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Abstract— The traffic in wireless networks has become diverse
and fluctuating both spatially and temporally due to the emer-
gence of new wireless applications and the complexity of sce-
narios. The purpose of this paper is to quantitatively analyze
the impact of the wireless traffic, which fluctuates both spatially
and temporally, on the performance of the wireless networks.
Specially, we propose to combine the tools from stochastic
geometry and queueing theory to model the spatial and temporal
fluctuation of traffic, which to our best knowledge has seldom
been evaluated analytically. We derive the spatial and temporal
statistics, the total arrival rate, the stability of queues and the
delay of users by considering two different spatial properties of
traffic, i.e., the uniformly and non-uniformly distributed cases.
The numerical results indicate that although the fluctuation of
traffic (reflected by the variance of total arrival rate) when the
users are clustered is much fiercer than that when the users
are uniformly distributed, the unstable probability is smaller.
Our work provides a useful reference for the design of wireless
networks when the complex spatio-temporal fluctuation of the
traffic is considered.

Index Terms— Traffic, delay, queueing theory, stability,
stochastic geometry.

I. INTRODUCTION

A. Motivations

THE emergence of various smart devices and wire-
less applications, such as real-time wireless gaming,

smart grid, free-viewpoint video, advanced manufacturing and
Tactile Internet [2], [3], has led to diversified traffic and
quality-of-service (QoS) requirements. For example, the voice
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traffic in the wireless networks is typically delay-sensitive and
symmetric in uplink and downlink, while the data and video
traffic are generally loss-sensitive and asymmetric in uplink
and downlink, which are IP-based and can tolerate certain
delay [4]. A meaningful and practically relevant problem is to
meet the QoS requirements of diversified applications, which
is also one of the most significant goals for the 5G wireless
networks.

With the continuous evolution of wireless networks,
the tremendous traffic and its dynamic variations have become
more and more significant in affecting the performance of
wireless networks. The pattern of the traffic in a wireless
network determines whether a resource block of a base sta-
tion (BS) is occupied or not, which then shapes the interfer-
ence pattern in the wireless network. The interference pattern,
in turn, affects the performance of the transceiver links in
the wireless network, which directly determines the service
process of the traffic. Therefore, the traffic and the service
provided by the wireless networks are highly coupled with
each other. Modeling and analysis of the traffic are essential
to design and configure the wireless networks so as to match
the network service with the traffic [5].

The spatial distribution and the temporal variation of wire-
less traffic are much more complicated than before. For exam-
ple, in a cellular network, the wireless traffic during a holiday
or a weekend is generally lighter than that during a weekday,
and the traffic during the midnight is generally lighter than
that during the day time. Meanwhile, the spatial distributions
of the wireless traffic are also very different between different
regions. For example, the traffic in the business regions could
be much heavier during the day time than that during the
midnight, and it is reversed in the residential region. The
integrated analysis of the traffic with spatial and temporal
fluctuation requires to appropriately model both the spatial
distribution and the temporal variation of the traffic in the
wireless networks. Although the effect of the wireless traffic
has been studied extensively, most of them only consider one
aspect of the traffic [6]–[8]. The works only modeling the
spatial distribution usually use the tools from the stochastic
geometry and model the spatial distribution of users by either
the uniform (such as the Poisson point process (PPP)) or the
non-uniform point processes. Other works only modeling the
temporal variations of traffic usually use the queueing theory
to model the arrival process of the packets as stochastic
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processes. To model both aspects of the traffic, which is
necessary for analyzing the wireless networks, requires the
combination of stochastic geometry and queueing theory,
which brings in more complexities and difficulties in the
modeling and evaluation.

B. Related Works

Related works are summarized as follows. The authors
in [6], [7] discussed the patterns and the spatio-temporal
characteristics of wireless traffic in the practical cellular net-
works. In [6], the authors presented the analysis of traffic
measurements collected from commercial cellular networks in
China and proposed a spatial traffic model which generated
large-scale spatial traffic variations by a sum of sinusoids.
In [7], the authors quantitatively characterized the spatio-
temporal distribution of mobile traffic and presented a detailed
visualized analysis, and the work [9] revealed that the traffic is
typically unbalanced, changing not only in the time domain but
also in the spatial domain. In [10], the authors extracted and
modeled the traffic patterns of large scale towers deployed in a
metropolitan city. In [11], the authors showed some cell phone
activity patterns based on the cell phone data which consists of
telecommunications activity records in the city of Milan from
Telecom Italia Mobile, and the patterns demonstrated that the
mobile traffic of urban ecology were clustered in both the
time domain and the spatial domain. The above works reveal
that both the spatial distribution and the temporal variation of
traffic are irregular, and there is a clear need for new analytical
methods to explore the properties of irregular distributions and
variations of the up-to-date wireless traffic.

Theoretical analysis of the spatial properties of the wireless
traffic is generally based on the stochastic geometry. In [12],
the probability density function (PDF) of the number of
users in each Voronoi cell was derived by modeling the
locations of users as a homogeneous PPP. The works [13], [14]
extended such PDFs to the case of multi-tier heterogeneous
networks. In [13], the authors analyzed the effect of the
offloading traffic in heterogeneous networks on the system
performance and the authors in [14] developed a framework to
characterize the signal-to-noise-plus-interference ratio (SINR)
in a heterogeneous cellular network. In [15], the authors
considered a single-tier uplink Poisson cellular network and
analyzed the meta distribution of the SIR for both the cellular
network uplink and downlink with fractional power control.
In [16], [17], the authors summarized the applications of
the point processes in wireless networks, where the average
behavior over many spatial realizations of a network can be
evaluated appropriately. In [18], the authors proposed a model
to capture the coupling between users and small cell base
stations by using tools from stochastic geometry. In [19],
the authors compared the traditional square grid model with
the PPP model in terms of coverage, and they discussed the
average achievable rate in the general case. As for the temporal
arrival of packets, the analysis was generally based on the
queueing theory. In [20], the authors considered a shared
access network with one primary source-destination pair and
many secondary communication pairs and they discussed sec-
ondary throughput optimization with primary delay constraints
by using tools from stochastic geometry and queueing theory.

In [21], the authors investigated the effect of bursty traffic
and analyzed the delay and throughput in a wireless caching
system by using queueing theory. The queueing delay was
analyzed with a random access network in [22]. In [23]–[27],
a discrete-time slotted ALOHA system with multiple terminals
was described, where each terminal had an infinite buffer to
store the packets.

