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Abstract— In this paper, we investigate a hybrid dynamical
system which incorporates flow swap process, green-time pro-
portion swap process, and flow divergence for a general network
with multiple Origin-Destination (OD) pairs and multiple routes,
where flow swap process is specified in which traffic swaps from
more costly to less costly input links, green-time proportion swap
process is specified in which green time at each intersection
swaps from less pressurized stages to more pressurized stages,
flow may diverge at each intersection from one OD pair to
other OD pairs. Unlike the dynamical system model, where
bottleneck delays need to be intentionally constructed to yield
the equilibrium flow vector and green-time proportion vector,
we propose a novel control policy to fill the gap by only adjusting
the green-time proportion vector. We derive a sufficient condition
for the existence of equilibrium of the dynamical system under
the mild constraints that 1) the travel cost function and stage
pressure function should be continuous functions and 2) the flow
and green-time proportion swap processes project all flow and
green-time proportion vectors on the boundary of the feasible
region onto itself. We derive the condition of unique equilibrium
for fixed green-time proportion vector and show that with varying
green-time proportion vector, the set of equilibria is a compact,
non-convex set, and with the same partial derivative of travel
cost function with respect to the flow and green-time proportion
vectors. Finally, we prove the stability of the proposed dynamical
system by using Lyapunov stability analysis.

Index Terms— Hybrid dynamical system, flow swap process,
green-time proportion swap process, Laypunov stability analysis.

I. INTRODUCTION

TRAFFIC demand is ever increasing due to urbaniza-
tion and rapid growth of population. Therefore, how to

economically utilize the spatial-temporal resources of roads
and traffic signal settings to maximize road network capacity
becomes an important issue. In the literature, capacity of a
transport network is defined as the maximum link dynam-
ical route flow that the network can accommodate under a
given travel demand. Without consideration of control policies
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such as route choice and traffic signal control, the capacity
maximization problem becomes a max-flow min-cut problem
that can be directly drawn from network flow and graph
theory [2], [3]. In practice, however, the maximum through-
put between one pair of OD (Origin-Destination) nodes may
deviate from sum of the flows on the bottlenecks because of
traffic signal control applied on each intersection and drivers’
route choice.

To achieve an optimal throughput, there are some recent
research efforts studying the impact on network capacity
posed by optimizing isolated or coordinated traffic signals,
and driver’s route [1], [4]–[7]. They mainly aim at answering
the following questions: by a given traffic assignment model,
1) does the Wardrop equilibrium exist? 2) is the Wardrop
equilibrium unique? 3) is the dynamical system stable? To
this end, Smith et al. proposed P0 control policy [8] and
proved that by using P0 control policy on a simple network,
Wardrop equilibrium can be found by intentionally construct-
ing bottleneck delay on each link, that is, the maximum
network throughput can be achieved at a quasi-dynamic user
equilibrium [1], [4]. Xiao and Lo investigated the interaction
between adaptive traffic control and day-to-day route choice
adjustments of travelers in a dynamical system setting [5].
Yang et al. modeled the capacity and level of service,
and investigated the additional demand tolerance of urban
networks [7]. Le et al. proposed a decentralized traffic signal
control policy to optimize the throughput on a very simple
one junction network [6]. Smith proposed P0 control policy
and showed that under natural conditions a simple network
is stable under this policy, and this policy can achieve capac-
ity maximization [9]. Chen and Kasikitwiwat proposed two
approaches for assessing the value of capacity flexibility based
on the concept of reserve capacity and demand changes,
respectively. Chen and Kasikitwiwat considered the capacity
flexibility influenced by user’s free choice of routes and
destinations [10]. Chiou presented a new solution that simulta-
neously maximizes increase in travel demands and minimizes
link capacity expansion investment [11].

To the authors’ knowledge, almost all existing research
efforts focus on seeking an optimal control policy to opti-
mize throughput by considering one or multiple OD (Origin-
Destination) pair, without consideration of the flow divergence
among different OD pairs caused by the turning matrix.
Flow divergence is defined by the traffic switching to another
link/route midway in its route when the routes of multiple
OD pair intersect each other (see Fig. 1 and 2). P0 control
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Fig. 1. A M route signalized network proposed by Smith. Only one OD pair
was considered.

Fig. 2. A signalized network with two OD pairs, where each intersection is
equipped with traffic signal.

policy proposed by Smith [1], [4], [8] has been verified to
outperform other control policies such as equi-saturation
policy [12] because it can maximize capacity at a quasi-
dynamic user equilibrium on a simple network, which consists
of multiple OD pairs with a group of routes and does not
have any flow divergence at each route. In an urban network,
there may be multiple OD pairs, each of which is connected
via multiple routes that may interwine with those affiliated to
different OD pairs (Fig. 2). In the presence of flow divergence
among different OD pairs, the route flow swap process and
traffic signal assignment process become much more intricate
compared to those for a simple network because the traffic
signal assignment process can also occur between different
OD pairs, rather than just different routes for the same OD
pair; the route flow swap process should take into account each
link’s cost on the same route. In summary, no existing work
investigated the conditions for the existence and uniqueness
of equilibrium and stability of the dynamical systems when
flow swap process, green-time proportion swap process and
flow divergence among different OD pairs are simultaneously
considered.

This paper aims at addressing the aforementioned theoreti-
cal gap and extending the existing traffic assignment model to
a more realistic scenario. Specifically, the main contributions
of this paper are as follows:

• We propose an objective function for a general network
with multiple OD pairs and multiple routes to find the
equilibrium link flow and green-time proportion vector;

• A novel control policy is proposed for the general net-
work to maximize the network capacity with a steady
demand and vertical queue and the superiority of the
novel control policy over P0 control policy is shown;

• Based on P0 control policy and the novel control policy,
a hybrid traffic assignment model incorporating the flow
swap process, green-time proportion swap process and
flow divergence is proposed for the general network;

• The conditions for the existence and uniqueness of
Wardrop equilibrium, and the characteristic of the set of
equilibria are given and the stability of the dynamical
system is proved by using Lyapunov stability analysis.

The rest of the paper is outlined as follows: Section II
reviews related work. Section III introduces the general net-
work and the novel traffic assignment model incorporating
flow divergence. Section IV provides the hybrid dynamical
system by incorporating the flow swap process and green-time
proportion swap process, shows the condition for existence
and uniqueness of Wardrop equilibrium, the characteristic of
the set of equilibria, and proves the stability of the dynamical
system. Section V provides some numerical results to verify
our theoretical findings. Section VI concludes the study.

II. RELATED WORK

Smith et al. presented a more special dynamical models of
day-to-day re-rerouting and green-time response. They showed
that with responsive P0 control policy, a simple network can
achieve the maximum capacity at a quasi-dynamic user equi-
librium, and queues and delays in the simple network remain
bounded in natural dynamical evolution [4], [9]. They showed
in [1] that applying P0 control policy in a simple network,
the convergence of stage green-time can be guaranteed in the
vertical queuing case. Xiao and Lo addressed the equilibrium
stability and convergence of the proposed joint dynamic traffic
system by analyzing the Jacobian matrix associated with each
fixed point in a simple network [5]. Smith introduced the
restrictive proportional adjustment process (RPAP) for route
swaps, which is more restrictive for defining routes compared
to the original proportional adjustment process (PAP) proposed
by [13]. Yang et al. adopted the model of equilibrium trip
distribution/assignment with variable destination costs (ETDA-
VDC) to assign the flow on each route when the maximum
O-D flows are obtained. They proposed a bi-level optimization
model where the upper-level sub-problem aims at maximizing
the sum of total trip generations and the lower-level sub-
problem is the flow assignment. They considered the case
of multiple OD pairs. However, the signal control and inter-
ference among multiple OD pairs were not considered [7].
Tassiulas and Ephremides proposed a decentralized signal
control policy, which adopted the BackPressure scheme [14]
to allocate the proportion of the common cycle length to
each phase [6]. The main objective of that paper is to prove
the stability (limited queue length) of the proposed signal
control policy. Route choice was not taken into account and
capacity maximization at equilibrium was not investigated.
Chen and Kasikitwiwat provided a quantitative assessment of
capacity flexibility for the passenger transportation network
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using bi-level network capacity models [10]. Variations in
demand pattern and volume were allowed in that paper.
The utilized bi-level optimization model was similar to that
proposed in [7]. Signal control was not considered. Chiou
aimed at optimizing traffic assignment by minimizing trav-
elers’ delay and maximizing reserve capacity [11] using the
TRANSYT model [15]. Nie proposed a class of bush-
based algorithms for the user equilibrium traffic assignment
problem, which is in fact a variant of Beckmann’s seminal
formulation [16], [17]. Mounce and Carey proposed the route
swap algorithm that the swap rate is proportional to the flow
on the more costly route multiplied by the cost difference
between two routes, and proved that with the proposed route
swap algorithm, the dynamical system can converge to a global
equilibrium [18].

Cascetta et al. formulated the Global Optimization of signal
Settings (GOSS) problem, where the signal parameters are
calculated by searching among all the feasible signal setting
vectors. The authors proposed a new descent direction to solve
the non-convex objective function [19]. Cascetta and Sforza
incorporated signal setting parameters, path choice and user
behaviour into the network design model, and proposed an
iterative algorithm for the computation of the optimum signal
setting parameters with an equilibrium flow pattern [20].

The aforementioned review did not investigate the capacity
maximization at equilibrium by simultaneously considering
flow swap and green-time proportion swap with flow diver-
gence among different OD pairs.

