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Abstract—Transforming our roads into smart roads is an indis-
pensable step towards future self-driving systems, and therefore
has drawn increasing attention from both academia and industry.
To this end, this paper develops a novel cost-effective IoT-based
target detection system utilizing the multi-sensor data fusion
technology with a particular focus on pedestrian detection, as
an important component of smart road system. Particularly,
the developed intelligent pedestrian detection module (iPDM)
consists of three major sensors, i.e., Doppler microwave radar
sensor, passive infrared (PIR), and geomagnetic sensor. A multi-
sensor data fusion algorithm is developed to fuse the sensor
data and achieves reliable target detection. After that, iPDM
sends the relevant warning signal wirelessly to nearby base
station and vehicles. Experiments are conducted on real traffic
environment to evaluate the performance of iPDM. The results
validate the high reliability of iPDM with an average 91.7%
detection accuracy. Moreover, to our best knowledge, iPDM is
the first IoT-based implementation for pedestrian detection of
smart roads. It is necessary to highlight that iPDM is a low-cost,
low-power, wide-coverage pedestrian detection system where the
cost of a single iPDM is only US $30, which makes it suitable to
large-scale deployment.

I. INTRODUCTION

It is reported that the pedestrian fatalities increased over
30% annually from 2009 to 2016 with approximately 6,000
pedestrians killed and injured in the USA in 2016 [1], [2].
Many experts claim advances in vehicle automation will
significantly address this public health crisis, citing the statistic
that 94% of traffic fatalities are due to human error, and ar-
guing that fully automated vehicles (AVs) will eliminate these
error-caused fatalities [3]. However, due to the limited percep-
tion range and detection capability of AVs, the reliability and
safety of AVs cannot be guaranteed in some complex traffic
scenarios, for instance, the fatality of a pedestrian in March
2018 Uber crash, and the fatality of a Tesla driver who ignored
several safety warning from his vehicle [4]. In addition, most
of the existing roadside pedestrian detection devices rely on
cameras, radar and human intervention, resulting in high cost
and high detection error rate.

This work focuses on developing a cost-effective IoT-based
pedestrian detection system, in order to support autonomous
driving. Accurate and reliable pedestrian detection in intricate
road environment and poor weather conditions is well known
to be a difficult task. The reason is that pedestrians have
variable physical characteristic and appear in a variety of
environments with different background features, obstacle and
weather condition. The detection system relying on vehicle

on-board sensor only fails to identify pedestrians reliably in
unfavorable conditions, especially for moving pedestrians who
are too far or too close to the vehicle, partially occluded
by nearby objects, or beyond line-of-sight detection range
of vehicles [5]. Machine learning is a widely used method
in pedestrian detection, which however needs large-volume
of video data as input to extract meaningful feature vectors
with a relatively long training and testing time [1], [6].
Furthermore, researchers also investigated pedestrian detection
using a portable Doppler radar system or passive infrared
(PIR) sensors. These low-cost sensors has been widely applied
for human detection, access control and alarm monitoring in
low-noise environments [7], [8]. However the performance of
Doppler radar-based system is known to suffer in rain and
other poor weather and PIR sensors fail to detect humans in
hot weather where the environment temperature may exceed
human temperature. In lieu of the aforementioned drawbacks,
the design of a low-cost, high-reliability and wide-coverage
pedestrian detection system to become a nontrivial task.

In this paper, we aim to design a cost-effective solution
for pedestrian detection that can work satisfactorily in almost
all roads and weather conditions. Our work forms part of
the collective efforts to make our roads smarter whereas
smart roads technology would enable AVs to work with IoT
sensors and other roadside-integrated technologies to create
more efficient and safer driving experience [9]. Considering
the problems of pedestrian detection in actual traffic scenario,
the objective of the study is to fully exploit the helping role of
the “road” as a participant in the traffic network, so that it can
actively detect pedestrians and assist AVs via road-vehicle col-
laboration. To this end, we proposed a highly reliable and cost-
efficient IoT-based pedestrian detection scheme using multi-
sensor data fusion that allows us to combine the advantages
of various sensing technologies while avoiding their shortcom-
ings. Specifically, a low-cost pedestrian detection IoT module
integrated with multi-sensor data fusion algorithm is developed
to identify pedestrians in road environment, which integrated
the high-precision 24GHz Doppler radar, PIR, geomagnetic
sensor and so force. By deploying the IoT modules on the
road surface, real-time and reliable detection of pedestrians
can be achieved, while also provide more timely, accurate and
reliable information for vehicles.