The works modeling both the spatial and temporal aspects
of the wireless traffic include [28]–[30], where the authors
simultaneously modeled the spatio-temporal arrival of traf-
fic and considered the traffic generated at random spatial
regions. In [31], the authors discussed three kinds of schedul-
ing policies, i.e., the random scheduling, the first-input-first-
output (FIFO) scheduling and the round-robin scheduling, and
compared the delay performance under different scheduling
policies. In [32], the authors developed a traffic-aware spatio-
temporal mathematical model for Internet of Things (IoT)
devices supported by cellular uplink connectivity and dis-
cussed the stability for three transmission strategies. In [33],
the authors analyzed the random access channel in celluar-
based massive IoT networks based on a traffic-aware spatio-
temporal model, where the spatial topology was modeled
based on stochastic geometry and the queue evolution was
analyzed based on probability theory. In [34], the authors
proposed a user-centric mobility management to cope with
user spatial movement and temporally correlated wireless
channels in ultra-dense cellular. In [35], the authors evaluated
the tradeoff between delay and physical layer security. In [36],
the authors combined stochastic geometry and queueing theory
to describe the network with spatial irregularity and temporal
evolution. However, the non-uniform property of network
and the various temporal arrival processes of traffic are not
considered.

C. Contributions

In this paper, we establish a tractable model to characterize
both the spatial distribution and the temporal variation of
traffic in wireless networks. The spatial distribution of traffic
could be described by the locations of users. Ignoring the
mobility of users, the temporal variation of traffic is described
by a random arrival process of packets for each user and
the dynamic serving process of arrived packets. We consider
two different packet arrival rate distributions, i.e., uniform
distribution and exponential distribution. Considering both the
uniformly distributed traffic modeled by a PPP and the non-
uniformly distributed traffic modeled by a Poisson cluster
process (PCP), we explore the relationship between traffic and
delay to gain insight. The main contributions of this paper are
summarized as follows.

• Analytical framework based on combining stochastic
geometry and queueing theory is proposed to qualitatively
evaluate the spatial and temporal fluctuation of the wire-
less traffic.

• The spatial and temporal statistics of traffic, the stability
of queues and the delay are derived for uniformly and
non-uniformly distributed traffic. The numerical analyses
based on the theoretical results are investigated to gain
insights.
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TABLE I

NOTATIONS USED IN THIS PAPER

• The effect of various parameters of the traffic is discussed
in terms of meeting the delay and stability requirements.
Our results reveal that although the fluctuation of traffic
(reflected by the variance of total arrival rate) when the
users are clustered is much fiercer than that when the
users are uniformly distributed, the unstable probability
is smaller.

The remaining part of the paper is organized as follows.
In Section II, we describe the system models. Then, we study
the statistics of traffic in Section III and evaluate the effect
of traffic on network performance in Section IV. Numerical
results are given in Section V. Finally, Section VI concludes
the paper. The notations are listed in Table I.

II. SYSTEM MODEL

A. Network Structure

We first show the spatial and temporal distribution of the
wireless traffic in the real scenarios. The data sets are based on
a large number of practical traffic records from China Mobile
in Hangzhou, an eastern provincial capital in China via the
Gb interface of 2G/3G cellular networks or S1 interface of 4G
cellular networks [37]. Figure 1 shows the traffic amount for
three different applications during one day in the randomly
selected cells, which is consistent with the experiments in [8].
In Figure 2, we plot the traffic density of three kinds of typical
applications, i.e., instant messaging (IM), web browsing and
video, at 9AM and 3PM in randomly selected dense urban
areas. As shown in Figure 2, there are some “hot spots”
varying in both temporal and spatial domain, and the spatially
clustering property is also consistent with the experiments in
[8]. Based on the characteristics of the real traffic in these
figures, we propose an analytical model and study the effect
of the traffic on the performance of wireless networks.

We consider a wireless network that consists of one tier of
BSs and one tier of users, as illustrated in Figure 3. In this
paper, we discuss the downlink of the wireless network with
ALOHA channel access. The locations of BSs are modeled
as a homogeneous PPP Φb = {yi} with intensity λb, denoted
by Φb ∼ PPP(λb). The users are modeled by another point
process Φu = {xi}. The transmission power of the BSs is Pb.

Fig. 1. Cellular traffic of three different applications during one day in
several randomly selected cells.

Since the network considered in the work is a single tier
network, the shared spectrum policy is reasonable. The users
in the network are shared with the same spectrum resource.
In the time domain, the time is slotted into discrete time slots
and the users will acquire the dominant right of the time slot
with a random probability at each time slot. We consider the
following two kinds of spatial distributions for the users.

• Case 1: The locations of users form a homogeneous PPP
of intensity λu as shown in the left graph in Figure 3.

• Case 2: The locations of users are distributed as a PCP as
shown in the right graph in Figure 3. The centers of the
clusters, i.e., the parent points, are distributed according
to a PPP Φp of intensity λp. The users are uniformly
scattered according to an independent PPP Φx of intensity
λc in the circular covered area of radius rc centered at
each parent point x ∈ Φp, which are called the daughter
points. Thus, the distribution of all users is

Φu =
⋃

x∈Φp

Φx. (1)

In this case, the number of users in the typical cluster
is a Poisson random variable with parameter πr2

cλc, and
the intensity of all users is λu = πr2

cλcλp.

Each user is associated with the BS that provides the
maximum average received power. Since the transmission
power of all BSs is the same, each user will connect to the
nearest BS. Without loss of generality, we consider a typical
user located at the origin, and the typical user is associated
with a BS located at y0, which is named the typical BS.

B. Packet Arrival

Note that we consider the downlink of a wireless network.
The packets intended for each user arrive at the associated BS
and wait to be scheduled for delivering. Since each BS serves
multiple users, we could consider that each BS maintains a
separated queue (with infinite size) for each user to store
the incoming packets. The number of queues at each BS
equals to the number of users within the coverage of the BS.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 25,2020 at 11:01:01 UTC from IEEE Xplore.  Restrictions apply. 



7086 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 11, NOVEMBER 2020

Fig. 2. Heat map for cellular traffic of three wireless applications, i.e., instant messaging (IM), web browsing and video, at 9AM and 3PM in randomly
selected dense urban areas.

Fig. 3. Illustration of the network model with BSs and users. Uniformly distributed traffic is modeled by the PPP in the left graph and non-uniformly
distributed traffic is modeled by the PCP in the right graph.