III. NOVEL TRAFFIC ASSIGNMENT MODEL IN A

REALISTIC NETWORK

For simplicity, we firstly introduce the novel traffic assign-
ment model in a simple network with only two OD pairs,
each of which has two routes. Then, we will extend the traffic
assignment model to a generalized form with multiple OD
pairs, each of which has M routes with M > 2. We use the
definition of capacity maximization given in [1], which can be
described as

Definition 1: Suppose P is a control policy. “The control
policy P maximizes network capacity” means that: for a
network with a rigid or steady demand and traffic signals; if
there is a route-flow vector X which meets the given inelastic
demand and is within the capacity region of the given network,
then there exist a route-flow vector X∗, delay vector b∗, green-
time proportion vector G∗, which meet the given inelastic
demand, and is within the capacity limitations of the given
network. Furthermore, X∗, b∗ and G∗ fulfill

1) X∗ is a Wardrop equilibrium when the delay vector,
green-time vector is

�
b∗ G∗ � and

2) G∗ satisfies the control policy P when the delay vector,
route-flow vector is

�
b∗ X∗ �.

We give the definition of reserve capacity at equilibrium by
Definition 2: The reserve capacity at equilibrium is defined

by the maximum possible increase in traffic demand that can
be accommodated in the network considering (optimum) traffic
signal control at each intersection and drivers’ route choice
behavior [21].

Fig. 3. A signalized network with two OD pairs with two routes each. There
is traffic signal at each intersection.

A. Equilibrium in a Simple Network Without Signal Control
(With Given Proportion of Green-Time for Each Traffic
Signal)

Consider a simple network with two OD pairs with two
routes each in a steady quasi-dynamic state with vertical
queue (Fig. 3). The vertical queue assumes an idealized
scenario for analytic purpose that vehicles on a roadway stack
up upon one another at the point where congestion begins,
rather than backing up along the length of roadway [22]. The
vertical queue was used in [1], [4], and [8]. The definition of
“steady quasi-dynamic” can be found in [1]. The symbol Rn,m

in Fig. 3 represents the n-th route of the m-th OD pair, where
n, m = 1, 2.

Let us define Cn,m , Ln,m , sn,m , Xn,m , bn,m , Gn,m , In,n�
as the free-flow travel cost via Rn,m , the length of Rn,m ,
the saturation flow at Rn,m , the flow on Rn,m , the bottleneck
delay of Rn,m at the merging point (Signal 1 and 2 in Fig. 3),
the green-time proportion assigned to Rn,m at the merging
point and the intersection between the n-th route of OD pair
1 and the n�-th route of OD pair 2, respectively. Let Gl,In,n� and
bl,In,n� be the green-time proportion and the bottleneck delay
assigned to the l-th stage of the intersection In,n� , respectively.
The unit of Cn,m , bn,m and bl,In,n� are seconds and the unit
of sn,m and Xn,m are vehicles per second. The saturation flow
at Rn,m denotes the capacity of Rn,m at the critical density
ρc if the green-time proportion of that stage is one for the
traffic signals at all intersections and the merging point. The
symbol Ll,n,m , l = 1, 2, 3; n, m = 1, 2 is defined by the l-th
link for the n-th route of the m-th OD pair, Xl,n,m is defined
by the flow on the link Ll,n,m , p(l,n,m),(l�,n�,m�) is defined by
the turning rate from Ll,n,m to Ll�,n�,m� .

Let us define F, D and S by the feasible, demand and
supply sets, respectively, then we have

F =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜
⎜⎜
⎜
⎝

Gk,m

Gl,In,n�
n, n� = 1, 2
k, l = 1, 2
m = 1, 2

⎞

⎟
⎟⎟
⎟
⎠

:
G1,m + G2,m = 1,

G1,In,n� + G2,In,n� = 1,

Gk,m ≥ 0, Gl,In,n� ≥ 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(1)
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Suppose for convenience that s2,m > s1,m and C2,m > C1,m

for m = 1, 2; the other scenarios can be readily accommodated
by our analysis. Let us define T1 and T2 as fixed demands at
the origins 1 and 2, respectively. We firstly assume that there
is no flow divergence at each intersection and no traffic signal
coordination, then p(l,n,m),(l�,n�,m�) = 1 for l � = l +1, (n, m) =�
n�, m�� and p(l,n,m),(l�,n�,m�) = 0 for (n, m) �= �n�, m��.

Then, D and S can be obtained by

D =
��

Xn,m

m, n = 1, 2

�
: X1,m + X2,m = Tm

Xn,m ≥ 0

�
(2)

and

S =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

Xk,m

Gk,m

Gl,In,n�
n, n� = 1, 2
l, m = 1, 2

k = 1, 2

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

:
Xk,m ≤

min

�
sk,m Gk,m

sk,m Gm,Ik,n�

�

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(3)

From (2) and (3), the feasible demand set for Tm with
m = 1, 2 can be determined by

Tm ≤ min

�
s1,m G1,m

s1,m Gm,I1,n�

�
+ min

�
s2,m G2,m

s2,m Gm,I2,n�

�
(4)

≤ s1,m G1,m + s2,m G2,m ≤ s2,m

and

T1 + T2 ≤ min

⎡

⎣
s2,1 + s2,2

max
�
s1,1, s1,2

�+ max
�
s2,1, s2,2

�

max
�
s1,1, s2,2

�+ max
�
s2,1, s1,2

�

⎤

⎦ (5)

No green time proportion in F can be found to satisfy the
route flow in S if T1 and T2 are not in the feasible demand
set given by (4) and (5).

By the definition of Wardrop equilibrium that no traveler
can reduce his travel cost by unilaterally changing routes [23],
equilibrium flow on each route is obtained by solving the
following equilibrium problem:

min
X

�

a

� Xa

0
ta (X, G) d X (6)

st . (1), (2), (3)

where ta (X, G) is a strictly monotonically increasing travel
cost function on the a-th route by the given flow vector X and
the green time proportion vector G [17]. Taking first derivative
of the objective function and setting it to zero, the equilibrium
flow can be obtained by

t1,m
�
X∗, G
� = t2,m

�
X∗, G
�

(7)

m = 1, 2

which can be rewritten into the following equations:

C1,1 + b1,1 + b1,I1,1 + b1,I1,2 = C2,1 + b2,1 + b1,I2,1 + b1,I2,2

C1,2 + b1,2 + b2,I1,1 + b2,I1,2 = C2,2 + b2,2 + b2,I2,1 + b2,I2,2

(8)

In [1], the bottleneck delays within a quasi-dynamic model
are given by

b = Q/sG (9)

where Q is the expected length of vertical queue at exit of
the link and it is an explicit variable that is determined by the
green time and the route flows. However, Q is hard to measure
or estimate. One solution is to express the bottleneck delay as
a function of the route flows, the green-time proportion and
the cycle duration of traffic light.

The maximum bottleneck delay can be interpreted as the
required time to vacate a queue caused by red signals. Then,
in the simple network proposed in [1] with only one OD
pair, the maximum bottleneck delay at one route fulfills the
following relation [24]:

X (1 − G) ΔT + Xb = sb (10)

It follows that the maximum bottleneck delay can be expressed
by

b = X (1 − G) ΔT

s − X
(11)

where ΔT is the cycle duration. If X = sG, then b = GΔT ,
which is equal to the green time duration. An ever-increasing
queue will be generated when X > sG. In the network
proposed in Fig. 3, the maximum bottleneck delays at signal
1 and 2 can be expressed by

bn,m = Xn,m
�
1 − Gn,m

�
ΔT

sn,m − Xn,m
; m, n = 1, 2 (12)

The maximum bottleneck delays at each intersection can be
expressed by

bl,In,n� =
Xn,l

�
1 − Gl,In,n�

�
ΔT

sn�,l − Xn,l
; l, n, n� = 1, 2 (13)

Substituting (12) and (13) to (8), the equilibrium flow X∗
1,1,

X∗
2,1, X∗

1,2 and X∗
2,2 can be determined by

C1,1 + X∗
1,1

�
3 − �G1,1 + G1,I1,1 + G1,I1,2

��
ΔT

s1,1 − X∗
1,1

= C2,1 + X∗
2,1

�
2 + �G1,1 − G1,I2,1 − G1,I2,2

��
ΔT

s2,1 − X∗
2,1

C1,2 + X∗
1,2

�
1 − �G1,2 − G1,I1,1 − G1,I1,2

��
ΔT

s1,2 − X∗
1,2

= C2,2 + X∗
2,2

�
G1,2 + G1,I2,1 + G1,I2,2

�
ΔT

s2,2 − X∗
2,2

(14)

Combining with (1), (2), (3), (12) and (13), the equilibrium
flow and the bottleneck delays can be expressed by a function
of Gn,m , Gl,In,n� , Cn,m , ΔT , Tm and sn,m , where Cn,m , ΔT , Tm

and sn,m are constants while Gn,m and Gl,In,n� are adjustable.
When flow divergence is allowed, 0 < p(l,n,m),(l�,n�,m�) < 1

when Ll,n,m and Ll�,n�,m� are adjacent, while p(l,n,m),(l�,n�,m�) =
0 when Ll,n,m and Ll�,n�,m� are non-adjacent, and�

l�∈N(l,n,m)
p(l,n,m),l� = 1 , where N(l,n,m) is the set of

all downstream neighboring links of Ll,n,m . The supply set S
should be modified as

S =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎝
Xl,n,m

Gn,m

Gl,In,n�

⎞

⎠ :
X1,2,1 ≤ s2,1G1,I2,2

X1,1,1 ≤ s1,1G1,I1,2
...

X3,2,2 ≤ s2,2G2,I1,2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(15)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: NETWORK CAPACITY MAXIMIZATION USING ROUTE CHOICE AND SIGNAL CONTROL 5

where

Xl,n,m =
�

l�,n�,m�
Xl�,n�,m� p(l�,n�,m�),(l,n,m) (16)

Combining with (2), the demand set D can be rewritten by

D =
�
(X, Ts) : P � X ≤ S�, X ≥ 0

1T X = Ts

�
(17)

where X = � X1,1,1 X1,2,1 X1,1,2 X1,2,2
�T, 1 is all one vector,

Ts is the sum of demand, S� contains the maximum saturation
flow at each intersection

S� = � s2,1 s2,2 max
�
s2,1, s2,2

� · · · max
�
s1,1, s1,2

� �T
, (18)

P � is the turning rate matrix that contains the sum of turning
rate from each input flow to the links which intersect at an
intersection, and thus the k-th row and n-th column element
of P � can be expressed by

P �
k,n =

�

Ll∈I−
k

 

m=Ln→Ll

pm,m+1 (19)

where I−
k is the set of incident links at the k-th intersection,

Ln is the n-th input link, Ln → Ll represents the path from
the n-th input link to the l-th incident link, pm,m+1 is the
turning rate from the m-th link to the m + 1-th downstream
neighboring link.

