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Abstract— Precise indoor localization is a key requirement for
the fifth-generation (5G) and beyond wireless communication sys-
tems with applications. To that end, many high accuracy signal
fingerprint-based localization algorithms have been proposed. Most
of these algorithms, however, face the problem of performance
degradation in indoor environments, when the propagation envi-
ronment changes with time. In order to address this issue, the
crowdsourcing approach has been recently adopted, where the
fingerprint database is frequently updated via user reporting. These
crowdsourcing techniques still require precise indoor floor plans
and fail to provide satisfactory accuracy. In this paper, we propose
a low-complexity self-calibrating indoor crowdsourcing localization
system that combines historical fingerprints with frequently updated fingerprints for high precision user positioning. We
present a multi-kernel transfer learning approach that exploits the inner relationship between the historical and updated
channel state information (CSI). Our indoor laboratory experimental results using Nexus 5 smartphones at 2.4GHz with
20MHz bandwidth have shown the feasibility of the proposed approach to achieve about one-meter level accuracy with a
reasonable fingerprint update overhead.

Index Terms— Indoor localization, crowdsourcing, channel state information, fingerprint database, transfer learning.

I. INTRODUCTION

Among the technical requirements for the fifth-generation
(5G) wireless communications and beyond, there is an impor-
tant requirement for the precise indoor localization, which can
bring, as representative applications, accurate navigation expe-
rience [2] in shopping malls and seamless tracking in smart
factories [3]. Different from the outdoor localization process,
where the combination of the global navigation satellite system
(GNSS) with the inertial navigation system (INS) [4] provides
satisfactory accuracy, indoor localization solutions are quite
diversified, such as those based on the low-cost Bluetooth Low
Energy (BLE) [5], the increasingly popular 3GPP LTE/5G [6],
and the widely deployed WiFi technologies [7]–[11]. Never-
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theless, signal fingerprinting approaches, including large-scale
received signal strength indicator (RSSI) [12], or reference
signal received power (RSRP) [6], or small-scale channel state
information (CSI) [8], [10], are usually recognized as the most
efficient solutions for high accuracy indoor localization.

The availability of timely and accurate signal fingerprint
maps is of paramount importance for the aforementioned
fingerprint-based localization approaches. However, the col-
lection of fingerprint maps is often considered as a labor-
intensive task. Furthermore, fingerprint maps can be easily
corrupted by the fluctuations in the wireless channels, due to
human movement or time-varying scattering and reflections.
It was shown in [13] that those factors can gradually, over
time, degrade the localization accuracy. In order to solve
this problem, reference [14] proposed to regularly update the
fingerprint database in order to maintain the positioning ac-
curacy without deterioration. However, the associated system
maintenance costs were prohibitively expensive [15].

To address the aforementioned indoor localization issues,
we present in this paper a novel self-calibrating indoor
fingerprint-based localization system. By efficiently utilizing
the dynamically updated fingerprints from crowdsourcing, we
present a localization scheme based on multi-kernel transfer
learning. The proposed scheme strives to keep the WiFi
fingerprint database as well as the neural network models
updated, in order to efficiently track the variations of the
wireless channel for a long time period, while exhibiting
reasonable implementation complexity. Our experimental re-
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sults in a laboratory have showcased the performance of the
proposed indoor localization scheme, which can achieve mean
localization errors as low as one meter. The main contributions
of this paper are summarized as follows.
• Knowledge-Aided Fingerprint Reporting. The newly

reported fingerprints from crowdsourcing reporters in-
evitably contain position errors. To solve this problem,
we develop the fingerprint confidence weight according
to prior knowledge about key acquisition parameters of
the newly reported fingerprints. This process ensures the
effective update of the fingerprint database. In this way, it
prevents inaccurately reported samples from deteriorating
the expected system positioning accuracy.

• Transfer Learning with the Updated Fingerprint
Database. The limited localization accuracy of conven-
tional localization schemes is mainly due to ignoring
the relationship between outdated and updated fingerprint
databases. To overcome this obstacle, we introduce the
maximum mean discrepancy (MMD) metric that de-
scribes the differences of their distributions and further
extend it to a multi-kernel MMD (MK-MMD) version by
incorporating the conditional CSI distributions. Through
this approach, the proposed localization scheme can pro-
vide a transfer learning-based adaption among different
fingerprint databases and achieve a better localization
accuracy.