The remainder of this paper is organized as follows. Section
II introduces hardware design and principle of the system.
Section III explains signal processing and multi-sensor data
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Fig. 1: The iPDM physical board.

fusion based pedestrian detection algorithm in detail. The
performance evaluation is described in Section IV, followed
by the conclusion in Section V.

II. HARDWARE DESIGN AND PRINCIPLE

In this section, we introduce the iPDM using multi-sensor
data fusion. We will make a brief overview about various
sensors’ working principle.

A. Hardware of Embedded System

The iPDM is a low-cost, low-power and smart-sensing IoT
node powered by a Li-Po and a solar panel, and installed into
an enclosure. The nodes are along the two lane lines of a
lane in a zig-zag pattern, and the distance between the two
nodes on the same lane line is d. Additionally, The iPDM uses
low-power LoRa wireless network for communication between
peer iPDMs and the base station and organizes into a local area
network (LAN) in the form of clusters. The iPDM physical
board is illustrated in Fig. 1.

The iPDM is mainly composed of five submodules, includ-
ing embedded microcontroller, power management submodule,
sensors, LED indicator and wireless communication module:

• Embedded microcontroller: Its MCU is a 32-bit ARM
high-performance microcontroller.

• Power management: This submodule consists of Li-Po,
solar panel, charge/dischage profile and power monitor.
We use MAX17043 Chip as a monitor to prevent deep
discharging of Li-Po. As a supplementary source of
system energy, a high-efficiency solar panel is adopted
to recharge the battery.

• Sensors: The core sensor of the module is 24GHz
Doppler transceiver. The radiated power (EIRP) of an-
tenna is 12.7dBm, and the corresponding E-plane and H-
plane beam widths are about 121◦ and 111◦ respectively.
The PIR sensor adopted in our module is a general
purpose dual elements. It is highly sensitive to human
body while remaining insensitive to ambient temperature
change, vibration or optical noise. A 3-axis geomagnetic
sensor is embedded in iPDM which provides high res-
olution, low power consumption, large signal noise im-
munity, a large dynamic range, and high sampling rates.
Additionally, a thermistor is used to measure ambient
temperature, and a off-chip ROM is employed as backup
storage.

�
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Fig. 2: The architecture diagram of developed system.

• LED indicator: Four high-brightness white LEDs are
used to alert passing vehicles by flashing lights.

• Wireless communication: The wireless communication
between iPDMs in the LAN occurs via a LoRa module.
Specifically, TDMA is used to intercommunicate in the
cluster to avoid message collision. The size of clusters
depends on the deployment scenario, and it can support
up to 25 nodes, with a typical value of 6.

Additionally, the developed system consists of iPDMs, Lo-
Ra gateways, cellular network and cloud server. The AVs rely
on LoRa gateways to receive warning signals while human-
driven vehicles rely on flashing lights to receive warning
signals, and the cloud server completes the reception and man-
agement of big data. Note that most local communication is via
LoRa gateways or direct communications among iPDMs, and
does not have to go through the cloud server. The architecture
diagram of developed system is shown in Fig. 2.