Remark 1: Note that the demand set given by (17) assumes
that there is no flow generated or dissipated at each intersection
or link. When considering the flow generation or dissipation,
S� should be replaced by S� + W , where W is considered as
an error term.

Recall that the maximum bottleneck delay at each exit of a
link (intersection) is determined by the link flow, the saturation
flow, the green-time proportion and the cycle duration of traffic
light. We assume that the turning rates, i.e., the proportion of
vehicles turn left, right or go straight etc., at each intersection
can be estimated from empirical data. By taking into account
the turning rates, (10) should be reformulated as

pX (1 − G)ΔT + pXb = psb (20)

where the turning rate p appears both on the left and on
the right side of (20), and thus it can be neglected. Then,
by a given green-time proportion vector G, the maximum
bottleneck delays at signal 1 and 2 can be determined by

bn,m = X3,n,m
�
1 − Gn,m

�
ΔT

sn,m − X3,n,m
(21)

The maximum bottleneck delay at each intersection can be
expressed by

bl,In,n� =
Xm,k,l

�
1 − Gl,In,n�

�
ΔT

sk,l − Xm,k,l
(22)

where k = n or n�, m = 1, 2 or 3. Then, the equilibrium
flow X∗

l,n,m , l = 1, 2, 3; n, m = 1, 2 can be determined by
combining (8), (16), (21) and (22).

The equilibrium flow solved by (8) has a unique solution
because ta (X, G) is a non-decreasing function of X for a
given G. When no solution can be found within the set S,

that means, at least one route flow for each OD pair has
approached the boundary of the set S for the given G, then an
ever-increasing queue will be generated on that route because
more vehicles prefer to choose that cheaper route.

Note that S, D and F given by (15), (17) and (1) can be
extended to a general network with multiple OD pairs. We will
show in the next subsection how this may be done.

B. Extension to a General Network With Multiple OD Pairs

Consider a general network with M OD pairs, each of which
has Nm routes. Let us define Rn,m as the n-th route of the
m-th OD pair, NIn,m as the number of intersections for the
n-th route of the m-th OD pair, Xl,n,m as the link flow at
the l-th link of the n-th route of the m-th OD pair, bl,n,m as
the maximum bottleneck delay at the l-th link of the n-th route
of the m-th OD pair. Then, the number of intersections in this
general network is

NI =
M�

m=1

Nm�

n=1

NIn,m

The demand set D of route flow vectors with non-negative
components meeting all origin-destination demands is given
by

D =
�
(X I, Ts) : P � X I ≤ S�, X I ≥ 0

1T XI = Ts

�
(23)

where X I is the input flow vector with X I =�
X1,1,1 X1,2,1 · · · X1,NM ,M

�T
, 1 is an all-one vector, Ts

is the sum of demands, S� contains the maximum saturated
incident flow at NI intersections and M exits of OD pairs
with S� = � s1,m s2,m · · · sNI +M,m

�T, P � is the turning
rate matrix given by (19). The feasible set F contains all
feasible green-time proportion vectors, where the green time
proportions at each intersection sum to one, are non-negative
and given by

F =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�
Gn,m

Gm,Inm,n�m�

�
:

�Nm
n=1 Gn,m = 1�

m,m� Gm,Inm,n�m� = 1
Gn,m ≥ 0

Gm,Inm,n�m� ≥ 0
m = 1 · · · M
n = 1 · · · Nm

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(24)

The supply set S contains link flow and green time proportion,
for which each link flow is no greater than the saturation flow
multiplied by the link green time proportion, and it is given
by

S =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎝
Xl,n,m

Gn,m

Gm,Inm,n�m�

⎞

⎠ :
Xl,n,m ≤ sn,m Gm,Inm,n�m�

Xl,n,m ≥ 0
m = 1 · · · M
n = 1 · · · Nm

⎫
⎪⎪⎬

⎪⎪⎭
(25)

where the link flow Xl,n,m is the sum of the flows at all
incident links multiplied by the respective turning rate between
the incident links and the current link.

By putting Xl,n,m into the vector X =�
X1,1,1 X2,1,1 · · · X L NM ,NM ,M

�T
and bl,n,m into the
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vector b = � b1,1,1 b2,1,1 · · · bL NM ,NM ,M
�T

, the equilibrium
flow on each link can be determined by finding a link-

flow vector X∗ =
!

X∗
1,1,1 X∗

2,1,1 · · · X∗
L NM ,NM ,M

"T

and a green-time proportion vector G∗ =!
G∗

1,1 · · · G∗
NM ,M G∗

1,I11,12
· · · G∗

M,INM M,NM� M�
"T

which
minimize the sum of integrals of the link performance
functions over the set of all [X, G] ∈ D × F ∩ S:

[
X∗, G∗] = min

[X,G]

M�

m=1

Nm�

n=1

Ln,m�

l=1

� Xl,n,m

0
tl,n,m (X, G) d X

st . (23) , (24) , (25) (26)

Remark 2: Note that D × F represents the Cartesian prod-
uct of the sets D and F. The symbol ∩ represents the
intersection of two sets.

Note that when vertical queue is considered and bottleneck
delay is neglected, (26) is equivalent to the weighted total
travel time minimization problem [23], which aims at finding
a solution minimizing the sum of product of link flow and link
cost:

[
X∗, G∗] = min

[X,G]

M�

m=1

Nm�

n=1

Ln,m�

l=1

tl,n,m (X, G) Xl,n,m

= min
[X,G]

tT (X, G) X (27)

The problem (27) is equivalent to finding a
[
X∗, G∗] such

that
[−tT (X∗, G∗) , 0

]
is normal at

[
X∗, G∗] to the set

D × F ∩ S (See [1] for the definition of “normal”).
The reserve capacity can be determined by finding a[

X∗, G∗] that maximizes the sum of input flow over the set
of all [X, G] ∈ D × F ∩ S:

RC = max
X∗∈X∗

��M
m=1 Nm

k=1 X∗
k,I − Tc (28)

where Tc is the current demand, X ∗ is the set of equilibrium
flow vectors corresponding to the given green-time proportion
vectors in the feasible set F:

X ∗ =
⎧
⎨

⎩

[
X∗
G∗

]
:

[
X∗
G∗

]
= min

[X,G]∈DTs×F∩S
tT (X, G) X

DTs = #XI : 1T XI = Ts
$
, Ts ∈ D

⎫
⎬

⎭

(29)

Note that the set of equilibrium flows and green-time pro-
portion vectors given by (29) are obtained by searching
tT (X, G) X over S and all X satisfying 1T XI = Ts, where
Ts ∈ D, while (27) delivers a point by a given Ts . The
problems (28) and (29) are equivalent to firstly determining
X ∗, which consists of

[
X∗, G∗] that lets

[−tT (X∗, G∗) , 0
]

be normal at
[
X∗, G∗] to the set DTs × F ∩ S for each

Ts ∈ D, and then finding the X∗ such that P =!
1T∑M

m=1 Nm
0T

NL−∑M
m=1 Nm

"T
is normal at X∗ to the set X ∗,

where 1K and 0K are K ×1 all-one vector and all-zero vector,
respectively.

Remark 3: Note that there is possibility that no
[
X∗, G∗]

can be found for some Ts ∈ D due to a lack of intersection
between DTs and F ∩ S. It is also possible for some

[
X∗, G∗]

that they approach a point at the boundary of DTs × F ∩ S,

at which
[−tT (X∗, G∗) , 0

]
is not normal to the supporting

hyperplane. In these cases,
[
X∗, G∗] are removed from X ∗.

C. Applying the P0 Control Policy and a Novel Control
Policy to the General Network to Maximize the Network
Capacity With a Steady Demand and Vertical Queue

Directly solving the equilibrium flow and green-time pro-
portion vector from (27) requires knowing the sum of input
flow Ts, which is hard to realize in practice. Smith has proved
that with the P0 control policy and adjustable bottleneck delay,
the capacity can be maximized in a simple network by re-
routing and traffic signal assignment without knowing the
demand information. Prior to applying the P0 control policy
to the proposed general network, we firstly introduce the
original P0 control policy proposed by Smith and then give the
condition, under which the P0 control policy can be utilized
to maximize the network capacity with a steady demand and
the network reserve capacity.

Consider a simple network with just two routes, the original
P0 control policy aims at equalizing the product of saturation
flow and bottleneck delay by selecting appropriate green-time
proportion vector, that is, s1b1 = s2b2 [1]. If this is not
possible, then the policy should select green-time proportion
vector to guarantee two numbers to be as equal as possible.
For the proposed general network with multiple OD pairs,
the P0 control policy aims at equalizing the stage pressure
Pn,m = �Nn,m

l=1 sl,n,m bl,n,m = �Nn,m
l=1 Pl,n,m , n = 1, 2 · · · Nm

for M OD pairs by selecting appropriate green-time proportion
vectors. The stage pressure Pn,m is defined by adding the terms
sl,n,mbl,n,m over the links on the n-th route of the m-th OD
pair and Pl,n,m is the pressure at the (l, n, m)-th link.

Because the target of the P0 control policy may not
always be achieved or even achievable although the green-
time proportion vector can be slowly adjusted to approach the
target [1], the P0 control policy for the simple network in [1]
was stated as

For any X and delay vector b, choose a stage
green-time proportion vector G in F so that the
stage pressure vector P (b) is normal at G to F.