• Simultaneous Self-Calibrating and Classification. In
order to balance the localization accuracy and the MK-
MMD distances of self-calibrated fingerprint databases,
we design a combined loss function on top of the pro-
posed deep transfer learning framework. With this design,
the proposed framework can simultaneously update the
fingerprint database and the corresponding localization
function, which facilitates the utilization of historical as
well as updated fingerprint information for high precision
localization, and eventually addresses the aforementioned
issues.

The rest of this paper is organized as follows. In Section II,
we summarize the existing technologies related to our pro-
posed localization system. We introduce our proposed crowd-
sourcing indoor localization system and the process of reporter
location estimation in Section III and Section IV, respectively.
We then present the considered problem formulation and the
implementation details of the proposed deep transfer learning
approach in Section V and Section VI, respectively. Our exper-
imental results are discussed in Section VII, while Section VIII
concludes this paper.

II. RELATED WORK

A. Fingerprint-Based Localization
Many methods based on signal fingerprints, e.g., [6], [12]

and [10], have achieved impressive localization results. Those
methods aim to extract the intrinsic features of wireless
signals in the training phase, which are then utilized in
the online operating phase to predict the user location in
conjunction with real-time measurements. The RSSI [12] and
RSRP [6] metrics have been proven to be highly correlated

with the spatial locations, and thus, adopted for improving
the localization accuracy to the level of a meter in indoor
and outdoor scenarios, respectively. Furthermore, CSI mea-
surements, which are frequently reported in [7], [8], [10],
[16], [17], have managed to further improve the localization
accuracy. Those measurements have complex structures and
more dimensions than traditional fingerprints. Probabilistic
models between the collected CSI and the candidate locations
are established through some classifiers, such as deterministic
k-nearest neighbor (KNN) clustering [16], probabilistic Bayes
rule algorithms [17], and deep learning-based algorithms [10],
[18]. The above fingerprint-based solutions have been shown
to be able to achieve sub-meter, even decimeter level accuracy,
if CSI from multiple APs [7], multiple frequency bands [8],
and/or multiple antennas [17] can be fused together.

B. Fingerprint Update
The key of fingerprint-based localization methods is to

establish the relationship between the fingerprint and the
corresponding position. The related work mentioned above
assumes that the indoor wireless environment does not change,
and then establishes the wanted relationship between the
fingerprint and the corresponding position. However, if the
modeled relationship are changed by human movement or
time-varying scattering and reflections, the system localization
accuracy will rapidly deteriorate. Although [19], [20] have
studied adapting fingerprints to environmental changes. These
works assume a certain trend in signals at neighboring areas,
which may not hold with AP movement and power adjustment.

Recently, a low-cost alternative scheme named crowdsourc-
ing [21] has been proposed to keep the fingerprint database up-
to-date via collaborative user reporting. With the aid of floor
plans, the existing crowdsourcing systems [22] can update the
fingerprint database by matching the mobile users’ zigzag rout-
ing, estimated by inertial measurement unit (IMU) results for
a period of time with the pre-acquired floor plan. However, the
above method suffers from the inaccurate location information
of crowdsourcing users, which often results in error accumu-
lating events, as shown in [22]. In addition, the localization
approaches only update the fingerprint database by newly
collected fingerprints using conventional multi-dimensional
scaling (MDS) [23], marginalized particle filtering (MPF) [24]
or Gaussian process regression (GPR) [25] schemes, which
have been shown to exhibit poor localization accuracy.

C. Transfer Learning
Transfer learning methods have been proven to be an

efficient method to reduce the labeling cost by transferring
the knowledge from the source domain to the target domain
in computer vision tasks [26]. As a typical problem situation
in transfer learning, domain adaptation addresses the problem
that we have data from two related domains but under different
distributions, and the fingerprint data from different time
periods can be viewed as two related domains with different
distributions. Recently, some domain adaptation methods, like
transfer component analysis (TCA) [27] and joint distribu-
tion adaptation (JDA) [28], have been proposed to mitigate
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Fig. 1. The proposed crowdsourcing system includes one or more
reporters, a server, and a requester. The system operator designs
the initial fingerprint database at the server, and the reporter provides
frequent updates on its fingerprints with location labels. Based on this
information, the server keeps updating the relationship between the
database with the fingerprints and the reporter locations. In the online
phase, the requester leverages the latter updated mapping to obtain its
precise localization.

