R−1,i,χ
qav

RH,i,χ
θu,qav

�

+
I2

i=1

tr

⎧
⎪⎪⎨

⎪⎪⎩

Ri,χ
θu,qav

R−1,i,χ
qav

-
Λ

i,χ
� −(

σ 2
ξ

+ σ 2
ε

)
I

.

×R−1,i,χ
qav

RH,i,χ
θu,qav

⎫
⎪⎪⎬

⎪⎪⎭
(38)

The following lemma can be easily obtained:
Lemma 1: Iterated spatial-temporal kriging estimator can

achieve the CRLB proposed by (18) iff (if only if) the selected
available data contain all spatial-temporal information relat-
ing to the missing points at each iteration. In such case,
the performance of iterated spatial-temporal kriging estimator
is irrelevant to a specific imputation order χ .

Proof: When the selected available data contain all spatial-
temporal information relating to the missing points at each iter-
ation, Ri,χ

θu,�
becomes zero,

3I
i=1 tr


Ri,χ

θu,qav
R−1,i,χ

qav
RH,i,χ

θu,qav

�

achieves tr


Rθu,qo R−1
qo

RH
θu,qo

�
, and Λ

i,χ
� only contains the

measurement error propagated from the previous iterations. If
the measurement error comes totally from the observed data,
it is clear that Λ

i,χ
� =

(
σ 2

ξ
+ σ 2

ε

)
I for each iteration and

thus the last term in (38) disappears. For the case that the
measurement error does not come directly from the observed
data, but fully or partially from the data estimated in the
previous iteration, Λ

i,χ
� can be expressed by

Λ
i,χ
� = E

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

ξ1 + ε1
...

ξ ko
+ εko

�
i−1,χ
1

...

�
i−1,χ

ki
av

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

ξ1 + ε1
...

ξko
+ εko

�
i−1,χ
1

...

�
i−1,χ

ki
av

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

H
⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

(39)

where ki
av is the number of available data estimated in the

previous iteration, the rest kav − ki
av available data are from

the observed data, when ki
av = kav , the available data are

fully from the estimated data. The equation (39) can be further
derived as

Λ
i,χ
� =

-(
σ 2

ξ
+ σ 2

ε

)
I 0

0 Ri,χ
�

.

where Ri,χ
� is not necessarily a diagonal matrix because of

possibility of cross correlation among the estimation error at
different iterations. To evaluate Λ

i,χ
� , we need to investigate

how � i,χ propagates with i . Let us define �
i,χ
n as the estimation

error at the n-th missing point at the i -th iteration for an
arbitrary imputation order, then it can be expressed by

�i,χ
n = Ri,χ

θn,qav
R−1,i,χ

qav
� i−1,χ =

ki
av2

k=1

wi
k�

i−1,χ
k (40)

where wi
k, k = 1 · · · ki

av is the weight vector revealing correla-
tion between � i−1,χ is the error vector estimated at the i-1-th
iteration. The k-th error term at the i − 1-th iteration �

i−1,χ
k

can be further traced back to the observed data with the same
procedure as (40). Thus, �

i,χ
n can be further expressed by

�i,χ
n =

ko2

k=1

+
i/

�=1

w�
k,n

,
�
ξ k + εk

�
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where
4i

�=1 w�
k is the correlation between the k-th observed

data and the n-th missing point at the i-th iteration, and thus
it is the (n, k)-th element of the matrix Ri,χ

θn,qo
R−1,i,χ

qo . Thus,
the last term in (38) can be straightforwardly transformed to

I2

i=1

tr

⎧
⎪⎪⎨

⎪⎪⎩

Ri,χ
θu,qo

R−1,i,χ
qo

⎡

⎣

(
σ 2

ξ
+ σ 2

ε

)
I−

(
σ 2

ξ
+ σ 2

ε

)
I

⎤

⎦

×R−1,i,χ
qo RH,i,χ

θu,qo

⎫
⎪⎪⎬

⎪⎪⎭
= 0

Then Lemma 1 is proved. �
Remark 4: Because the performance is irrelevant to the

imputation order when the selected available data cover all
related information, Lemma 1 is specially useful when we
only want to estimate partial unknown data. In such case,
the benefits of iterated spatial-kriging technique becomes more
dominant because it can greatly lower the computational com-
plexity without performance degradation. In a traffic network,
the available data that cover all information relating to the
missing points is not hard to be determined because of road
topology.