Recall that in our proposed general network, there are NIn,m

traffic signals at all intersections for the n-th route of the m-th
OD pair and one traffic signal at the merging point, and thus
there are NIn,m + 1 adjustable green-time proportions for the
n-th route of the m-th OD pair. Note that any changes of the
green-time proportions at the NIn,m intersections will influence
the equilibrium flow for other OD pairs because of F given
by (24). Recall that we assume that the cycle duration ΔT for
each traffic signal is same, thus, the P0 control policy for the
general network can be restated as

For any X and delay vector b choose
a stage green-time proportion vector G =�

G1,1,1 · · · Gl,n,m · · · GL NM ,NM ,M
�T

in F to max-

imize
�M

m=1
�Nm

n=1

�Nn
l=1 sl,n,m bl,n,m Gl,n,m, that is,

to let P (b) = � P1,1,1 · · · Pl,n,m · · · PL NM ,NM ,M
�T

be normal at G to F.
Note that here we represent the green-time proportion by
Gl,n,m instead of Gl,In,n� occurring in F and S for the sake
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of simplicity of expression, Gl,n,m stands for the green-time
proportion assigned to the (l, n, m)-th link.

In what follows, we will give the condition that P0 con-
trol policy can maximize the general network capacity with
vertical queue. Recall that the problem (27) is to find a[
X∗, G∗] such that

[−tT (X∗, G∗) , 0
]

is normal at
[
X∗, G∗]

to the set D × F ∩ S, the equilibrium travel cost tT (X∗, G∗)
varies with X∗ and G∗ because it consists of the free
travel cost C (constant) and the bottleneck delay b (non-
negative function of X∗ and G∗). Suppose that there is a[
X∗, G∗] at which [−C, 0] is normal to the set D × F ∩ S.

Then a question arises: what is the condition that lets[ −tT (X∗, G∗) P (b)
]

be normal at
[
X∗, G∗] to the set

D × F ∩ S, where tT (X∗, G∗) = C + b(X∗, G∗)?
The supply set S is defined by a set of linear inequalities

and thus it is the intersection of a finite number of closed half-
spaces. The demand set D and the feasible set F are subset
of an affine space. The three sets are compact and the set
D × F ∩ S is the intersection of D and S by given F and thus
a subset of an affine space. Now suppose that D × F ∩ S �= ∅
and let the half spaces of S be Hs1 Hs2 · · · HsL , where L
is the number of links for the M OD pairs. Each half-space
Hsl can be expressed by Hsl = {(X, G) : Xl ≤ sl Gl }, where
Gl is the green-time proportion assigned to the l-th link. The
boundaries of S is perpendicular to each other, thus we can
define a 2L × 1 vector nsl = [

0T 1 0T −sl 0T ]T
, which is

non-zero and normal to the half-space Hsl . The first 0T is a
1 × l − 1 zero vector, the second 0Tis a 1 × L − 1 zero vector
and the third 0T is a 1 × L − l zero vector. The vector nsl is
perpendicular to nsl � for l �= l �. We define nD×F as a non-
zero vector normal to the set D × F. Recall that D × F is a
subset of an affine space, thus nD×F is normal to D × F at
any elements at its boundary.

Because we assume that [−C, 0] is normal at
[
X∗, G∗] to

the set D × F ∩ S, then [−C, 0] can be expressed by a non-
negative combination of nsl and nD×F, that is, [−C, 0] =�L

l=1 wslnsl + wD×F nD×F , where wsl and wD×F are non-
negative weights. From Definition 1, the P0 control policy can
maximize the general network capacity at

[
X∗, G∗] which

means that [− (C + b) , P (b)] is normal at
[
X∗, G∗] to

D × F, i.e., − (C + b) is normal at X∗ to D and P (b) is nor-
mal at G∗ to F. If [−C, 0] is perpendicular to the supporting
hyperplane of the set D × F ∩ S at

[
X∗, G∗], then [−C, 0]

is scaled by nD×F and thus wsl = 0 for l = 1 · · · L. Thus,
the condition for the general network capacity maximization
is that H b∗ = k1 HC and G∗ = k2s • b∗, where k1 and
k2 are the scaling factors, H is an

�M
m=1 Nm × L matrix

with
[

0(r−1)Lr−1 1Lr 0
]

on its r -th row, s • b∗ represents the
point-wise multiplication between s and b∗.

When [−C, 0] is not perpendicular to the supporting hyper-
plane of the set D × F ∩ S at

[
X∗, G∗],

[
X∗, G∗] must be

located at the boundary of S and D because the set D × F ∩ S
is a subset of an affine space and −C is a constant vector. Then
wsl �= 0 and wD×F nD×F = [−C, 0] −�L

l=1 wslnsl . Let b∗
l

be wsl ,
�L

l=1 wslnsl becomes
[

b∗T −sT • b∗T ]T
and thus the

condition for the general network capacity maximization is
that

[ − (C + b∗)T sT • b∗T
]T = wD×F nD×F. Note that b∗

is not normal to S if
[
X∗, G∗] is located at the interior of the

half-spaces Hsl but b∗
l is not zero.

The two conditions indicate that by proper construction
of b∗, the P0 control policy can maximize the general network
capacity. Recall that the bottleneck delay is a non-linear
function of equilibrium link flow and green-time proportion
vector (11), b∗ can only be constructed by adjusting the green-
time proportion vector. Then, we can obtain the following
lemma:

Lemma 1: If the proposed two conditions are not fulfilled,
no b∗ can be found through adjusting the green-time pro-
portion vector to maximize capacity of the general network
using P0 control policy. By adjusting the green-time proportion
vector, the equilibrium flow X∗ can be maintained as long as
− [

C + b (X∗, G∗ + ΔG)
]T = wDnD and X∗ is within the

set S for the new green-time vector G∗ + ΔG.
Proof: The normality of the travel cost vector − (C + b)T

to the demand set D can be ensured by adjusting green-
time proportion vector to change b, which is however unable
to guarantee that s • b is normal to the feasible set F.
That means, it is possible to find another Gm in F that
lets (s • b)T Gm be larger than (s • b)T (G∗ + ΔG) and thus[
X∗, G∗ + ΔG

]
may not be the solution to maximize capacity

of the general network using P0 control policy. From the
definition of D, S and capacity maximization, it is easy to
get the condition to keep the equilibrium flow X∗ unchanged
by adjusting the green-time proportion vector. �

Lemma 1 suggests that network capacity cannot always be
maximized with P0 control policy by adjusting green-time
proportion vector. The prerequisite of capacity maximization
is the capability to freely construct bottleneck delay b such
as changing the length of queue at each link exit, which is
consistent with Smith’s statement. To relieve the condition
of capacity maximization by adjusting green-time proportion
vector for any

[
X∗, G∗], at which [−C, 0] is normal to the set

D × F ∩ S, we propose a novel control policy in this paper,
which can be stated as

For any X and delay vector b, choose a stage
green-time proportion vector G in F to maximize�M

m=1
�Nm

n=1
�Nn

l=1 kl,n,m
�
Cl,n,m + bl,n,m

�
Gl,n,m,

that is, to let P (b) = k • (C + b) be normal at
G to F, where k is the scaling vector between the
normal vector nD to D at X and the normal vector
nF to F at G, i.e., nF = k • nD .

Because D and F are subset of affine spaces by the definition,
nD and nF are constant for any X and G on D and F,
respectively. Then, k is also constant. The following lemma
can be obtained:

Lemma 2: For any solution
[
X∗, G∗], at which [−C, 0]

is normal to the set D × F ∩ S, a bottleneck delay b∗ =
b (X∗, G∗ + ΔG) can be found by adjusting the green-
time proportion vector G in F so that the solution[
X∗, G∗ + ΔG, b∗] is consistent with the novel control policy

if X∗ is within set S for the new green-time vector G∗ + ΔG
and − [

C + b (X∗, G∗ + ΔG)
]T = wDnD .

Proof: Let us define a 2L × 1 normal vector
to the half spaces of S: Hs1 Hs2 · · · HsL by
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nsl = [
0T bl 0T −kl (C + bl ) 0T ]T

. By the given
condition, [−C, 0] is normal to the set D × F ∩ S
at

[
X∗, G∗ + ΔG

]
for any ΔG, then [−C, 0] =�L

l=1 wslnsl + wD×F nD×F , where nD×F must be
normal at

[
X∗, G∗ + ΔG

]
to D × F and

�L
l=1 wslnsl

must be normal at
[
X∗, G∗ + ΔG

]
to S. Then, we have

wD×F nD×F = [−C, 0] − �L
l=1 wslnsl . Let wsl be one,

then wD×F nD×F =
[ − (C + b (X∗, G∗ + ΔG))T ,

kT • (C + b (X∗, G∗ + ΔG))T

]T

.

To guarantee that nD×F is normal at
[
X∗, G∗ + ΔG

]
to

D × F, − (C + b (X∗, G∗ + ΔG))T should be normal at[
X∗, G∗ + ΔG

]
to D, and kT • (C + b (X∗, G∗ + ΔG))T

should be normal at
[
X∗, G∗ + ΔG

]
to F. Because of

nF = k • nD and the condition for flow maintenance
proposed by Lemma 1, Lemma 2 is proved. �

Lemma 2 indicates that any bottleneck delay b, with which
− (C + b)T is normal to D, fulfills that P (b) is also normal
to F.

Now we have shown the superiority of the novel control
policy over the P0 control policy because it relieves the
condition for capacity maximization. Note that Lemma 2
states a sufficient condition for determining the equilibrium
by adjusting the green-time proportion vector and fixing the
equilibrium flow vector with the novel control policy. In next
subsection, we propose a dynamical system which combines
flow swap process, green-time proportion swap process and
flow divergence The proof of the existence, uniqueness and
stability of equilibrium will be given.

IV. A HYBRID DYNAMICAL SYSTEM INCORPORATING

FLOW SWAP PROCESS, GREEN-TIME PROPORTION SWAP

PROCESS AND FLOW DIVERGENCE

In this subsection, we firstly describe a dynamical system
for the proposed general network and then give the proof of
equilibrium existence, condition of uniqueness and stability.