the impact of RSSI variation and help to solve the RSSI
based localization problem. However, most existing methods
show poor performance in severe RSSI variations caused by
changing environment and heterogeneous hardware, because
most of them learn new shallow representation features due to
limited representation ability, which can only slightly reduce
the domain discrepancy. Deep neural networks can learn deep
transferable features to manifest invariant factors underlying
different domains, making hidden representations robust to
noise. Thus, some deep transfer learning methods [29], [30].
apply deep neural networks for domain adaptation, which
can learn more transferable features. However, these methods
either aim for the binary classification problem or require
a certain amount of samples in the target domain, and thus
cannot be applied to fingerprint-based indoor localization
directly.

Different from the existing methods, our proposed transfer
learning-based algorithm utilizes sparse crowdsourcing data
from reporters to establish fingerprint database relationships on
different time scales, thereby improving the online localization
accuracy.

III. SYSTEM OVERVIEW

In this section, we present the proposed crowdsourcing
system architecture, which is depicted in Fig. 1, and discuss
the initialization of the architecture’s fingerprint database as
well as its updating procedure via crowdsourcing.

A. Fingerprint Database Initialization
The initial fingerprint database, whose content is denoted as

DB0, stores the CSI samples from NR discrete grid locations,
e.g., {Am,∀m ∈ [1, . . . , NR]}. We make use of the notation
H(Am, T0) ∈ CNsc×Ns for the aggregated channel response

of Nsc subcarriers and Ns consecutive orthogonal frequency
division multiplexing (OFDM) symbols in a grid area Am at
the initial time instant T0. The entire fingerprint database is
initialized as follows,

DB0 = {(m,H(Am, T0)) ,∀m ∈ [1, . . . , NR]} . (1)

In practice, it is in general hard to obtain the channel re-
sponses of the entire grid area. For our fingerprint database ini-
tialization, the CSI samples at the center locations {Lm,∀m ∈
[1, . . . , NR]} of each grid area (see the red points in our
laboratory experimental results, as illustrated later in Fig. 8),
are considered as the regional CSI, H(Am, T0), and CSI at
the reference point Lm, e.g., H(Lm, T0). These measurements
can be obtained via a standard minimum mean square error
(MMSE) detection algorithm, as discussed in [31].

B. Fingerprint Database Update
For each duration between the time instants Tn and

Tn+1, we assume Nr
n+1 reporters are transmitting their re-

spective location information {Lrn+1(i)} and collected CSI
{H(Lrn+1(i), Tn+1)}, where i ∈ [1, . . . , Nr

n+1], to the central
server. In order to obtain the accurate location Lrn+1(i), we
utilize the WiFi, GPS receiver, and IMU sensors, as shown
in Fig. 2. Let us denote by Ωi(Am) the set of reports in the
area Am, e.g., Ωi(Am) = {i,∀i satisfying Lrn+1(i) ∈ Am}.
We can update the fingerprint H(Am, Tn+1) by averaging
the collected CSI within the area Am in order to eliminate
occasional measurement errors1, which is given by

H(Am, Tn+1) =
ωn+1

|Ωi(Am)|
∑
i∈Ωi(Am) H(Lrn+1(i), Tn+1)

+(1− ωn+1) ·H(Am, Tn), Ωi(Am) 6= ∅,
H(Am, Tn), Ωi(Am) = ∅,

where |·| denotes the cardinality of the inner set, ∅ denotes the
empty set, and ωn+1 ∈ [0, 1] denotes the confidence weight
of the collected fingerprint at Tn+1, which will be introduced
in Section IV. Then, the fingerprint database at Tn+1, i.e.,
DBn+1, is given by

DBn+1 = {(m,H(Am, Tn+1)) ,∀m ∈ [1, . . . , NR]} . (2)

After the location fingerprint database is updated, the corre-
sponding localization model is required to be updated as well
to provide requesters with more accurate localization services,
which will be introduced in Section VI.