Lemma 1 also suggests that there is possibility to simplify
a certain form of matrix multiplication by reducing matrix
dimension. From Lemma 1, the following corollary can be
easily derived:

Corollary 3: For any K � × N � matrix A and N � × N � non-
singular Hermitian matrix M , where A and M can be written
in their sub-matrices forms

A = �
A1 A2 · · · AN

�
(41)

M =

⎡

⎢
⎢
⎢
⎣

M11 M12 · · · M1N

MH
12 M22 · · · M2N
...

...
. . .

...

MH
1N MH

2N · · · MN N

⎤

⎥
⎥
⎥
⎦

(42)

,An and MH
mn,m �= n are with the size of K � × N �

n and N �
n ×

N �
m , respectively, if there exists matrices λn,n = 1 · · · N that

fulfill

Am =
N∑

n=1

λn MH
nm, m = 1 · · · N (43)

then the following equation can be obtained

AM−1 AH =
N∑

m,n=1

λm MmnλH
n (44)

Proof: Suppose that we use N � observed data to impute
K � missing points. The N � observed data can be arbitrarily
classified into N groups. The matrix M is the co-variance
matrix of the N � observed data which can be expressed by
the form of (42). Each sub-matrix Mmn can be considered as
cross-correlation between the m-th and n-th group. We assume
that the K � missing points is actually a linear combination of
N groups of the observed data with the form:

θu =
N∑

n=1

λnθ(n)
o

Fig. 1. Selected map for experiment: urban area of Kaohsiung, Taiwan.

where θ
(n)
o is the n-th group of the observed data and the

definition of λn is the same as that is given in (43). From (28),
the MSE of estimation error of the K � missing points can be
determined by

mse (θu|qo) = Rθu − AM−1 AH (45)

where A is the cross-correlation matrix between θu and θo,
and can be expressed by (43). Suppose that there exists K �
available data with the same correlation to the observed data
and covers all information about the missing points, then the
MSE of estimation error of the K � missing points based on
the K � available data can be expressed by

mse (θu|qav) = Rθu −
N∑

m,n=1

λm MmnλH
n (46)

From lemma 1, we know that (45) must be identical to (46).
Then Corollary 3 is proved. �

Remark 5: Note that Corollary 3 can also be verified by
matrix operation. It is specially useful for the large dimension
of M , where inverse operation becomes cumbersome. Corol-
lary 3 can also be used to support Lemma 1.

V. EXPERIMENTAL RESULTS

In this section, we use the real traffic data provided by the
transportation department of Kaohsiung, Taiwan to validate
our theoretical findings.

The selected flow data was collected by 30 loop detectors
on the road segments located in an urban area of Kaohsiung,
Taiwan, over the period of 01/04/2013 to 30/04/2013 (Fig. 1).
The black nodes in Fig. 1 represent the deployed sensors.
The horizontal and vertical axis represent the longitude and
latitude, respectively. Each sensor provides the flow data of 10-
minute interval from 00:00 to 23:59 for each day. To validate
the theoretical findings in our paper, the malfunctioned sensors
and the unmeasured spatio-temporal points are intentionally
generated with different missing ratios that ranges from 25%
to 45% at every 5% increment. We consider the Missing
Completely at Random manner (MCR), where the malfunc-
tioned sensors and the unmeasured spatio-temporal points
are independently and uniformly distributed over the spatio-
temporal domain.

We calculated the SFEB (Squared Flow Error Bound)
determined by the co-variance matrix of the real flow vector,
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Fig. 2. Comparison of the squared root of SFEB, RMSE of the optimal
Kriging estimator, KNN and NHA for SNR = 10dB.

Fig. 3. Comparison of the squared root of SFEB, RMSE of the optimal
Kriging estimator, KNN and NHA for SNR = 20dB.

scaling matrix and the co-variance matrix of the observed flow
vector. We estimated the flow values on the malfunctioned sen-
sors and the unmeasured spatio-temporal points by using the
optimal spatial-temporal Kriging estimator, Nearest Historical
Average (NHA) and K Nearest Neighbor (KNN) methods, and
compared their performance to each other in terms of RMSE
(Root Mean Squared Error). The optimal and iterated spatial-
temporal Kriging estimators were proposed in our paper. NHA
is the most commonly used method in the data imputation
because it shows a stable performance regardless of the miss-
ing data size with an easy implementation [23]. NHA replaces
the missing data by the arithmetic average or weighted average
of the nearest historical data [46]. NHA does not incorporate
the information from neighboring roads at the same day and
is based on the assumption that traffic pattern at the same
sensor at the same time instant is similar from day to day.
KNN methods is to fill the missing data with the arithmetic
or weighted average of data on K neighboring sensors. The
K neighboring sensors are selected by searching for the data
with close physical distances or equivalent distances [22].