A. Hybrid Dynamical System for the General Network

In this study, we apply the proportional switch adjustment
process introduced by Smith to our proposed general network.
The proportional switch adjustment process (PAP) can be
utilized to change flow vector and green-time proportional
vector at each time instant. For the case where there are several
routes joining a single OD pair [1], the flow change on each
route at each time instant can be expressed by

ΔXSP =
�

{(r :s):r<s}
w

�
Xr [Cr (X) − Cs (X)]+ Δr s+
Xs [Cs (X) − Cr (X)]+ Δsr

�
(30)

where r and s represent the r -th and s-th routes for the OD
pair, respectively, Xr and Xs represent the flow on the r -th
and s-th route at the current time instant, respectively, X is the
route flow vector, Cr (X) and Cs (X) represent the travel cost
on the r -th and s-th routes with the flow vector X , respectively,
[Cr (X) − Cs (X)]+ = max {[Cr (X) − Cs (X)] , 0}, Δr s =�

0T −1 0T 1 0T
�T

, Δsr = � 0T 1 0T −1 0T
�T

, w is a posi-
tive scaling factor. Note that Δr s and Δsr are Nm ×1 vectors,
the first, second and third 0T are r −1×1 vector, s −r −1×1

vector and Nm −s×1 vector, respectively. Equation (30) states
that at each time instant, the flow swapping from a higher cost
route to a lower cost route is proportional to the product of
flow on the higher cost route and the cost difference between
the two routes, the flow swap vector ΔXSP is determined by
summing the flow swaps between any pair of routes.

In our proposed general network, link flow on the links
along the same route is different because of flow diverge
at each link exit. The flow swaps between routes denote
the input flow re-assignment between any pair of routes
for each OD pair. Recall that the Wardrop equilibrium[
X∗, G∗] can be determined by finding a

[
X∗, G∗] such

that
[−tT (X∗, G∗) , 0

]
is normal at

[
X∗, G∗] to the set

D × F ∩ S (27). In the proposed general network, the L × 1
link flow vector X has the degree of freedom of the number
of input links for the M OD pairs, i.e.,

�M
m=1 Nm , and

L −�M
m=1 Nm elements in X can be determined by the input

link flow vector XI and the turning rates between two adjacent
links. Therefore, (27) can be rewritten by

[
X∗

I , G∗] = min
[X,G]

tT (X, G) X

= min
[XI,G]

tT
I (XI, G)XI (31)

where tI (XI, G) is the
�M

m=1 Nm dimensional travel cost
vector projected from t (X, G) and can be expressed by

tI (XI, G) = P �T t (X, G)

= P �T(C + b (XI, G))

= P �TC + P �Tb (XI, G)

= CI + bI (XI, G) (32)

where P � is the turning rate matrix given by (19), CI
and bI (XI, G) are the projected free-travel cost vector and
bottleneck delay vector, respectively. Then, X = P � XI
and thus problem (27) becomes finding a

[
X∗

I , G∗] such
that

[−tT
I

(
X∗

I , G∗) , 0
]

is normal at
[
X∗

I , G∗] to the set
D × F ∩ S. Thus, the input flow swap vector for M OD
pairs ΔXm,I = �ΔX1,1,m ΔX1,2,m · · · ΔX1,Nm ,m

�T can be
determined by

ΔXm,I =
�

{(r :s):r<s}
w

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X1,r,m

%
tr,m,I (XI, G) −
ts,m,I (XI, G)

&

+×Δr s + Δsr×
X1,s,m

%
ts,m,I (XI, G)−
tr,m,I (XI, G)

&

+

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=
�

{(r :s):r<s}
w

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1,r,m

⎡

⎣
Cr,m,I − Cs,m,I+
br,m,I (XI, G) −
bs,m,I (XI, G)

⎤

⎦

+×Δr s + Δsr×

X1,s,m

⎡

⎣
Cs,m,I − Cr,m,I+
bs,m,I (XI, G) −
br,m,I (XI, G)

⎤

⎦

+

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(33)

where X1,r,m and X1,s,m are respectively the input flow on
the r -th and s-th route for the m-th OD pair, Cr,m,I, Cs,m,I,
br,m,I and bs,m,I are respectively the free-travel travel costs and
bottleneck delay on the r -th and s-th input links for the m-th
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OD pair. Then the link flow swap vector for the m-th user can
be determined by

ΔXm = Am P �

⎡

⎢
⎢
⎢
⎣

ΔX1,I
ΔX2,I

...
ΔX M,I

⎤

⎥
⎥
⎥
⎦

(34)

where Am is the m-th scaling matrix.
To give the green-time proportion adjustment process in the

general network, we firstly give ΔGSP for the single OD pair
case [1]:

ΔGSP =
�

{(r :s):r<s}
w

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Gr

%
[sb (X, G)]s −
[sb (X, G)] r

&

+×Δr s + Δsr×
Gs

%
[sb (X, G)]r −
[sb (X, G)]s

&

+

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(35)

where Gr and Gs are green-time proportion vectors on the r -
th and s-th route, respectively, [sb (X, G)]s and [sb (X, G)]r
are stage pressure on the s-th and r -th routes, respectively.
Equation (35) shows that by P0 control policy, green-time
proportion swaps from a lower stage-pressure route to a higher
stage-pressure route, and the green-time proportion swap vec-
tor is proportional to the product of green-time proportion on
the lower stage-pressure route and stage pressure difference
between the two routes, ΔGSP is determined by summing the
green-time proportion swaps between any pair of routes.

Note that Smith only considered that one signal per route
that can be adjusted [1]. In our proposed general network,
each route of an OD pair traverses multiple traffic signals,
and thus adjustment of each signal can affect equilibrium
flow and bottleneck delay on that route. It is hard to directly
give the green-time proportion swap vector for each route of
each OD pair by (35) because the red-green splits of any
signals at intersections have impacts on the routes for different
OD pairs. Recall that P0 control policy aims at equalizing
the stage pressure Pn,m = �Nn,m

l=1 sl,n,m bl,n,m on each route,
i.e., maximizing

�M
m=1
�Nm

n=1

�Nn
l=1 sl,n,mbl,n,m Gl,n,m . From

the feasible set defined by (24), adjustment of green-time
proportions of traffic signal at different intersections is inde-
pendent of each other while the green-time proportions for the
links incident to the same intersection must sum to one. Thus,
the green-time proportion adjustment process in the general
network can be realized by simultaneously adjusting the green-
time proportion vector for traffic signal at each intersection so
that the stage pressure is normal at the adjusted green-time
proportion vector to the set

�
m,m� Gm,Inm,n�m� = 1 for traffic

signal at each intersection:

ΔGi,GP =
�

{(r :s):r<s}
w

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Gr,i

%
[P (b(XI, G))]s,i −

[P (b(XI, G))]r,i

&

+×Δr s + Δsr×
Gs,i

%
[P (b(XI, G))]r,i −
[P (b(XI, G))]s,i

&

+

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(36)

where i = 1, 2, · · · I , r and s are the two links incident to the
i -th intersection and they may be affiliated with different OD
pairs, [P (b(XI, G))]s,i and [P (b(XI, G))]r,i are respectively

the stage pressure on the s-th and r -th links incident to
the i -th intersection, I is the number of intersections in
the general network. With the novel control policy proposed
in subsection III-C, the stage pressure vector P (b(XI, G))
should be changed to k • (C + b (XI, G)), the rest are the
same as those with P0 control policy.

Let us define ΔXm and ΔGm as the link flow swap
vector and green-time proportion swap vector for the m-th
OD pair obtained by (33), (34) and (36), respectively. Then,
the dynamical system can be obtained by

[Xm, Gm](t + 1) = [Xm, Gm](t) + λ (t) Δ[Xm, Gm](t)

m = 1 · · · M (37)

where λ (t) is a positive number that represents the step length
at the t-th time instant and we suppose that it follows the step
length rules proposed in [25].

B. The Condition for Existence, Uniqueness and Stability of
Equilibrium of the Dynamical System Given by (37)

Let us define the boundary of the set D × F ∩ S as B
and express the projected travel cost vector tI (XI, G) by
tnm ,m,I (XI, G) for nm = 1, 2, · · · , Nm ; m = 1, 2, · · · , M .
Then we can obtain the following lemma and corollary.

Lemma 3: The Wardrop equilibrium of the dynamical
system given by (37) exists when tnm ,m,I (XI, G) and
P (b (XI, G)) are continuous functions over the set
D × F ∩ S for nm = 1, 2, · · · , Nm ; m = 1, 2, · · · , M,
and for any element Y = [XI, G] on B, it satisfies
the condition that Aux,mΔXm,I ≤ 0, m = 1, 2, · · · , M
and Aug,mΔGm ≤ 0, m = 1, 2, · · · , M for all
elements in Y reaching their upper boundaries;
while Alx,mΔXm,I ≥ 0, m = 1, 2, · · · , M and
Alg,mΔGm ≥ 0, m = 1, 2, · · · , M for all elements in
Y reaching their lower boundaries, where Aux,m, Aug,m,
Alx,m and Alg,m are the scaling matrices for the elements in
Y reaching their upper and lower boundaries, respectively.