IV. REPORTER LOCATION ESTIMATION

In this section, we will introduce the process of obtaining
the reporters’ indoor position, including the initial position
estimation and pedestrian dead reckoning, and location update.
The whole process is illustrated in Fig. 2. It is worth noting that
we are required to assess the accuracy of the newly reported
fingerprints, to avoid contaminating the original fingerprint
database or deteriorating the system positioning accuracy.

1If the newly collected CSI is not labeled correctly (poison added), the
relationship between the fingerprint and the corresponding location at Tn+1

cannot be obtained correctly. Then the accuracy of the position estimation in
the online phase cannot be guaranteed as well.
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IMU Sensor

Light Sensor

Fig. 2. The proposed reporter location estimation process consists
of three parts, including including the initial position estimation and
pedestrian dead reckoning, and location update. Each part is composed
of several steps, which involve multiple sensors such as GPS, light
sensor, IMU sensor, and WiFi on the smartphone.

A. Initial Location Estimation

It is well known that GPS is currently the most widely
applied GNSS service in the world, and is deployed on most
mobile terminals. Actually, our smartphones often receive
strong GPS signals and acquire accurate positioning coordi-
nates in some open outdoor areas, while indoor GPS signals
are usually considered too weak for indoor localization due to
signal blockage. However, opportunistic GPS localization can
be accessible to annotate the newly collected fingerprint at
building entrances, windows or balconies. In order to improve
the accuracy of the prior position L0 precision, we have
designed the following detectors to help assess the GPS signal
quality.

1) GPS Detector: We perform a GPS signal strength test at
various locations through smartphones indoors and outdoors.
Based on the test results, we have found that when the
mean signal-to-noise ratio (SNR) of GPS signals from all the
detected satellites exceeds 26 dBm, GPS signals can give one
meter level localization results. Note that if the number of the
detected satellites is smaller than 3, the localization results
are considered inaccurate2. Furthermore, the prior positions
given by GPS signals are expected to be acquired in the case
of stationary humans or terminals. To judge the indoor human
movement and confirm the stability of the received GPS signal
received, we require the GPS signal to fluctuate within 5 dbm
during the localization process.

2) Light Detector: As mentioned before, the mean SNR of
the indoor GPS signal is obviously smaller than that of the
outdoor. We believe that only the locations obtained by outdoor
GPS signals are usable. Therefore, we utilize the existing light
sensors on smartphones to help calculate the user switching

2These values vary with different environments of buildings, and can be
adjusted according to the actual situation [32].

time between indoor and outdoor.
Our proposed light detector can be applied to both daytime

and night scenarios, considering that smartphones can obtain
the users’ local time. We firstly utilize the proximity sensor on
the smartphone to judge whether the light sensor is available.
If the light sensor is available during the daytime and the
light intensity is greater than 1000 lx (light intensity), the
user is detected outdoor, otherwise indoor3. If the light sensor
is available at night and the light intensity is greater than
500 lx, the user is detected indoor, considering the indoor
intensity is usually larger than that of the outdoor at night.
Using this approach, we accurately obtain the time point and
corresponding locations when users switch between indoor and
outdoor scenarios.

3) Outlier Detector: Due to measurement uncertainty of GPS
signals, the smartphones will report a set of test results {L̂m},
resulting in unsatisfactory localization accuracy. Hence, the
outlier points of the observations may exist in the set {L̂m}
and an outliers removal scheme is needed to rule out the outlier
points, which are far away from the clustering set center in
the decision process. We denote Lm as the average point and
stdL as the standard deviation of set {L̂m}, which is defined
as,

stdL =

√√√√ 1

Ngs − 1

Ngs∑
k=1

(L̂m − Lm)2, (3)

where Ngs is the sample group size. If the following condition:

δL =
|L̂m − Lm|

std
> δth, (4)

is held, then L̂m is considered as an outlier point and removed
from the set {L̂m}, in which δth > 0 is the designed rejec-
tion threshold. When we need more accurate GPS positions
accuracy, we can reduce the parameter value at the cost of
reducing the samples number.

With the help of the three proposed detectors, the localiza-
tion accuracy provided by the collected indoor GPS signal is
greatly improved. We find it accurate enough for the modified
GPS signals to give the prior locations L0 at the building
entrance, compared with meters-level WiFi localization errors.
Here is a simple example as shown in Fig. 3.