As a frequently-used packet arrival model in the discrete-time
system, we assume that the packet arrival process intended
for each user xi ∈ Φu is a Bernoulli process [23], [31]
with arrival rate ξi. To characterize the diversity of traffic,
we assume that the packet arrival rates {ξi} are different for
different users. In particular, we consider two cases where
{ξi} are i.i.d. exponentially distributed random variables and
uniformly distributed random variables with mean E[ξi] = ξ0,
respectively. According to the definition of Bernoulli process,
the arrival rate is also the probability that a packet of the
user xi arrives at the BS. The arrival processes for different
users are assumed to be independent. The size of each packet
is assumed to be fixed, and a BS requires exactly one time
slot to deliver one packet to a user. If a packet fails for the
transmission in the current time slot, it will be added into the
head of queue and waits to be rescheduled.

C. Channel and Scheduling

Considering the propagation loss, we assume that the links
between the serving BS and the users experience Rayleigh fad-
ing with unit mean. Then, the received signal power of a user at

a distance l from its serving BS is Pbhl−α where h ∼ Exp(1).
In other words, the power fading coefficients in different time
slots are i.i.d. random variables and keep constant during one
time slot. The fading coefficients of interference links are
denoted by {gi}. Since the noise is not the most focused and
interested factor of our work and the network considered in the
study consists of one tier of BSs and one tier of users where
the interference from interfering BSs are more influential than
the noise on the network performance, we ignore the noise
power in the analysis. If the signal-to-interference ratio (SIR)
at a user is larger than a constant threshold θ, the receiver
can successfully decode the packets. Otherwise, the packet
will be failed for decoding, and the failed packets will be
added into the head of the queues and wait to be scheduled
again.

As for the scheduling mechanism of users at each BS,
we consider the random scheduling of all active users whose
queues are non-empty, i.e., each BS randomly selects a user
to transmit from all users with non-empty queues in each
time slot. Comparing with the scheduling scheme of randomly
allocating time slots to all users in the coverage of a BS,
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the random scheduling of all active users is efficient without
wasting the time slot resources.

III. TRAFFIC STATISTIC

In order to evaluate the spatial and temporal fluctuation
of the traffic, we consider two metrics, i.e., the probability
distribution of the number of users served by a BS and the
variance of total arrival rate. We first introduce the following
lemma.

Lemma 1: The PDF of the coverage area S of a BS is
approximated as [12], [38]

fS (x) � 343
15

√
3.5
π

(xλb)
2.5 exp (−3.5xλb)λb. (2)

Proof: In [12], the authors give the approximate PDF
of the size of a macro-cell coverage area and the detailed
mathematical derivations and simulations can refer to [38].

Firstly, we derive the probability mass function (PMF) of
the number of users for the uniformly distributed traffic where
the users are modeled by a homogeneous PPP. Let N be the
number of users in a cell with given area S.

Lemma 2: When users are distributed as a PPP and asso-
ciated with BSs that providing maximum average received
power, the PMF of N is [17]

P{N = k} =
e−λuS

k!
(λuS)k. (3)

Proof: The PMF of N is obtained by the definition of two-
dimensional PPP and the author gives detailed mathematical
derivations and descriptions of general PPP in [17, ch.2].

In order to derive the PMF of N for the non-uniformly
distributed case, we introduce a new association rule where
the users will access to the BS nearest to the parent point.
Since we assume that the users access to the nearest BSs in
the previous section, we give the following Approximation 1
to present the relationships between the two association rules.

Approximation 1: In the PCP case, when the radius of
cluster is much smaller than the radius of cell, the association
rule that users access to the nearest BS can be regarded as
the association rule that the users access to the BS nearest to
the parent point.

In order to validate this approximation, we give the simula-
tion results Figure 4 and Figure 5. The curves ‘Actual’ denote
the case where each user accesses the nearest BS. The curves
‘Assumed’ denote the case where the users access to the BS
nearest to the parent point. In Figure 4, we compares the PMFs
when considering different association rules. In particular,
we plot the ‘Actual’ and ‘Assumed’ curves for different cell
areas S and various PCP parameters to verify the accuracy
of the approximation. It is observed that the ‘Assumed’ curve
approaches to the ‘Actual’ curve, indicating that the approx-
imation is reasonable. Based on Approximation 1, we obtain
the following lemma.

Lemma 3: When users are distributed as a PCP and asso-
ciated with BSs that providing maximum average received

Fig. 4. The PMF of N when the users adopt different association rules.

Fig. 5. Number of users in a cell as functions of λp when the users form a
PCP with given area S.

power, the PMF of N is

P{N = k} ≈
∞∑

a=0

P{Np = a, Nd = k}

=
∞∑

a=0

e−λpS

a!

(
λpSe−λcπr2

c

)a
(
λcaπr2

c

)k
k!

, (4)
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Fig. 6. The PMF of the number of users when the users form a PPP or a
PCP with the same λu and given area S.

where Np is the number of parent points, and Nd is the number
of daughter points.

Proof: When users access the BS nearest to the parent
point, the PMF of N is

P (N = k)
(a)
=

∞∑
a=0

P{Np = a}P{Nd = k|Np = a}

=
∞∑

a=0

e−λpS

a!

(
λpSe−λcπr2

c

)a
(
λcaπr2

c

)k
k!

, (5)

where (a) follows from the total probability formula. Based
on the Approximation 1, we obtain Lemma 3.

In Figure 6, we plot the PMF of the number of users in the
cases where the users form a PPP or a PCP with the same λu

in a cell with area S. We observe that, with given cell area S,
the probability that the number of users is either very small or
very large in the PCP case is larger than that in the PPP case.
This is partly attributed to the fact that the users in the PCP
case appear to be more grouped. Meanwhile, the PMF in the
PPP case is more centralized so the probability is larger than
that in the PCP case when the number of users is a medium
value. In both cases, as the value of λuS increases gradually,
the peak value of the PMF decreases since the PMF is more
dispersed when the mean number of users increases. As shown
in circle 1, the number of users increases due to the increase
of the mean number of users λuS.

Let ξj,total be the total arrival rate of packets in the coverage
area Sj of a BS yj , we get

ξj,total =
∑

xi∈Φu,Sj

ξi, (6)

where Φu,Sj is the set of users in area Sj . Nj is the total
number of users in area Sj . The mean total arrival rate in area
Sj , E[ξj,total] = E[ξi]E[Nj ], is

E[ξj,total] = E[ξi]ES

[
E [Nj |S ]

]
= E[ξi]

λu

λb
. (7)

The variance of the total arrival rate in the area Sj is
D[ξj,total] = E[ξ2

j,total] −
(
E[ξj,total]

)2
.