B. Detection Principle
1) The Doppler Microwave Radar Sensor: A Doppler mi-

crowave radar is a special radar that utilizes the Doppler effect
to generate velocity data about targets in some distance away.
It does this by transmitting a continuous signal of low-energy
microwave radiation and then analyzing the reflected signal.
The detector registers a change in the frequency when the
radar source and the target are in motion relative to each other.
This enables the device to detect moving targets [10]. In the
receiver (RX) link, the reflected continuous-wave (CW) signal
is then converted into I and Q channels by a quadrature mixer,
whereas the reflected local oscillator (LO) signal is converted
to a DC offset, which can be easily eliminated by AC coupling.
The I/Q mixer output IFI(t) and IFQ(t) can be expressed as

IFI(t) = DCI +AIFIcos[2πfdt+ φ(t)],
IFQ(t) = DCQ +AIFQsin[2πfdt+ φ(t)],

(1)

where DCI and DCQ are the DC offset in I/Q channels, AIFI

and AIFQ are the amplitudes of the quadrature output related
to the target vibration. φ(t) = 4πd0/λ + φ0 is the constant
phase shift determined by the detection distance d0 and the
phase change φ0 at the reflection surface. fd is the Doppler
frequency derived from the moving target and can be given
by

fd ≈ 2v
ft
c
, (2)
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where ft is the original frequency determined by the radar
source, c is the speed of light, and v is the target velocity
relative to the source, which is the main parameter to identify
the target.

Therefore, based on the quadrature baseband I/Q signals, a
mixed reconstructed signal can be obtained by

s(t) = IFI(t) + j · IFQ(t). (3)

In order to obtain Doppler frequency fd, we need to perform
the short-time Fourier transform (STFT) on s(t), shown as

S(t, f) =

∫
s(t′) · e−(

(t−t′)
2σ2 ) · ej2πf(t−t′)dt′ = |χ|ejθ, (4)

where σ is the time width of a Gaussian window. In the STFT,
the frequency-domain resolution is inversely proportional to
the time-window size. To extract the unique feature of the
Doppler signal of a target in the spectrogram, proper time-
window size σ and step size t′ should be determined. The
pedestrian motion is relatively slow, thus, the STFT will not
seriously suffer from a resolution issue in considered scenario.

2) PIR Sensor: A PIR sensor is an electronic sensor that
detects infrared (IR) light radiating from targets in its field of
view (FoV). They are most often used in PIR-based motion
detector, including alarms and automatic lighting applications.
PIR sensors detect general movement, but do not give infor-
mation on who or what moved. A PIR sensor consists of two
separate sensing cells, which are placed beneath a rectangular
window. The entire sensor is encapsulated in an air-tight metal
casing to protect it from environmental interference, such as
noise, temperature, humidity and so forth. A moving IR source
entering the sensor’s FoV will activate the sensing cell one
after another, and other IR emitting sources such as ambient
IR will affect both cells synchronously and counteract. This
creates a difference in temperature between the cells which is
converted to an electrical signal by the sensor.

The PIR sensor is fitted with a Fresnel lens to extend its FoV.
Fresnel lens can achieve a large aperture and short focal length
without significant changes of material. The sensing cells are
placed precisely at the focus point of the lens. The FoV of PIR
sensor consists of multiple sectors with the detection range
varying from one sector to the next, and the image formed by
each sector falls on the two sensing cells.

Additionally, the PIR sensor output voltage depends on the
characteristics of the target across its FoV, such as the width
of the target, distance between the target and the sensor, and
velocity of the target. The output voltage of the PIR sensor
can be expressed as

Vout = β · a · t · d−α(1 +
|δ|
10

)−γ , (5)

where a is the difference in the area of the target’s image
incident on the two sensing cells, d is the distance of the
subject from the PIR sensor, t is the time spent by the target in
the FoV of the sensor, δ is the central angle of the FoV sector
in which the target is present, and β, α, γ are the adjusting
parameters of the sensor [11].

3) Geomagnetic Sensor: Geomagnetic sensors are used to
measure the changes of Earth’s magnetic field caused by the
metal movement, such as passing vehicles, nearby cell phones
and computers. The reason for adopting the geomagnetic
sensor is that vehicles have a good deal of highly-permeable
ferrous materials (e.g., nickel, iron, steel) that cause local
disturbance in the Earth’s magnetic field flux lines while
human body does not cause such local magnetic disturbance.
Therefore a geomagnetic sensor allows the separation of
vehicles and humans.