B. Pedestrian Dead Reckoning

To further obtain the user traces, we apply an offline
pedestrian dead reckoning (PDR) algorithm on the collected
IMU sensor data, including the accelerometer, gyroscope, and
magnetometer, as also performed in [32]. The whole process
consists of step detection, step length estimation, heading
direction estimation, and location update.

1) Step Detection: Due to the periodic fluctuations of the
measured accelerometer data during the walk, we conduct step
detection by monitoring the peaks and valleys of the triaxial

3In the daytime, the light intensity outdoor is greater than indoors, even if
there are lamps indoors. Considering the low light outdoor in extreme weather,
our detector threshold is set to 1000 lx.
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Fig. 3. The changes in the SNR of the GPS signal and in the light
sensor readings during the daytime from outdoor to indoor positions.
We can accurately obtain the timing when the user enters the room
through the light sensor reading variance and estimate the initial location
information.

accelerometer readings. We can obtain the magnitude of the
triaxial accelerometer reading by

A =
√
A2
x +A2

y +A2
z, (5)

where Ax, Ay , and Az are the acceleration in x, y and z axes.

In order to eliminate the influence of noisy accelerometer
data, we utilize a low pass filter to filter out the high-frequency
noise, which is caused by the random movement of the
smartphone. Afterwards, we detect the peaks and valleys of
the accelerometer reading magnitudes, which are marked as
Ap and Av expressed in m/sec2. The corresponding detection
time are marked as T p (s) and T v (s). We set the following
conditions for step detection considering the average walking
speed of pedestrians, which is shown as,

|Ap −Av| > 0.5, (6)
|T p − T v| > 0.15. (7)

In this way, we manage to detect every user step and record
the step number NL accurately.

2) Step Length Estimation: The user’s step length is closely
related to his/her height and weight. If the user’s height h (in
meters) and weight w (in kilogram) information are already
known, we can directly estimate the step length L (in meters)
according to the following empirical formula in [32]:

L = 0.4h+ 0.001w. (8)

For example, we can calculate the step length of an adult
male with a height of 1.73m and a weight of 70kg, which is
0.4 ∗ 1.73 + 0.001 ∗ 70 = 0.762m according to the formula.

However, it is not practical to ask each user about the body
profile information, like height and weight. If no prior knowl-
edge of user features is provided, we apply the personalization
algorithm, as proposed in [33]. By analyzing the walk data
from various volunteers, a linear relationship between step
length and step frequency has been discovered. Therefore, the
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Fig. 4. In order to evaluate the performance of the heading direction
estimation, we compare the calculated angles with the ground truth
angles within one minute, and we find that the angle error can be
controlled within 5◦.

step length L (m) can can be estimated as follows:

L = 0.25fs + 0.25, (9)

where fs (Hz) is the step frequency.
3) Heading Direction Estimation: Heading direction estima-

tion is an important part of accurate path estimation. Though
a magnetometer can provide the heading direction, the severe
distortion of magnetic signals brings errors to direction estima-
tion. Considering that even small direction errors can greatly
affect the final results, we adopt a gyroscope and accelerometer
fusion-based method to estimate the direction angle αk.

Specifically, we measure the gravity value of the 3-axis by
the accelerometer to determine the orientation of the smart-
phone. Then we use the gyroscope to measure the angular
velocities (rad/sec) around x, y, and z, and obtain the degree
of rotation. At last, we fuse the gyroscope and accelerometer
results to estimate the Euler angles, and the angle error
histogram is shown in Fig. 4.

After completing the process of step detection, step length
estimation, and heading direction estimation, the PDR dis-
placement within NL steps is described as,

∆L =

NL∑
k=1

αk · Lk, (10)

where Lk is the kth step length of reporter. A particle filter
[24] is utilized to reduce IMU distance errors during this
process.

With help of these three steps, we find it accurate enough to
estimate the user PDR displacement ∆L in a relatively short
time period4. We test our proposed PDR estimation algorithm
in an open space and the localization results are given in Fig. 5.

C. Location Update

4To avoid the problem of IMU error accumulation, NL values will not
exceed 10 for continuous detection in our experimental settings.
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Fig. 5. Compared with the position provided by the GPS signal, the
proposed PDR estimation algorithm provides a more accurate position
estimation around the start point. But the localization errors of PDR
estimation gradually increase over time.