Proof: Let us rewrite (37) as

[Xm, Gm](t + 1) = f ([Xm, Gm] (t) , λ (t))

m = 1, 2, · · · , M (38)

Let us define Xu,m,I, Gu,m, Xl,m,I and Gl,m as the link
flow and green-time proportion vectors of the m-th OD pair
containing all elements in an arbitrary vector Y = [XI, G]
on B which reach their upper and lower boundary, respec-
tively. The rest elements in Y are defined as Yr. Then,
from (37), the updated Xu,m,I and Gu,m will become smaller
if Aux,mΔXm,I ≤ 0 and Aug,mΔGm ≤ 0; while the updated
Xl,m,I and Gl,m will become larger if Alx,mΔXm,I ≥ 0 and
Alg,mΔGm ≥ 0. Because tnm ,m,I (XI, G) and P (b (X, G)) are
continuous functions, there exists a positive number λ that lets
the updated Y

Y =

⎡

⎢
⎢
⎢
⎢
⎣

Xu,m,I
Gu,m
Xl,m,I
Gl,m
Yr

⎤

⎥
⎥
⎥
⎥
⎦

+ λ

⎡

⎢
⎢
⎢
⎢
⎣

Aux,mΔXm,I
Aug,mΔGm
Alx,mΔXm,I
Alg,mΔGm

ΔYr

⎤

⎥
⎥
⎥
⎥
⎦

(39)
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be located in D × F ∩ S. For any vectors on D × F ∩ S −
B, there exists a positive number λ that lets the updated
Y be still located in D × F ∩ S because of the continu-
ity of tnm ,m,I (XI, G) and P (b (X I, G)). That means f :
D×F ∩ S → D × F ∩ S. The set D × F ∩ S is a compact
and convex set. Then, from Brouwer’s fixed point theorem,
there exists a fixed point

[
X∗

m, G∗
m
]

on D × F ∩ S that lets
[
X∗

m, G∗
m
] = f

([
X∗

m, G∗
m
])

, m = 1, 2, · · · , M (40)

which means that Δ
[
X∗

m, G∗
m
] = 0, and thus X∗

m is the
Wardrop equilibrium. �

Remark 4: Note that lemma 3 gives the sufficient condition
for existence of Wardrop equilibrium, rather than neces-
sary condition. If tnm ,m,I (XI, G) and P (b (XI, G)) are not
monotone increasing functions for any link flows, there are
possibilities that the Wardrop equilibrium exists although the
condition is not fulfilled. In that case, the dynamical system
becomes unstable in certain regions. The stability will be
discussed in the following context.

Corollary 1: If tnm ,m,I (XI, G) and P (b (XI, G)) are
monotone functions of XI for any link flow and the condition
in lemma 3 is fulfilled, then X∗

I is unique.
Proof: Suppose that there is an equilibrium

[
X∗

I , G∗] in
D × F ∩ S, which let the travel cost on each input link and
the stage pressure on each incident link be equal to each other,
that is, tr,m,I

�
X∗

I , G∗� = ts,m,I
�
X∗

I , G∗� for any r -th and s-
th input links of the m-th OD pair, and [P (b(XI, G))]s,i =
[P (b(XI, G))]r,i for any r -th and s-th links incident to the
i -th intersection. For an arbitrary [XI, G] �= [

X∗
I , G∗], it

has tr,m,I (XI, G) �= ts,m,I (XI, G) and [P (b(XI, G))]s,i �=
[P (b(XI, G))]r,i because of monotonicity of tnm ,m,I (XI, G)
and P (b (XI, G)). Then corollary 1 is proved. �

Corollary 1 gives the condition for uniqueness of the equi-
librium for a given G, i.e., a given feasible set. In the proposed
dynamical system, G and X change over time and thus there
exists a set of equilibria rather than a unique equilibrium
even though tnm ,m,I (XI, G) and P (b (XI, G)) are monotone
functions. Recall that equation (31) aims at finding a solution
minimizing the sum of product of link flow and link cost. Each
equilibrium in the set of equilibria gives a link-flow and link-
cost vector, and thus gives different product. Then, we can
obtain the following lemma:

Lemma 4: The set of equilibria E is a compact, non-convex
set. Any point

[
X∗

I , G∗] in E satisfies

∂(K )tk,m,I
�
X∗

I , G∗�

∂ XI∂G
= ∂(K )t�,m,I

�
X∗

I , G∗�

∂ XI∂G
k �= �, m = 1, 2, · · · , M (41)

where K is the number of variables.
Proof: From the definition of Wardrop equilibrium,

the vector
[−tT (

X∗
I , G∗) , 0

]
is normal at

[
X∗

I , G∗] to the
set D × F ∩ S. Recall that D × F ∩ S is a subset of an affine
space. Thus, for each G∗, it has

tk,m,I
�
X∗

I , G∗� = t�,m,I
�
X∗

I , G∗�

k �= �, m = 1, 2, · · · , M (42)

Because tk,m,I (XI, G) is a continuous monotone function on
D × F ∩ S for a given G for k = 1, 2, · · · , Nm , and the

adjustment of G is a continuous process, the solution space for
(42) is continuous and a subspace of D × F ∩ S, and thus it
is compact. Suppose that

[
X∗

1,I, G∗
1

]
and

[
X∗

2,I, G∗
2

]
are any

two equilibria in the solution space, then, an arbitrary point
on the line segment between the two points can be expressed
by

[
Xs,I, Gs

] = θ1

[
X∗

1,I, G∗
1

]
+ (1 − θ1)

[
X∗

2,I, G∗
2

]
for 0 ≤

θ1 ≤ 1. It is obvious that tk,m,I
�
Xs,I, Gs

� �= t�,m,I

�
X∗

s,I, G∗
s

�

for k �= �, m = 1, 2, · · · , M because of non-linearity of
tk,m,I (XI, G). Thus, the solution space is a non-convex set.

The two equilibria
[

X∗
1,I, G∗

1

]
and

[
X∗

2,I, G∗
2

]
satisfy

� X∗
2,I

X∗
1,I

� G∗
2

G∗
1

⎛

⎝
∂(K )tk,m,I(XI,G)

∂ XI∂G −
∂(K )t�,m,I(XI,G)

∂ XI∂G

⎞

⎠ dXIdG = 0

k �= �, m = 1, 2, · · · , M (43)

where
) X∗

2,I

X∗
1,I

) G∗
2

G∗
1

represents multiple integrals from
[

X∗
1,I, G∗

1

]

to
[

X∗
2,I, G∗

2

]
. Let us define

[
X∗

2,I, G∗
2

]
=

[
X∗

1,I, G∗
1

]
+

[ΔXI, ΔG1], when [ΔXI, ΔG1] is close to zero, (43)
becomes

lim
[ΔXI, ΔG1] → 0

� X∗
1,I+ΔXI

X∗
1,I

� G∗
1+ΔG1

G∗
1

×
�

∂(K )tk,m,I (XI, G)

∂ XI∂G
− ∂(K )t�,m,I (XI, G)

∂ XI∂G

�
dXIdG = 0

k �= �, m = 1, 2, · · · , M

then lemma 4 is proved. �
From the definition in [13], the dynamic system given

by (37) is stable if and only if, for any initial vector[
X0,I, G0

] ∈ D × F ∩ S, the solution of (37) with the initial
vector

[
X0,I, G0

]
converges as t → ∞, to the set of equilibria

E. To prove the stability of the dynamical system, let us define
a function V by

V ([XI, G]) =
M�

m=1

VX,m ([XI, G]) +
I�

i=1

VG,i ([XI, G])

(44)

where

VX,m ([XI, G]) =
Nm�

r,s=1,r �=s

X1,r,m

�
tr,m,I (XI, G) −
ts,m,I (XI, G)

�2

+
= CT

d,m,I (XI, G) Xm,I

VG,i ([XI, G]) =
Ni�

r,s=1,r �=s

Gr,i

�
[P (b (X, G))]s,i −
[P (b (X, G))]r,i

�2

+
= PT

d,i (X, G)Gi

where Nm and Ni are respectively the number of routes for
the m-th OD pair and the number of links incident to the i -
th intersection, Xm,I = � X1,1,m X1,2,m · · · X1,Nm ,m

�T, Gi =
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�
G1,i G2,i · · · GNi ,i

�T,

Cd,m,I (XI, G) =
* Nm�

s=2

�
t1,m,I (XI, G) −
ts,m,I (XI, G)

�2

+
· · ·

Nm�

s=1,s �=Nm

�
tNm ,m,I (XI, G) −

ts,m,I (XI, G)

�2

+

⎤

⎦

T

(45)

Pd,i (X, G) =
⎡

⎣
Ni�

s=2

�
[P (b (XI, G))]s,i −
[P (b (XI, G))]1,i

�2

+
· · ·

Ni�

s=1,s �=Ni

�
[P (b (XI, G))]s,i −
[P (b (XI, G))]Ni ,i

�2

+

⎤

⎦

T

(46)

It is obvious that V ([XI, G])=0 if and only if [XI, G] is
an equilibrium and V ([XI, G]) > 0 for all [XI, G] ∈
D × F ∩ S\E, where A\B represents the relative comple-
ment of A with respect to B. Now we investigate monotonicity
of V ([XI, G]) with t . The time derivative of V ([XI, G]) can
be expressed by

dV ([XI, G])
dt

= ∂V ([XI, G])
∂[XI, G]

d[XI, G]
dt

= ∂V ([XI, G])
∂ XI

d XI

dt
+ ∂V ([XI, G])

∂G
d G
dt

=
M�

m=1

+
M�

n=1

∂VX,n ([XI, G])
∂ Xm,I

+
I�

i=1

∂VG,i ([XI, G])
∂ Xm,I

,
d Xm,I

dt

+
I�

i=1

⎛

⎝
I�

j=1

∂VG, j ([XI, G])
∂Gi

+
M�

n=1

∂VX,n ([XI, G])
∂Gi

⎞

⎠ d Gi

dt

=
M�

m=1

+

CT
d,m,I (XI, G) +

M�

n=1

XT
n,I

∂Cd,n,I (XI, G)

∂ Xm,I

+
I�

i=1

�
GT

i
∂ Pd,i (XI, G)

∂ Xm,I

�,
d Xm,I

dt

+
I�

i=1

+
M�

n=1

+

XT
n,I

∂CT
d,n,I (XI, G)

∂Gi

,

+ PT
d,i (XI, G) +

I�

j=1

GT
j
∂ Pd, j (XI, G)

∂Gi

⎞

⎠ d Gi

dt
(47)

By (45) and (46), XT
n,I

∂Cd,n,I(XI,G)
∂ Xm,I

, GT
i

∂ Pd,i (XI,G)