Let DP,ξj,total be the variance of total arrival rate in the
uniformly distributed case, and DC,ξj,total be the variance of
total arrival rate in the non-uniformly distributed case. With the
above obtained mean total arrival rate, we obtain the following
lemma.

Lemma 4: When users are associated with BSs that provid-
ing maximum average received power, the variance of total
arrival rate in the uniformly distributed case is

DP,ξj,total ≈ (E[ξi])2
(

0.2857
λ2

u

λ2
b

+
λu

λb

)
. (8)

Meanwhile, the variance in non-uniformly distributed case is

DC,ξj,total ≈ (E[ξi])2
(

0.2857
λ2

u

λ2
b

+
λu

λb
(πr2

cλc + 1)
)

. (9)

Proof: When the users are distributed as a PPP, the vari-
ance of the total arrival rate is

DP,ξj,total = E
[
ξ2
j,total

]− (E [ξj,total]
)2

= ESj [EP,ξ2
j,total

] −
(

E[ξi]
λu

λb

)2

. (10)

In (10), the mean EP,ξ2
j,total

is

EP,ξ2
j,total

= E[(E[ξi])
2N2

j ]

= (E [ξi])
2

∞∑
k=0

k2
P{Nj = k}

(a)
= (E[ξi])

2 (
λ2

uS2 + λuS
)
, (11)

where (a) follows from the result
∞∑

k=0

k2
P{Nj = k} =

∞∑
k=0

k2 e−λuS

k!
(λuS)k

= e−λuSλuS

∞∑
k=0

k
(λuS)k−1

(k − 1)!

= λ2
uS2 + λuS. (12)

Plugging (11) into the equation (10), we get the variance of
the total arrival rate as

DP,ξj,total

(a)
=
(
E[ξi]

)2(∫ ∞

0

(
λ2

ux2+λux
)
fSj(x)dx −λ2

u

λ2
b

)
(b)≈ (

E[ξi]
)2(0.2857

λ2
u

λ2
b

+
λu

λb

)
, (13)

where (a) follows from the PDF of Sj , and (b) follows from
the definition of fSj (·) given by (2) and the calculation of the
integral as follows.∫ ∞

0

(
λ2

ux2 + λux
)
fSj (x) dx

=
∫ ∞

0

(
λ2

ux2 + λux
) 343

15

√
3.5
π

(xλb)
2.5

e−3.5λbxλbdx

(a)
=

343
15

√
3.5
π

λ3.5
b

(
λ2

u

Γ (5.5)
(3.5λb)

5.5 + λu
Γ (4.5)

(3.5λb)
4.5

)

≈ 1.2857
λ2

u

λ2
b

+
λu

λb
, (14)
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Fig. 7. Variances of the total arrival rate in a given area S for the uniformly
and non-uniformly distributed cases (λb = 0.00001 m−2, E [ξi] = 1.5).

where (a) follows from the integral
∫∞
0 xme−βxn

dx =
Γ(r)
nβr , r = m+1

n . Γ (x) =
∫∞
0

tx−1e−tdt denotes the standard
gamma function.

When the users are distributed as a PCP, the variance of the
total arrival rate is

DC,ξj,total = ESj

[
EC,ξ2

j,total

]− (E[ξi]
λu

λb

)2

. (15)

In the above equation (15), the mean EC,ξ2
j,total

is

EC,ξ2
j,total

= (E[ξi])
2
E[Nj

2] = (E[ξi])
2(D[Nj ] + (E[Nj ])

2),

(16)

where Nj =
Np∑
i=1

NCi is a Compound Poisson random variable

and NCi = Ndi is the number of users in the ith cluster.
According to the properties of Compound Poisson random
variable, we have E[Nj ] = E[Np]E[NC ] and D[Nj ] =
E[Np](D[NC ] + (E[NC ])2). Np and NC are Poisson random
variable with mean Sλp and πr2

cλc, respectively. Therefore,
the mean and variance of NC is D[NC ] = E[NC ] = πr2

cλc,
and the mean of Np is E[Np] = Sλp.

Then, the equation (16) can be derived as

EC,ξ2
j,total

= (E[ξi])2
(

E[Np]D[NC ] + E[Np](E[NC ])2

+ (E[Np]E[NC ])2
)
. (17)

Similar to that in (13), we have

DC,ξj,total ≈ (E [ξi])
2

(
0.2857

λ2
u

λ2
b

+
λu

λb

(
πr2

cλc + 1
))

.

(18)

In Figure 7, we plot the variances of total arrival rate in
a given area S for the uniformly and non-uniformly cases.
We observe that the variance of total arrival rate increases
when λu increases. This is because when the number of users
increases, the difference of the arrival rate among the users
will be greater. In particular, we observe that the variance of
total arrival rate is larger in the non-uniformly distributed case

than that in the uniformly distributed case. We also compare
the variance in the non-uniformly distributed case for different
rc and λc. When fixing the radius of cluster rc, the variance of
the total arrival rate increases with the increase of the density
of the clusters λc. When fixing the density of the clusters λc,
the variance of the total arrival rate increases with the increase
of the radius of cluster rc. The reason is that when increasing
the number of users in a cluster, the difference of the arrival
rates also increases.

IV. PERFORMANCE EVALUATION

In this section, we explore the effect of traffic on the
network performance from the aspects of success probability,
throughput, delay and stability. As mentioned in the system
model, we consider a typical user at the origin, and the serving
BS of the typical user is located at y0. Let l0 be the distance
between the typical user at the origin and the nearest BS y0.
The PDF of l0 can be derived according to the fact that the
null probability of a 2-D Poisson process with intensity λb in
an area A is e−λbA. Thus, the PDF of l0 is [19]

fl0(l0) = 2πλbl0 e−λbπl20 . (19)

The distance l0 is a random variable. A similar model is
described by a meta distribution in [15].

Note that we consider the downlink of a wireless network,
and the status of a BS may be either busy or idle. Letting Li

be the distance between the typical user and the interfering
BS yi, the SIR at the typical user with a distance l0 from its
serving BS in the time slot t is

SIRt =
Pbh0l

−α
0∑

yi∈Φb\y0

�yiPbgiL
−α
i

, (20)

where �yi is the indicator function defined such that �yi = 1
holds if the interfering BS yi is active, while �yi = 0 holds
otherwise. The denominator is the interference at the typical
user given by

I =
∑

yi∈Φb\y0

�yiPbgiL
−α
i . (21)

When evaluating the expectation with respective to the BS
deployment pattern Φb, the distance l0 should be regarded as
a random variable with PDF given by (19).