Initially, the sensor’s calibration state is triggered, and
the local magnetic field is sampled without the presence of
vehicles. Thus the local reference magnetic flux magnitude
FMref(k) can be expressed as

FMr(k) =

√
FXr(k)

2
+ FY r(k)

2
+ FZr(k)

2
, (6)

where FXr(k), FY r(k), FZr(k) are the reference components
of the X-axis, Y-axis, Z-axis geomagnetic fields in the kth
test, respectively. FMref(k) has a Gaussian distribution with a
mean of μ and a variance of σ, that is, FMref(k) ∝ N(μ, σ).
Meanwhile, we set a vehicle detection threshold DTH based
on the distribution. The initial value is obtained by deploying
roadside geomagnetic sensors and collecting geomagnetic data
in the field, which can be calculated by

DTH = α× σ, (7)

where α is an empirical value obtained from a large volume of
experimental data. The geomagnetic sensor remains in initial
state until condition FM (k) ≥ DTH (i.e., vehicle in detection
zone) is met. FM (k) is calculated as:

FM (k) =√
(FX(k)− FXr(k))

2 + (FY (k)− FY r(k))
2 + (FZ(k)− FZr(k))

2,

(8)
where FX(k), FY (k), FZ(k) are the instantaneous geomag-
netic flux sampling values of X-axis, Y-axis and Z-axis from
the sensor [12].

III. MULTI-SENSOR DATA FUSION BASED PEDESTRIAN
DETECTION ALGORITHM

In this section, we analyze and process the signal captured
from sensors. The embedded system coupled with intelligent
algorithms aim to support various complex traffic applications
and scenarios.

A. Signal Processing

In this paper, we first collect and process the signal from
multiple sensors, and the features of the signal are extracted
and analyzed according to Section II. B.

1) Signal Processing of Radar Sensor: To identify a pedes-
trian using Doppler information, distinguishing features should
be extracted from the spectrogram. Firstly, the DC level of I/Q
signal are filtered to eliminate their mean value. Then, they
were passed through a band-pass filter (BPF) with pass band of
16-1100Hz, based on the frequency of pedestrian moving. At
last, the processed I/Q signals are mapped onto time-frequency
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(a) Pedestrian.
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(b) Vehicle.
Fig. 3: Original data and spectrogram of moving targets.
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(a) PIR Output.
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(b) Final Output.
Fig. 4: The output of PIR sensor.

plane using STFT introduced earlier. We extract the maximum
instantaneous Doppler frequency. From the intensive tests, we
can conclude that a STFT window size of 256 is appropriate
to recognize the characteristics in the frequency domain, and a
step size of 64 is appropriate for identifying the time-varying
Doppler signals with moderate computational complexity. As
shown in Fig. 3, the spectrogram of pedestrian and vehicle mo-
tion have a distinctive feature with the maximum instantaneous
Doppler frequency about 200Hz and 800Hz respectively.

2) Signal Processing of PIR Sensor: In Eq. (5), the empir-
ical values of adjusting parameter β, α and γ are obtained by
fitting the equation with the actual output of the sensor from
extensive comparative experiments. Here, α = 1.5 denotes the
rate of output voltage’s reduction with distance, β = 11 is a
scale factor, and γ = 10 determines the amplitude of the peaks
of Vout [11]. The output of PIR sensor’s signal passing through
amplifier is shown in Fig. 4(a). In our paper, we also make the
PIR output signal pass through a voltage comparator, hence,
the final output can be expressed by High/Low levels, as shown
in Fig. 4(b), where High-level indicates that a pedestrian has
been detected.

3) Signal Processing of Geomagnetic Sensor: The geo-
magnetic data of X-axis, Y-axis and Z-axis collected by
the iPDM are shown in Fig. 5, where Fig. 5(a)-(c) are the
geomagnetic signals of a car, minibus and pickup, respectively.
The subfigures show that their triaxial geomagnetic signals
have distinct features. After that, we calculate the detection
threshold DTH = 90 based on Eqs. (6)-(7). According to Eq.
(8), the triaxial geomagnetic signals of different vehicle types
are fused, and the result is shown as Fig. 5(d). At last, we
compare FM (k) with DTH to determine whether there is a
vehicle driving away.
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(a) Car.
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(b) Minibus.
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(c) Pickup.
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(d) Fusion result.
Fig. 5: The output result of geomagnetic sensor.