By combing the prior location L0 and user PDR displace-
ment ∆L, we can obtain the reporter’s location by,

Lrn+1(i) = L0 + ∆L, (11)

and record the corresponding CSI, H(Lrn+1(i), Tn+1), at
the same time. As mentioned before, we design the con-
fidence weight ωn+1 for the newly collected fingerprint
H(Lrn+1(i), Tn+1) at the time instant Tn+1 to represent the
reported positions accuracy. Intuitively, the reported position
accuracy is highly related to the implementation processes
of initial location estimation and pedestrian dead reckoning,
which involve multiple parameters such as the number of
detected satellites, the mean SNR of the GPS signal, and
so on. In order to describe the impact of each parameter
on the final reported results, we regress an error model by
collecting experimental data in an open space as described in
Fig. 5. We adopt the procedure suggested in [34] to estimate
each coefficient, and then the localization error en can be
formulated as follows:

en = β0 + β1x1,n + β2x2,n + · · ·
+βixi,n · · ·+ βkxk,n + εn, (12)

where xi,n is the ith factor parameter, βi is the coefficient of
xi,n, and εn is the residual term after regression. To be more
specific, we choose several important factor parameters and
learn the corresponding coefficients of each parameters, which
are summarized in Table I. In order to obtain the corresponding
coefficient, we have collected multiple sets of experimental
parameters and corresponding real and estimated localization
results. Considering that we need to fit five parameters β0, β1,
β2, β3, β4, we need more than 5 sets of experimental results
and establish five equations to solve them. We utilize the least
square (LS) method to solve the parameters, and we can obtain
more optimized parameters if more sets of experimental data
are given.

Once the coefficients of the chosen parameters are given,
we can obtain the confidence weight ωn+1 according to the

TABLE I
ERROR MODEL COEFFICIENTS FOR TYPICAL LOCALIZATION

PARAMETERS.

Module Parameters Coefficient Value

GPS
Number of detected

satellites x1,n
β1 -0.05

Mean SNR of GPS
signals x2,n

β2 -0.001

IMU
Cumulative steps of
PDR process x3,n

β3 0.03

Distance from the
last landmark x4,n

β4 0.1

calculated en, yielding:

ωn+1 =

{
1− en/eval, en ≤ eval,

0, en > eval,

where eval is the preset threshold used to indicate the system
accuracy requirement.

V. PROBLEM FORMULATION

In this section, we present the considered crowdsourcing
localization problem formulation. We apply a general op-
timization framework to describe the localization problem.
Like some existing literature, such as [10], we formulate the
localization problem as a common classification problem. Let
Lkn and L̂kn be the ground truth and the predicted locations of
the kth target at Tn respectively, and the corresponding mean
distance error (MDE) performance over K sampling positions
is given by 1

K

∑K
k=1 ‖L̂kn −Lkn‖2, where ‖ · ‖2 represents the

vector l2 norm. With the above notation, we can describe the
MDE minimization problem using the following optimization
framework.

Problem 1 (MDE Minimization):

minimize
{gn(·)}

1

N

1

K

N∑
n=1

K∑
k=1

‖L̂kn − Lkn‖2 (13)

subject to L̂kn =
(
pkn
)T · Lc, (14)

pkn = gn
(
H(Lkn),DBn

)
,∀n, (15)

pkn ∈ [0, 1]NR ,∀n, k, (16)

where N is the total number of localization time instants,
as well as Lc = [L1

c , . . . ,Lmc , . . . ,LNR
c ] and pkn denote the

central grid positions and the position likelihood distribution
of the kth target at Tn with respect to all the possible Am,
respectively. The function gn represents the unknown mapping
relationship between the measured CSI H(Lkn) and pkn.

In order to minimize the localization errors, it is necessary
to estimate pkn by fitting the gn(·) function, and further obtain
a recursive relation with the new function gn+1(·), which is
represented as:

pkn+1 = gn+1

(
H(Lkn+1),DBn+1

)
. (17)

Considering that part of fingerprints in DBn+1 are updated
compared with DBn, it is unnecessary to fit the gn+1(·)
function using the entire DBn+1. In order to reduce the
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computational complexity of the fingerprint database up-
date, we propose to apply transfer learning for fingerprint
transfer. Due to the difference between Pr(H(Am, Tn)) and
Pr(H(Am, Tn+1)), the self-calibrating localization system
needs to utilize a transfer mapping function Φ(·) in order
to model the difference in reproducing kernel Hilbert space
(RKHS) instead, where Pr(·) represents the channel distribu-
tion property. The corresponding MMD measure is thus given
by