∂ Xm,I
,

XT
n,I

∂CT
d,n,I(XI,G)

∂Gi
and GT

j
∂ Pd, j (XI,G)

∂Gi
can be determined

by

XT
n,I

∂Cd,n,I (XI, G)

∂ Xm,I
= �C Xd,1 C Xd,2 · · · C Xd,Nm

�

= − 2

w
ΔXT

n,I J cx,nm

C Xd,nm = 2
Nn�

�=1

X1,�,n

Nn�

s=1,s �=�

�
t�,n,I (XI, G)−
ts,n,I (XI, G)

�

+

×
+ ∂t�,n,I(XI,G)

∂ X1,nm ,m
−

∂ts,n,I(XI,G)
∂ X1,nm ,m

,

GT
i
∂ Pd,i (XI, G)

∂ Xm,I
= � P Xd,1 P Xd,2 · · · P Xd,Nm

�

= 2

w
ΔGT

i,GP Jpx,im

P Xd,nm = 2
Ni�

�=1

G�,i

Ni�

s=1,s �=�

×
�

[P (b (XI, G))]s,i −
[P (b (XI, G))]�,i

�

+

×
+

P � �bs,i (XI, G)
� ∂bs,i (XI,G)

∂ X1,nm ,m
−

P � �b�,i (XI, G)
� ∂b�,i (XI,G)

∂ X1,nm ,m

,

XT
m,I

∂CT
d,m,I (XI, G)

∂Gi
= �CGd,1 CGd,2 · · · CGd,Ni

�

= − 2

w
ΔXT

m,I J cg,mi

CGd,ni = 2
Nm�

�=1

X1,�,m

Nm�

s=1,s �=�

�
t�,m,I(XI, G) −
ts,m,I(XI, G)

�

+

×
⎛

⎝
∂t�,m,I(XI,G)

∂Gni ,i
−

∂ts,m,I(XI,G)
∂Gni ,i

⎞

⎠

GT
j
∂ Pd, j (XI, G)

∂Gi
= � PGd,1 PGd,2 · · · PGd,Ni

�

= 2

w
ΔGT

i,GP Jpg, j i

PGd,ni = 2

N j�

�=1

G�, j

N j�

s=1,s �=�

×
�

[P (b (XI, G))]s, j −
[P (b (XI, G))]�, j

�

+

×
⎛

⎝
P � �bs, j (XI, G)

� ∂bs, j (XI,G)
∂Gni ,i

−
P � �b�, j (XI, G)

� ∂b�, j (XI,G)
∂Gni ,i

⎞

⎠

(48)

where J cx,nm, Jpx,im , Jcg,mi and Jpg, j i are the Jaco-
bian matrices of tI,n (XI, G), Pi (b (XI, G)), tI,m (XI, G) and
P j (b (XI, G)) evaluated at Xm,I, Xm,I, Gi and Gi , respec-
tively. Thus,

+
M�

n=1

∂VX,n ([XI, G])
∂ Xm,I

+
I�

i=1

∂VG,i ([XI, G])
∂ Xm,I

,
d Xm,I

dt

= − 2

w

M�

n=1

ΔXT
n,I J cx,nmΔXm,I + CT

d,m,I (XI, G) ΔXm,I

+ 2

w

I�

i=1

ΔGT
i,GP Jpx,imΔX m,I = CT

d,m,I (XI, G) ΔXm,I

− 2

w
ΔXT

M�

n=1

AT
n,I J cx,nm Am,IΔX
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+ 2

w
ΔGT

I�

i=1

BT
i Jpx,im Am,IΔX (49)

and
⎛

⎝
I�

j=1

∂VG, j ([XI, G])
∂Gi

+
M�

n=1

∂VX,n ([XI, G])
∂Gi

⎞

⎠ d Gi

dt

= − 2

w

M�

n=1

ΔXT
n,I J cg,niΔGi,GP + PT

d,i (X, G)ΔGi,GP

+ 2

w

I�

j=1

ΔGT
j,GP Jpg, j iΔGi,GP = PT

d,i (X, G)ΔGi,GP

− 2

w
ΔXT

M�

n=1

AT
n,I J cg,ni BiΔG

+ 2

w
ΔGT

I�

j=1

BT
j Jpg, j i BiΔG (50)

where Am,I and Bi are the scaling matrices for input links
of the m-th OD pair and the i -th intersection, respectively.
Combined with (49) and (50), (47) can be rewritten by

dV ([XI, G])
dt

=
M�

m=1

CT
d,m,I (XI, G) ΔXm,I

+
I�

i=1

PT
d,i (XI, G)ΔGi,GP

− 2

w
ΔXT

M�

m=1

M�

n=1

AT
n,I Jcx,nm Am,IΔX

+ 2

w
ΔGT

I�

i=1

I�

j=1

BT
j Jpg, j i BiΔG

+ 2

w
ΔXT

M�

n=1

I�

i=1

AT
n,I

�
JT

px,in − Jcg,ni

�
BiΔG (51)

The stage pressure function Pi (b (XI, G)) is a non-increasing
monotone function of G, Jpg = �I

i=1
�I

j=1 BT
j Jpg, j i Bi

is a diagonal matrix, and thus it is a negative semi-
definite matrix. The travel cost function tn,I (XI, G)

is non-decreasing monotone function of XI. However,�M
m=1
�M

n=1 AT
n,I J cx,nm Am,I is non-symmetric and thus it

is cumbersome to state that
�M

m=1
�M

n=1 AT
n,I J cx,nm Am,I is

a positive semi-definite matrix. We propose the following
theorem to determine the matrix definiteness.

Theorem 1: A square matrix M is positive (or negative)
semi-definite over a given compact space S, i.e., xTM x ≥
0
�
or xT M x ≤ 0

�
for any x ∈ S iff (if and only if)

M is a full-rank matrix and for any element xB ∈ BS,
where BS is the boundary of S and satisfies xT

B M xB ≥ 0�
or xT

B M xB ≤ 0
�
.

Proof: Let us define y = xTM x for x ∈ S. By the
definition of critical point that a critical point a differential

function is any value in its domain where its derivative is
zero [26]. Then, the critical point xm can be determined by

∂y

∂x
= xT M = 0

When M is a full-rank matrix, xm = 0 becomes the unique
critical point. It is straightforward that y = 0 at the critical
point. Suppose that for any element xB ∈ BS, where BS is the
boundary of S and satisfies xT

B M xB ≥ 0 (or xT
B M xB ≤ 0).

We hypothesize that there exists at least one point within S
leading to y < 0 (or y > 0), then there are at least one
critical point xc ∈ S, that lets y < 0 (or y > 0), which
is conflict with the uniqueness of xm. Then, theorem 1 is
proved. �

From (33), (34) and (36), ΔX fulfills 1TΔXm,I = 0, −Tm ≤
ΔXl,m,I ≤ Tm . Let us define SΔX and SΔG as the compact
space for ΔX and ΔG, respectively, BΔX and BΔG as their
boundaries, respectively. Then, with theorem 1, we can get the
following corollary:

Corollary 2: The matrix
�M

m=1
�M

n=1 AT
n,I J cx,nm Am,I is

positive semi-definite over SΔX .
Proof: For simplicity of expression, let us express�M

m=1
�M

n=1 AT
n,I Jcx,nm Am,I by Jcx. Then ΔXT J cxΔX =

ΔXT
I Jcx,IΔXI, where J cx,I is the

�M
m=1 Nm × �M

m=1 Nm

Jacobian matrix. From (33), (34), we can know that J cx,I is
a full-rank matrix, and the element on the k-th row and �-th
column can be expressed by

Jk�,cx,I = ∂ tk,I (XI, G)

∂ X�,I
= ∂
�

P �
kTC + P �T

k b
(

P � XI, G
)�

∂ X�,I

= P �T
k

∂b
(

P � XI, G
)

∂ X�,I
(52)

The space SΔX is a subset of affine space. The vertices on
BΔX are

�M
m=1 Nm × 1 vectors

�
0 −Tm 0 Tm 0

�T
, where

the length of first 0, second 0 and third 0 are respectively�m−1
m�=1 Nm� + k1,m , k2,m and

�M
m�=m+1 Nm� + k3,m , and Nm =

2 + k1,m + k2,m + k3,m . There are
�M

m=1

�
2

Nm

�
vertices on

BΔX . Furthermore, for each vertex ΔXv , it can be shown that
ΔXT

v Jcx,IΔXv ≥ 0 from (52) and the fact that tn,I (XI, G)

is a non-decreasing monotone function of XI. Then for each
xB ∈ BΔX , it has xT

B M xB ≥ 0, and thus from theorem 1,
corollary 2 is proved. �

Corollary 2 shows that the third term in (51) is negative,
which leads to the following corollary that shows the sum-
mation of last three terms in (51) to be also negative. Let us
express

�M
n=1
�I

i=1 AT
n,I

�
JT

px,in − Jcg,ni

�
Bi by Jxg, then

the following corollary can be obtained:
Corollary 3: The derivative dV ([XI, G]) /dt fulfills the

following inequality

dV ([XI, G])
dt

≤
M�

m=1

CT
d,m,I (XI, G) ΔXm,I

+
I�

i=1

PT
d,i (XI, G)ΔGi,GP (53)
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Proof: Equation (51) can be rewritten by

dV ([XI, G])
dt

=
M�

m=1

CT
d,m,I (XI, G) ΔXm,I

+
I�

i=1

PT
d,i (XI, G)ΔGi,GP

− 2

w

�
ΔXT J

�
cxΔX + ΔGT J

�
pgΔG − ΔXT JxgΔG

�

(54)

where J
�
pg = −Jpg and J

�
cx = 1

2

�
J cx + JT

cx

�
. Recall that

Jpg is a negative semi-definite matrix and J cx is a non-
symmetric positive semi-definite matrix over SΔX . Thus, J