The interference is determined by the active BSs whose
queues are non-empty in current time slot. Note that the
statuses of queues at different BSs change over the time.
In order to make the analysis of success probability feasible,
we introduce a factor q which characterize the busy probability
(or the active probability) of all BSs on average in the network.
In the following discussions, we first propose methods to
determine the busy probability q for the aforementioned two
scheduling schemes, then we use the obtained busy probability
to derive several performance metrics.

A. Busy Probability

For the random scheduling of active users, a BS is active
as long as any queue of the users is non-empty. To derive the
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busy probability of a BS directly is rather difficult since the
number of active users served by a BS varies with the time
slots. However, in order to derive the busy probability of BSs,
we could think about the problem from another point of view.
We could consider that each BS maintains a large queue to
store the incoming packets and do not distinguish which user
the packets belong to. Then, the average arrival rate of the
queueing process at each BS becomes Nξ0, and the service
rate of the large queue will be Ps|Φb

, which is the conditional
success probability given the realization of Φb, defined as

Ps|Φb

Δ= P{SIRt > θ | Φb}. (22)

According to the property of the G/G/1 queueing system,
conditioned on the realization of Φb, the probability for the
large queue at a BS being non-empty equals to the utilization
of the queueing system at the large queue, which is

Pa|Φb
= min

{
Nξ0

Ps|Φb

, 1
}

. (23)

Note that the condition for a BS being busy at certain time
slot is equivalent to the condition that the large queue is non-
empty. Thus, the above non-empty probability is also the busy
probability of a BS conditioned on Φb.

Remark 1: If we consider the random scheduling of all
users other than just the active users in the coverage of a
BS, the probability of a BS being busy equals the probability
that the queue of a randomly scheduled user is non-empty.
Since the arrival rate of packets intended for each user is
ξ0 while the service rate is Ps|Φb

/N due to the randomly
scheduling, the busy probability will be the same as that given
by the equation (23). The result is exactly coincident with that
for random scheduling of just active users, which is rather
counterintuitive. It can be interpreted as that although the
random scheduling of all users may allocate time slots to users
with empty queues, the busy probability of BSs will not be
reduced since it increases the probability that a queue being
non-empty. With these discussions, we arrive the conclusion
that the busy probability q for random scheduling of active
users equals to that for random scheduling of all users.

By averaging over the point process Φb, we get the mean
active probability of all BSs as

Pa = EΦb

[
min

{
Nξ0

Ps|Φb

, 1
}]

(a)≈ min
{

Nξ0

Ps
, 1
}

, (24)

where (a) holds by using min(1/E[X ], 1) to approximate
E[min(1/X, 1)]. The accuracy of the approximation is demon-
strated by Figure 8, in which the blue curve with cross-shaped
markers denotes the exact value of mean active probability,
while the red curve with triangular markers plots the approx-
imated mean active probability given by (24).

Note that in the previous discussion we have assumed that
the busy probability of BSs is q. The approximated mean active
probability given by (24) should also equal to q. Since the
success probability Ps is a function of q, we get a fixed-point
equation as

min
{

Nξ0

Ps
, 1
}

= q. (25)

Fig. 8. Illustration of the accuracy for the approximation given by (24). The
parameters are set as θ = 10, λb = 10−5, N = 50 and α = 3.

By solving the above fixed-point equation, we get the follow-
ing lemma which gives the busy probability of BSs in the
steady state for random scheduling of active users.

Lemma 5: The solution of equation (25) is given by

q =

⎧⎪⎪⎨
⎪⎪⎩

Nξ0sinc(δ)
sinc(δ) − Nξ0θδ

, if 0 < ξ0 <
sinc(δ)

N(sinc(δ) + θδ)

1, if ξ0 ≥ sinc(δ)
N(sinc(δ) + θδ)

.

(26)

where δ = 2/α and sinc(·) is the sinc function.
Proof: Combining [17, eq.5.14] with [19], we get the

success probability conditioned on the link distance l0 as

Ps|l0 = exp
(
−πλbqθ

δl20
sinc(δ)

)
, (27)

where the interference is obtained by the independent thinning
of the original Poisson point process with probability q.
Averaging over l0, we get the success probability as

Ps = El0 [Ps|l0 ] =
∫ ∞

0

exp
(
−πλbqθ

δx2

sinc(δ)

)
fl0(x)dx

=
sinc(δ)

sinc(δ) + qθδ
. (28)

Plugging Ps into (25), we get the fixed-point equation (25) as

min
{

Nξ0(sinc(δ) + qθδ)
sinc(δ)

, 1
}

= q. (29)

In order to solve the above equation (29), we consider two

cases, 0 < Nξ0(sinc(δ)+qθδ)
sinc(δ) < 1 and

Nξ0(sinc(δ)+qθδ)
sinc(δ) ≥ 1.

In order to clarify the solving process for the fixed-point
equation, we give the geometric explanation in the following.
In Figure 9, the red curve plots the solution for the equation
(29), and the red dot indicates the intersection of the curve
q = Nξ0sinc(δ)

sinc(δ)−Nξ0θδ and straight line q = 1. The abscissa of the
red dot is indicated by B0.

• Case 1: 0 < Nξ0(sinc(δ)+qθδ)
sinc(δ) < 1. In this case, we have

0 < q < 1 and Nξ0(sinc(δ)+qθδ)
sinc(δ) = q. The solution of (29)

depends on the intersection of the curve y1(q) and the
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Fig. 9. Busy probability in steady state as functions of packet arrival rate ξ0.
The red curve plots the solution for the fixed-point equation given by (29).

Fig. 10. Illustration of both right-side and left-side for the fixed-point
equation given by (29) in two cases.

curve y2(q) as shown in Figure 10. Therefore, if 0 < ξ0 <
sinc(δ)

N(sinc(δ)+θδ)
, the solution of the fixed-point equation is

q = Nξ0sinc(δ)
sinc(δ)−Nξ0θδ ; otherwise, the solution becomes q = 1

if ξ0 ≥ sinc(δ)
N(sinc(δ)+θδ)

.

• Case 2: Nξ0(sinc(δ)+qθδ)
sinc(δ) ≥ 1. In this case, the solu-

tion is q = 1. Then, we get the conclusion that if
ξ0 ≥ sinc(δ)

N(sinc(δ)+θδ) , the solution of the fixed-point equa-
tion is q = 1.