B. Multi-sensor Data Fusion Algorithm

To realize the real-time pedestrian detection using iPDM
nodes, we develop a multi-sensor data fusion algorithm based
on the data collected by different sensors. Particularly, we
take the ambient temperature value as the control parameter
to control the switching between radar sensor and PIR sensor.
The reason is that the PIR sensor has pretty low power con-
sumption, but it is prone to error detection when the ambient
temperature is high. In addition, geomagnetic sensor assists
the detection of radar sensor and PIR sensor by distinguishing
the vehicles and pedestrians. The procedure is illustrated in
Algorithm 1.

IV. EXPERIMENTAL EVALUATION

In this section, we carry out field tests to evaluate the
performance of pedestrian detection scheme proposed.

A. Experimental setup

The experimental setup is shown in Fig. 6, We carried out
two types of experiments, one is an experiment evaluating the
relationship between sensors’ detection range and tilt Angle
(i.e. the Angle between the sensor plane and the horizontal
plane). In this experiment, we first measure the detection
distance of the sensor by adjusting the tilt Angle of the Doppler
radar and PIR sensor in a single iPDM node. The second
experiment focuses on evaluating the detection accuracy of the
system under the condition of multi-iPDMs’ cooperation when
the size of cluster is 6. In particular, we deployed iPDMs along
a line, and calculated the detection accuracy of the system by
counting the number of times that pedestrians and vehicles
triggered LED flashing respectively. We conducted 180 tests
in total, divided into six groups.

B. Experimental results

In this subsection, we introduce the experiment results
of the proposed pedestrian detection scheme in details. The
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Algorithm 1 The Multi-sensor data fusion Algorithm
1: Input: Doppler radar signal, PIR signal, Geomagnetic signal, Tem-

perature
2: Output:Detection result
3: iPDM Init., Temp0 = 40◦C, T imer0 = 30min, Temp, T imer,

DTH , fd, Vout, FX(k);
4: while T imer ≤ T imer0 do
5: if Temp > Temp0 then
6: if fd > 0 && FX(k) < DTH then
7: Update detection result.
8: end if
9: end if

10: if Temp ≤ Temp0 then
11: if Vout = 1 && FX(k) < DTH then
12: Update detection result.
13: end if
14: end if
15: Update T imer.
16: end while
17: T imer = 0.
18: Update Temp.

(a) (b)
Fig. 6: Experimental Scenario.

Fig. 7: The relationship between sensors’ detection range and tilt Angle.

relationship between sensors’ detection range and tilt Angle is
shown in Fig. 7. In this experiment, we conducted three sets
of experiments for two main detection sensors to evaluate the
impact of tilt Angle on the detection performance of sensors.
According to the experimental results, the detection distances
of the sensors can reach 7.2m and 5.4m respectively, and the
vertical detection distance will significantly extend with an
increase of the tilt Angle. However, the detection Angle of
PIR sensor shrinks with an increase of distance. Therefore, in
order to ensure that the detection range of the sensor is as
large as possible, we unified the tilt Angle of the sensor plane
to 45◦, and the distance d between two adjacent nodes is set
as 8m.

Additionally, we also show the detection accuracy of the
system in Table I. We can see that the detection accuracy of
the system tends to be steady, and the final accuracy of the
system is 91.7%.

TABLE I: The detection accuracy.

No. I II III IV V VI

Accuracy 0.9 0.87 0.93 0.9 0.97 0.93

V. CONCLUSION

In this paper, we proposed a IoT-based pedestrian detection
scheme using multi-sensor data fusion. In the scheme, we
first quantified the output signal by theoretical analysis of
the characteristics of the sensor. Then, we developed iPDM
hardware system for sensor data capture, processing, feature
extraction and fusion. After that, we verified the performance
of the system by carrying out field tests. In the end, we
concluded that the detection accuracy of the system was 91.7%
in the actual traffic scenario.
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