�
pg

and J
�
cx are positive semi-definite matrices. From Cauchy-

Schwarz inequality, we have

|ΔXT JxgΔG| ≤
-

ΔXT HT
1 H1ΔX

-
ΔGT HT

2 H2ΔG (55)

where Jxg = HT
1 H2. Then

�
ΔXT J �

cxΔX + ΔGT J
�
pgΔG
�2

=
�
ΔXT J

�
cxΔX
�2 +
�
ΔGT J �

pgΔG
�2

+ 2ΔXT J �
cxΔXΔGT J �

pgΔG (56)

We let H2 = J
� 1

2
pg, which is a diagonal matrix. Furthermore,

HT
1 in (55) becomes HT

1 = Jxg J
�− 1

2
pg . Then, (55) can be

transformed to

�
ΔXT JxgΔG

�2 ≤ ΔXT Jxg J �−1
pg JT

xgΔXΔGT J �
pgΔG (57)

and we have

2ΔXT J �
cxΔXΔGT J �

pgΔG −
ΔXT Jxg J �−1

pg JT
xgΔXΔGT J �

pgΔG = T r
�
ΔGΔXT×

�
2 J �

cxΔXΔGT J �
pg − Jxg J �−1

pg JT
xgΔXΔGT J �

pg

��
=

T r
�
ΔGΔXT

�
2 J �

cx − Jxg J �−1
pg JT

xg

�
ΔXΔGT J �

pg

�
(58)

The matrix ΔXΔGT in (58) is with the rank of one, and from
the definition of travel cost function and stage pressure vector,
J �

pg

�
2 J �

cx − Jxg J �−1
pg JT

xg

�
can be shown to be a positive

semi-definite matrix, and thus (58) is a non-negative number.
From (55) to (58), the last term in (54) is a non-positive
number and thus corollary 3 is proved. �

Then, we can get the following lemma:
Lemma 5: The derivative dV ([XI,G])

dt < 0 for all [XI, G] ∈
D × F ∩ S\E

Proof: From the definition of the input flow swap vec-
tor (32) and the green-time proportion swap vector (36), (53)

can be transformed to
dV ([XI, G])

dt

≤ w

M�

m=1

Nm�

nm=1

Nm�

s=1,s �=nm

�
tnm ,m,I (XI, G)
−ts,m,I (XI, G)

�2

+

×
⎛

⎝
Nm�

s=1,s �=nm

�−X1,nm ,m
�
�

tnm ,m,I (XI, G) −
ts,m,I (XI, G)

�

+

+ X1,s,m

�
ts,m,I (XI, G) −
tnm ,m,I (XI, G)

�

+

�
+ w

I�

i=1

Ni�

ni =1

Ni�

s=1,s �=ni

×
�

[P (b (XI, G))]s,i −
[P (b (XI, G))]ni ,i

�2

+

⎛

⎝
Ni�

s=1,s �=ni

�−Gni ,i
�

×
�

[P (b (XI, G))]s,i
− [P (b (XI, G))]ni ,i

�

+

+ Gs,i

�
[P (b (XI, G))]ni ,i− [P (b (XI, G))]s,i

�

+

�
(59)

Because of

0 ≤
Nm�

nm=1

Nm�

s=1,s �=nm

�
tnm ,m,I (XI, G)
−ts,m,I (XI, G)

�2

+

×
Nm�

s=1,s �=nm

X1,s,m

�
ts,m,I (XI, G) −
tnm ,m,I (XI, G)

�

+

≤
Nm�

nm=1

Nm�

s=1,s �=nm

�
tnm ,m,I (XI, G)
−ts,m,I (XI, G)

�2

+

×
Nm�

s=1,s �=nm

X1,nm ,m

�
tnm ,m,I (XI, G) −

ts,m,I (XI, G)

�

+

and similarity for the stage pressure function, Lemma 5 is
proved. �

Now, we has proved that V ([XI, G])=0 if and only
if [XI, G] is an equilibrium, V ([XI, G]) > 0 for all
[XI, G] ∈ D × F ∩ S\E and dV ([XI,G])

dt < 0 for all [XI, G] ∈
D × F ∩ S\E. By Lyapunov theorem, we can conclude that
the dynamical system given by (37) can converge to an
equilibrium on E as time goes to infinity by using the novel
control policy, or the P0 control policy if the two conditions
proposed in the subsection III-C are satisfied.

V. NUMERICAL RESULTS

The proposed dynamical system given by (37) is tested on
an one-OD two-route network illustrated by Fig. 1 and a two-
OD two-route network illustrated by Fig. 2.

In order to validate the superiority of our proposed novel
control policy over the P0 control policy, we start from an
arbitrary feasible point fulfilling the condition given by (1), (2)
and (3), set the stage pressure vector to P (b) = k • (C + b)

and P (b) = s • b, respectively, and observe if the dynamical
system can converge to a feasible point as time goes to infinity.
In order to validate the condition of existence of equilibrium
point proposed by Lemma 3, we start from an arbitrary feasible
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Fig. 4. Time evolution of traffic flow using novel control policy.

Fig. 5. Time evolution of green-time proportion using novel control policy.

Fig. 6. Time evolution of traffic flow using P0 control policy.

point for the cases that the boundary condition in Lemma 3
is satisfied or not, and compare the output of the dynamical
system.

For the one-OD two-route network, we set the length of two
routes and saturation flow of two routes as 0.5km, 1km and
100 vehicles/h, 150 vehicles/h, respectively. The free speed of
both routes, the total demand and the duration of traffic light
cycle are set to be 50km/h, 100 vehicles/h and 120 seconds,
respectively. We start from an arbitrary feasible point XV0 =
[ 58.33 41.67 ], GV0 = [

0.67 0.33
]

and set the step length

Fig. 7. Time evolution of green-time proportion using P0 control policy.

Fig. 8. Time evolution of traffic flow using novel control policy; the condition
of existence of equilibrium is NOT fulfilled.

Fig. 9. Time evolution of green-time proportion using novel control policy;
the condition of existence of equilibrium is NOT fulfilled.

by the rules proposed in [25]. The output of the dynamical
system is illustrated by Fig. 4 and Fig. 5, which show the
time evolution of traffic flow and green-time proportion on
two routes, respectively, when the novel control policy is used.
The dynamical system is stable as the equilibrium point can
be approached after approximately 1000 iterations. Fig. 6 and
Fig. 7 illustrate the output of the dynamical system by using
the P0 control policy. It can be seen that traffic flow and green-
time proportion cannot approach a feasible equilibrium point
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Fig. 10. Time evolution of green-time proportion using novel control policy;
the condition of existence of equilibrium is NOT fulfilled.

Fig. 11. Time evolution of traffic flow using novel control policy on two-OD
two-route network; the condition of existence of equilibrium is fulfilled.

Fig. 12. Time evolution of green-time proportion using novel control policy
on two-OD two-route network; the condition of existence of equilibrium is
fulfilled.

within the first 180 iterations, and after the 180th iteration,
the solution of system is no more feasible. Fig. 8 and 9 show
that even start from a feasible point, no feasible equilibrium
can be found if the condition of existence of equilibrium
proposed by Lemma 3 is not satisfied.

For the two-OD two-route network, we set the length and
saturation flow of two routes of OD1 and OD2 as 1km, 2km,
1km, 2km, and 100 vehicles/h, 350 vehicles/h and 100 vehi-

Fig. 13. Time evolution of green-time proportion using novel control policy
on two-OD two-route network; the condition of existence of equilibrium is
NOT fulfilled.

Fig. 14. Time evolution of green-time proportion using novel control policy
on two-OD two-route network; the condition of existence of equilibrium is
NOT fulfilled.

cles/h, 300 vehicles/h, respectively. The turning matrix is set
to be

P � =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0.8 0 0.2 0
0.64 0 0.16 0.2
0.04 0.8 0.16 0
0.64 0.64 0.136 0.16
0.2 0 0.8 0

0.16 0.2 0.64 0
0.16 0 0.04 0.8
0.136 0.16 0.064 0.64

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

The free speed of routes of two OD pairs are set to be 50km/h,
the total demand of two OD pairs are set to be 186.75km/h
and 129.43km/h, respectively. Fig. 11 and Fig. 12 illustrate
the time evolution of traffic flow and green-time proportion
by using the novel control policy on the two-OD two-route
network. Under the condition of equilibrium existence, starting
from an arbitrary feasible point, the dynamical system can
approach a feasible equilibrium point after approximately
500 iterations. Fig. 13 and Fig. 14 show that the traffic flow
and green-time proportion become unfeasible after approxi-
mately 100th iteration, that is, no feasible equilibrium point
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can be approached even with a feasible initial point if the
condition of equilibrium existence is not fulfilled.

VI. CONCLUSIONS

In this paper, a hybrid traffic assignment model incorporat-
ing the flow swap process, green-time proportion swap process
and flow divergence was proposed for a general network with
multiple OD pairs and multiple routes. We gave two conditions
for achieving general network capacity maximization by using
P0 control policy. Then, a novel control policy is proposed
and its superiority over P0 control policy is proved: by using
the proposed control policy, the condition of capacity maxi-
mization via intentionally constructing bottleneck delays can
be relieved. We gave the condition for existence of Wardrop
equilibrium for the dynamical system, which is determined
by the sign of flow swap and green-time proportion swap
for each element on the boundary of the set D × F ∩ S.
The condition for uniqueness of Wardrop equilibrium was
also given, that is, for a given green-time proportion vector,
the travel cost function and stage pressure function must be
monotone. We also gave the characteristics of the set of
equilibria when green-time proportion vector changes over
time, which is useful to determine the set of equilibria. Finally,
Lyapunov stability analysis was utilized to prove stability of
the dynamical system.

The theoretical results derived in this paper and the proposed
control policy can be applied in real scenario to increase
network capacity and reduce travel time in an urban network.
Specifically, when travel costs on some links go high due to
incident, network capacity can be maintained at an equilibrium
by applying the proposed control policy.
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