Thus, we obtain the solution of the fixed-point equation (25)
in the lemma.

B. Success Probability

Having derived the busy probability q, plugging (26) into
(28), we get the approximated success probability as

Ps =

⎧⎪⎪⎨
⎪⎪⎩

1 − Nξ0θ
δ

sinc(δ)
, if 0 < ξ0 <

sinc(δ)
N(sinc(δ) + θδ)

sinc(δ)
sinc(δ) + θδ

, if ξ0 ≥ sinc(δ)
N (sinc(δ) + θδ)

.

(30)

Remark 2: When the packet arrival rate satisfies
0 < ξ0 < sinc(δ)

N(sinc(δ)+θδ)
, the success probability is determined

by the path loss exponent, the number of users and the SIR
threshold. When ξ0 or N increases, the success probability
decreases due to the increment of traffic. When the path
loss exponent increases, the success probability increases,
which is attributed to the reduction of the interference. As the
SIR threshold increases, the success probability decreases
gradually because the SIR requirement becomes higher but
the propagation environment is unchanged. On the other
hand, when the packet arrival rate satisfies ξ0 ≥ sinc(δ)

N(sinc(δ)+θδ)
,

the success probability is only relies on the path loss exponent
and the SIR threshold. As the path loss exponent increases,
the success probability increases gradually and reaches a
maximum value, which implies that the interference from
other BSs is dominant for large arrival rate, and the effect of
path loss on the interference is more evident than that on the
signal.

C. Throughput

In order to take both success probability and frequency of
transmission into consideration, we derive the throughput per
unit spectrum (bps/Hz) of a BS in the following discussions.
In the description of system model, we have assumed that the
size of packets is fixed to be the same, and a BS requires
exactly one time slot to deliver one packet. Since a packet
is transmitted by a BS in any time slot with probability
q and successful delivered with probability Ps, we get the
throughput per unit spectrum of a BS as

τ = qPs
Lp

B · Δt
, (31)

where Lp is the length of one packet, B is the bandwidth and
Δt is the length of one time slot. Assume that as long as the
SIR exceeds the threshold θ, a link could transmit at the rate
log2(1 + θ) bits per second per Hz, i.e., Lp

B·Δt = log2(1 + θ).
Using (26) and (30), we get the throughput at each BS as

τ =

⎧⎪⎪⎨
⎪⎪⎩

Nξ0 log2(1 + θ), if 0 < ξ0 <
sinc(δ)

N(sinc(δ) + θδ)
sinc(δ) log2(1 + θ)

sinc(δ) + θδ
, if ξ0 ≥ sinc(δ)

N(sinc(δ) + θδ)
.

(32)
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Fig. 11. Throughput for different path loss exponents and packet arrival
rates. The number of users is N = 10.

Observing the equation (32), we can find that the throughput
of a BS is related to the path loss exponent, the distribution
of users and the threshold of SIR. The throughput increases
linearly with N or ξ0, for 0 < ξ0 < sinc(δ)

N(sinc(δ)+θδ) . The
linear increase comes from the increase of users service
requests. When the packet arrival rate satisfies the condition
ξ0 ≥ sinc(δ)

N(sinc(δ)+θδ)
, the throughput will only related to the

path loss exponent and the threshold of SIR, which means the
BS reaches its maximum capacity and the BS will be active
all the time.

In Figure 11, we plot the throughput τ with respect to the
SIR threshold θ (dB) for different path loss exponents and
packet arrival rates. As it can be observed from the curves,
it seems counterintuitive that the throughput increases when
the path loss exponent increases. The increase comes from
the increase of success probability, and it means that the large
path loss exponent is not always bad for the throughput. When
0 < ξ0 < sinc(δ)

N(sinc(δ)+θδ)
holds and the packet arrival rate is

the same, the throughput for different path loss exponents
will be the same. In this case, the packet arrival rate will
be the dominant factor that affects the throughput. When
ξ0 ≥ sinc(δ)

N(sinc(δ)+θδ) and the pass loss exponents is the same,
the throughput for different packet arrival rates will be the
same as well. Similarly, the path loss exponents are the
dominant factor to affect the throughput in this case. Observing
the curves, we observe that the peak values of the throughput
are determined by the path loss exponent and the packet
arrival rate. When the path loss exponent and the packet
arrival rate increase, the peak value of the throughput will
increase. For different path loss exponents and packet arrival
rates, the optimal SIR thresholds that achieves the maximum
throughput are different.

D. Mean Delay

In the following, we discuss the mean delay for random
scheduling of active users and analyze the relationship between
the delay performance and the traffic. Similar to the previous
derivations of busy probability, we also consider a single
large queue at each BS. For random scheduling of active
users, the mean delay of each user equals the mean delay of

packets in the large queue at BSs. For such queueing system,
the packet arrival rate is Nξ0, and the service rate μ equals
the success probability Ps, which is

μ =

⎧⎪⎪⎨
⎪⎪⎩

1 − Nξ0θ
δ

sinc(δ)
, if 0 < ξ0 <

sinc(δ)
N(sinc(δ) + θδ)

sinc(δ)
sinc(δ) + θδ

, if ξ0 ≥ sinc(δ)
N(sinc(δ) + θδ)

.

(33)

Due to the independence of transmissions in different time
slots, the probability for successfully transmitting a packet
in any time slot is μ, and the service time of each packet
is an random variable with geometric distribution. Since the
arrival process of packets intended for each user is a Bernoulli
process, we could use a discrete-time Geo/Geo/1 queueing
model [39] to describe the queueing system. The following
theorem gives the mean delay for random scheduling.

Theorem 1: For random scheduling of active users,
the mean delay Dξ0 is

Dξ0 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − Nξ0)sinc(δ)
sinc(δ) − Nξ0θδ − Nξ0sinc(δ)

,

if N <
sinc(δ)

ξ0(sinc(δ) + θδ)

∞, if N ≥ sinc(δ)
ξ0(sinc(δ) + θδ)

.