The experimental results are shown in Fig. 2 to Fig. 5, which
compare the squared root of SFEB, RMSE of optimal Kriging
estimator, KNN and NHA for SNR (Signal to Noise Ratio)
is equal to 10dB, 20dB, 30dB and 40dB, respectively. SNR
in this paper is defined by the ratio between the variance of
real traffic flow data to the variance of measurement noise.

Fig. 4. Comparison of the squared root of SFEB, RMSE of the optimal
Kriging estimator, KNN and NHA for SNR = 30dB.

Fig. 5. Comparison of the squared root of SFEB, RMSE of the optimal
Kriging estimator, KNN and NHA for SNR = 40dB.

To validate the impact on SFEB by different measurement
noise power, we intentionally create measurement noise with
different SNR. As can be seen from Fig. 2 to Fig. 5, theo-
retical RMSE of the Optimal Kriging Estimator (OKE) given
by Equation (28) coincides with the squared root of SFEB
given by Theorem 1 for all missing ratio and all SNRs. The
experimental RMSE of the OKE depicts a gap with the
squared root of SFEB for SNR = 10dB while generally
coincides with the squared root of SFEB for higher SNR
values. The experimental RMSE of the OKE is obtained by
Equation (27), which requires to determine the co-variance
matrix between the unmeasured data and the observed data,
and the auto-correlation matrix of the observed data. With
larger measurement noise, the determined co-variance matrix
and auto-correlation matrix are subject to perturbation due
to insufficient statistics, and thus the gap is created. RMSE
delivered by KNN and NHA is dominantly larger than the
squared root of SFEB and RMSE of OKE for all missing
ratios and all SNR. The results show that performance of
any missing points estimators is lowered by SFEB, and the
OKE is an efficient estimator, and thus Theorem 1 and
Corollary 2 are validated. It can be seen that NHA indeed
shows a general stable performance for different missing ratio
and the performance of KNN degrades with an increasing
missing ratio. SFEB increases with an increasing variance of
the measurement noise.
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VI. CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed the CRLB of missing traffic data
imputation and the sufficient and necessary condition for the
existence of an unbiased estimator for both the case that the
Fisher matrix is a non-singular and the case that the Fisher
matrix is a singular matrix. We show the CRLB strongly relies
on the three parameters, viz. covariance of the unknown para-
meter vector, flow correlation between the unknown parameter
vector and the available data, and the sensor locations. We
have shown the importance of relationship between the number
of missing points and the rank of the Fisher matrix, i.e., an
unbiased estimator of the unknown parameter vector can be
found if only if the number of missing points is less than or
equal to the rank of the Fisher matrix. We also derived an
inequality on the variance of estimation error for the case that
the above mentioned condition is not fulfilled.

We proved that the spatial-temporal estimator proposed
in [42] is optimal for both cases that causal relationship
between available data points exists or not. To overcome
high computational complexity with a large size of the
observed parameter vector, we proposed a sub-optimal iter-
ative multiple-points spatial-temporal Kriging technique. We
derived the variance of estimation error and showed the
sufficient and necessary condition with which the iterative
multiple-points spatial-temporal Kriging estimator can achieve
the CRLB, i.e. the selected available data covers all informa-
tion relating to the missing points at each iteration, in such
case, imputation order becomes irrelevant to the performance.
We further derived an useful corollary that can simplify
a certain form of matrix multiplication by reducing matrix
dimension. This corollary becomes more significant with a
large matrix dimension where inverse operation becomes cum-
bersome.

The proposed results in this paper can be used as a bench-
mark to evaluate the performance of missing data estimators in
future work. The performance of any missing data estimators
is lower bounded by the proposed SFEB. Corollary 1 can be
utilized to optimize the sensor locations and the number of
deployed sensors in the network. An application example is
to deploy the sensors on the locations so that FIM is a full-
rank matrix. Lemma 1 can be utilized to reduce computational
complexity with a large size of the observed parameter vector.
As an example, the missing points can be estimated iteratively
with optimal selection of available data according to Lemma 1
at each iteration, rather than using the optimal Kriging esti-
mator.
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