(34)

Proof: From [39, Corollary 2 eq.7], the mean time that a
customer spends in the system is

W = β1 +
2p̄ (β1 − 1) [1 − A (p̄)] + pβ2

2 [p + p̄A (p̄) − ρ]
, (35)

where βn is the nth factorial moment of service rate, p is
the arrival rate (p̄ = 1 − p), ρ = pβ1 is the traffic intensity,
A (x) =

∑∞
i=0 aix

i is the Ordinary generating function of
successive interretrial times of any user with an arbitrary
distribution {ai}∞i=0. The retrial time is 0 in our queue system,
so we have a0 = 1, ai≥1 = 0 and A (p̄) = 1. The service rate
follows from geometric distribution. Combined with our own
queue system, we get β1 = 1/μ, β2 = 2/μ2 − 2/μ, p = ξ0,
A (p̄) = 1 and ρ = pβ1. By utilizing the above formulas,
plugging in the arrival rate Nξ0 and the service rate μ, we get
the mean delay as

Dξ0 =

⎧⎨
⎩

1 − Nξ0

μ − Nξ0
, if μ > Nξ0

∞, if μ ≤ Nξ0.

(36)

Plugging (33) into (36), we get the result in (34).
Remark 3: In the previous discussions of busy probability,

success probability and throughput, we find that these perfor-
mance metrics for random scheduling of active users is the
same as that for random scheduling of all users. However,
the two different scheduling schemes are distinct in terms of
mean delay. For random scheduling of all users, each user
is scheduled for transmission in a time slot with probability
1/N , and the service rate of the typical user is μ = Ps/N .
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Then, we get the mean delay as

Dξ0 =

⎧⎨
⎩

1 − ξ0

μ − ξ0
, if μ > Nξ0

∞, if μ ≤ Nξ0

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − ξ0)Nsinc(δ)
sinc(δ) − Nξ0θδ − Nξ0sinc(δ)

,

if N <
sinc(δ)

ξ0(sinc(δ) + θδ)

∞, if N ≥ sinc(δ)
ξ0(sinc(δ) + θδ)

.

(37)

Comparing the above result with that in Theorem 1,
we observe that the mean delay for random scheduling of all
users is much larger than that for random scheduling of active
users.

When the mean delay is finite and Dξ0 < β, we get the
following inequality

(1 − Nξ0) sinc (δ)
sinc (δ) − Nξ0θδ − Nξ0sinc(δ)

< β. (38)

After simplifying the above inequality, we obtain

N <
(β − 1)sinc(δ)

ξ0(θδβ + βsinc(δ) − sinc(δ))
. (39)

In order to facilitate the above expression, we define

A1
Δ=

sinc(δ)
ξ0(θδ + sinc(δ))

, (40)

A2
Δ=

(β − 1)sinc(δ)
ξ0(θδβ + βsinc(δ) − sinc(δ))

, (41)

where A1 > A2 and β is the delay requirement for users.
By analyzing the above inequalities, we obtain several

conclusions as follows.

• When the number of users N satisfies N < A2, the queue
is stable, and the delay requirement can be satisfied.
By observing the expression of A2, we obtain that the
larger the value of β is, the greater the value that N will
be. In other words, when the delay requirements are low,
the typical cell can accommodate more users and satisfies
their delay requirements.

• When N satisfies the condition A2 < N < A1, the queue
is stable but the delay requirements of users cannot be
satisfied, i.e. users can be served by the associated BS,
but their delay requirements cannot be met.

• When N satisfies the condition N > A1, the queue is
not stable, i.e., the users will be blocked in the system
and can not be successfully served by the associated BS.

E. Stability of Queues

In this subsection, we derive the unstable probability of the
queue for users, which reveals the stability of queues in the
wireless networks. A system is said to be stable if its long run
averages exist and finite. If a system is unstable, its long run
measures are meaningless.

Definition 1: For a queueing system with packet arrival rate
ξ and service rate μ, the queue is stable if and only if the
arrival rate ξ is less than the service rate μ. For a network

with multiple queues, the proportion of stable queues among
all queues equals to the stable probability of the queue at the
typical link, which is defined as

Pstable
Δ= P{ξ < μ}. (42)

With the definition of stable probability, the corresponding
unstable probability is given by Pus = P{ξ ≥ μ}. Therefore,
we get the following theorem.

Theorem 2: The unstable probability of queues for users in
the network is

Pus =1−
∞∑

k=1

P{ξi ≤ f(k)}P{N = k}−P{N = 0}, (43)

where f(k) = sinc(δ)
k(sinc(δ)+θδ) , and P{N = k} is the PMF of N

given by (3) and (4).
Proof: The unstable probability can be derived as

Pus = P

{
N ≥ sinc(δ)

ξi(sinc(δ) + θδ)

}

= 1−
∞∑

k=1

P{ξi≤f(k)}P{N =k}−P{N =0}, (44)

where P{ξi ≤ f(k)} can be evaluated by the cumulative
distribution function of ξi, and P{N = k} can be obtained
by (3) or (4).

First, we consider the exponentially distributed case where
ξi ∼ Exp(λ), the unstable probability can be derived as

Pus = 1 −
∞∑

k=1

(
1 − exp

(
− λsinc(δ)

k(sinc(δ) + θδ)

))
P{N = k}

−P{N = 0}. (45)

For the uniformly distributed case where ξi ∼ Uni(0, b),
the unstable probability is

Pus = 1 −
∞∑

k=a

sinc(δ)P{N = k}
kb(sinc(δ) + θδ)

−
a−1∑
k=0

P{N = k}, (46)

where the condition is sinc(δ)
a(sinc(δ)+θδ)

≤ b < sinc(δ)
(a−1)(sinc(δ)+θδ)

.
When ξi ∼ Exp(λ) and the users form a PPP, combined

(3) with (45), we get

Pus =1−
∞∑

k=1

(
1−e

− λsinc(δ)
k(sinc(δ)+θδ )

)e−λuS

k!
(λuS)k − e−λuS .

(47)

When the users are distributed as a PCP, combined (4) with
(45), the unstable probability is

Pus = 1 −
∞∑

k=1

((
1 − e

− λsinc(δ)
k(sinc(δ)+θδ)

)

×
( ∞∑

a=0

e−λpS

a!

(
λpSe−λcπr2

c

)a
(
λcaπr2

c

)k
k!

))

− exp
(
(e−λcπr2

c − 1)λpS
)
. (48)
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Fig. 12. Effect of the arrival rate ξ0 on the conditional mean delay Dξ0 for
different α (N = 20, θ = 10).

When ξi ∼ Uni (0, b) and the users form a PPP, combined
(3) with (46), we get

Pus = 1 −
∞∑

k=m

(
sinc(δ)

kb(sinc(δ) + θδ)

)
e−λuS

k!
(λuS)k

−
m−1∑
k=0

e−λuS

k!
(λuS)k

. (49)

Similarly, when the users are distributed as a PCP, combined
(4) with (46), we get

Pus = 1 −
∞∑

k=m

(
sinc(δ)

kb(sinc(δ) + θδ)

×
∞∑

a=0

e−λpS

a!

(
λpSe−λcπr2

c

)a
(
λcaπr2

c

)k
k!

)

−
m−1∑
k=0

( ∞∑
a=0

e−λpS

a!
(λpSe−λcπr2

c )a (λcaπr2
c )k

k!

)
.

(50)

The numerical results of unstable probability are shown
in Figure 13, Figure 14 and Figure 15.

V. NUMERICAL EVALUATION

A. Delay Performance

In Figure 12, we plot the conditional mean delay Dξ0 given
by (34) as functions of the packet arrival rate ξ0 for different
path loss exponents. We observe that, when the value of ξ0

is small, as ξ0 increases, the conditional mean delay Dξ0

increases gradually since the waiting time is longer due to the
increase of the number of arrival packets in a slot time. When
the value of ξ0 is larger than a certain value, the conditional
mean delay Dξ0 will be infinite which means that the queue is
unstable. This can be interpreted as that the service ability of
BSs are limited and the system will be blocked when the traffic
is overloaded in each time slot. As the path loss exponent α
increases, the conditional mean delay Dξ0 decreases since the
waiting time is shorter due to the decrease of the number of
arrival packets.

Fig. 13. Effect of the density of users λu on the unstable probability Pus

for different path loss exponents α and various distributions of users when
the arrival rate is exponentially distributed as Exp(0.01). The parameters are
set as θ = 10, S = 10, rc = 1, λp = 1

1.1π
and λc = 1.1λu .

B. Unstable Probability

In Figure 13, we plot the unstable probability Pus given
by (45) as functions of the density of users λu for different
path loss exponents α. The packet arrival rate ξi follows an
exponential distribution with mean 0.01. As the density of
users λu increases, the unstable probability Pus increases due
to the increase of the number of users. When the density of
users λu increases to a large value, the unstable probability
Pus approaches to one. As shown in Figure 13, when the
density of users is small, the unstable probability in non-
uniformly distributed case is larger than that in uniformly
distributed case. Nevertheless, when the density of users is
large, it is reversed that the unstable probability in non-
uniformly distributed case become smaller than that in uni-
formly distributed case. The observation can be interpreted
as that when the density of users is small, if users are
uniformly distributed in space, the probability of a BS being
overburdened is small. However, if users are non-uniformly
distributed when the density of users is small, the probability
of a BS being overburdened increases. Therefore, in the case
of small density of users, the unstable probability of the
queues in uniformly distributed case is smaller than that in
non-uniformly distributed case. On the other hand, when the
density of users is large, if users are uniformly distributed
in space, almost most BSs in the network are overburdened,
and the proportion of BSs with unstable queues is large.
However, if users are non-uniformly distributed in space,
the amount of traffic at different BSs become polarized, i.e.
either extremely heavy or extremely light. Compared with the
uniformly distributed case, the number of BSs with light traffic
increases, leading to decrease of the unstable probability.

In Figure 14, we plot the unstable probability Pus given
by (46) as functions of user density λu for different path loss
exponents α. The packet arrival rate ξi is uniformly distributed
as Uni(0, 0.02). Similar to the results in Figure 13, as the
density of users λu increases, the unstable probability Pus

increases. As the path loss exponent α increases, the unstable
probability Pus decreases. We can observe a similar trend
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Fig. 14. Effect of user density λu on the unstable probability Pus for
different path loss exponents α and various distributions of users when the
arrival rate is uniformly distributed as Uni(0, 0.02). The parameters are set
as θ = 10, S = 10, rc = 1, λp = 1

1.1π
and λc = 1.1λu.

Fig. 15. Effect of user density λu on Pus for different path loss exponents
α when the arrival rate is either uniformly distributed as Uni(0, 1) or
exponentially distributed as Exp(0.5). Two different settings of parameters
are θ = 10, S = 10, rc = 1, λp = 1

1.1π
, λc = 1.1λu for PCP 1, and

θ = 10, S = 10, rc = 1, λp = λu
1.1π

, λc = 1.1 for PCP 2.

for the unstable probability as that in Figure 13. It further
verifies the conclusion that the unstable probability in the
uniformly distributed case is smaller than that in the non-
uniformly distributed case for small λu, and it is reversed for
large λu. Contrast with Figure 13, we observe that the unstable
probabilities in Figure 14 are larger than those in Figure 13
when changing the distribution of ξi, indicating that the
unstable probability is smalller when the arrival rate ξi follows
an exponential distribution.

In Figure 15, we plot the unstable probability Pus given
by (45) and (46) as functions of user density λu for different
distributions of arrival rate. Two different settings of parame-
ters for PCP, named ’PCP 1’ and ’PCP 2’, are considered.
The packet arrival rate ξi is either uniformly distributed as
Uni(0, 1) or exponentially distributed as Exp(0.5). Figure 15
reveals that the unstable probability in PCP 1 is larger than
that in PCP 2. We also observe that the unstable probability

is smaller when ξi is exponentially distributed compared to
that when ξi is uniformly distributed. In particular, when the
path loss exponent α increases from 2.5 to 4, the gaps shown
in Circle 1 is enlarged to that in Circle 2, indicating that
for medium value of the density of users λu, the unstable
probability of queues is not dominated by the probability
distribution of ξi, but by the path loss.

VI. CONCLUSION

In this paper, we consider a tractable model to analyze
the effect of spatio-temporal traffic on the wireless network.
By considering a network consisting of one tier of BSs and
one tier of users, we compared the distributions of users in the
uniformly distributed case and the non-uniformly distributed
case and derived the PMF of the number of users, the variance
of total arrival rate, the success probability, the throughput,
the conditional mean delay and the unstable probability of
queue. Specific expressions were obtained for the proposed
model. Based on the obtained expressions, we discussed the
effect of spatio-temporal traffic on network delay and the
unstable probability of queues.

From the numerical evaluation, we observe that the fluc-
tuations of total arrival rate are greater in the non-uniformly
distributed case than that in the uniformly distributed case. The
stable probability of queue in the non-uniformly distributed
case is larger than that in the uniformly distributed case when
the density of users is large or when the arrival rate follows
an exponential distribution. Our analyses reveal the difference
between the uniformly and non-uniformly distributed traffic
and provide insights on the design of wireless networks when
various spatio-temporal properties of traffic is considered.
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