DMMD(DBn,DBn+1)

=
∑NR

m=1 ‖Φ (H(Am, Tn)))− Φ (H(Am, Tn+1)))‖2H ,(18)

where ‖ · ‖H denotes the vector norm operation in RKHS.
With the above manipulation, we are required to fit the optimal
mapping function Φ(·) to update the function gn+1(·), that is,
minimizing MMD. Then, we can transform the original MDE
minimization problem into the following MMD minimization
problem.

Problem 2 (MMD Minimization):

minimize
Φ(·)

DMMD(DBn,DBn+1)

subject to (15), (17).
Although the aforementioned MMD considers the dis-

tribution differences of CSI between Pr(H(Am, Tn)) and
Pr(H(Am, Tn+1)), the conditional distributions of specific
areas, e.g., Pr(H(Am, Tn)|Am) and Pr(H(Am, Tn+1)|Am),
are ignored. Since this feature provides additional correlation
information in different areas, we propose to use an improved
multi-kernel solution, namely MK-MMD [29], defined as fol-
lows:

DMK-MMD(DBn,DBn+1)

=
∑NR

m=1 λ ‖Φ (H(Am, Tn))− Φ (H(Am, Tn+1))‖2H
+µ ‖Φ (H(Am, Tn)|Am))− Φ (H(Am, Tn+1)|Am))‖2H ,(19)

where λ, µ ∈ [0, 1] denote a fine-tuning coefficient indicating
the data similarity between DBn and DBn+1, for which it
holds λ + µ = 1. With the proposed MK-MMD metric,
we define the MK-MMD minimization problem to better fit
the optimal mapping function Φ(·) and update the function
gn+1(·) as follows.

Problem 3 (MK-MMD Minimization):

minimize
Φ(·)

DMK-MMD(DBn,DBn+1)

subject to λ+ µ = 1,

(15), (17).
It is noted that in the conventional methods, such as JDA

[28], usually the objective is to find a transformation matrix
to represent the transfer mapping function Φ(·). In the above
MK-MMD formulation, a simple transformation matrix is
insufficient, as mentioned in [29], which motivates us to apply
deep neural networks for the transfer function representation,
as described in the sequel.

VI. PROPOSED DEEP TRANSFER LEARNING SCHEME

In this section, we devise a deep transfer learning scheme for
the fingerprint database update. In particular, we present a MK-

MMD minimization framework, based on which a novel neural
network structure and loss function are designed to exploit
the inner relationship between the original and updated CSI
measurements.

A. Data Collection and Cleaning

Network Interface Cards (NICs) like Qualcomm Atheros
AR series and Intel 5300 make it possible to collect CSI
data. Rather than generating synthetic data from numerical
simulations, we have implemented our localization system
using a TP-LINK wireless router as the AP and two Nexus
5 smartphones as the reporter and requester, respectively. The
whole system works at 2.4 GHz with a bandwidth of 20MHz.
Nexus 5 with Nexmon [35] software installed overhears the
user datagram protocol (UDP) frames transmitted by the AP
and then extracts the CSI from them. CSI knowledge is
computed on a WiFi OFDM symbol basis with duration 3.2µs
according to IEEE 802.11n standards. The training dataset
contains 60000 transmitted packets5, and the packet interval is
4 ms, that is various channel situations of 4 minutes duration
in the experimental environment are logged in the training
dataset. Furthermore, CSI data extracted by the Nexmon CSI
Tool is transformed into polar coordinates for convenient
data processing, i.e. hi(L, n) = |hi(L, n)|ejθi(L,n), where
|hi(L, n)| and θi(L, n) denote the corresponding amplitude
and phase information, respectively and j represents the imag-
inary unit.

In practical systems, the measured phase information, e.g.
θ̂i(L, n) for subcarrier i, cannot be directly used for high
accurate localization due to random jitters and noises caused
by imperfect hardware components. In order to eliminate
this effect, we adopt the common phase calibration algorithm
proposed in [36], and then obtain:

θi(L, n) = θ̂i(L, n) +
2πi

NFFT
δ − Z, (20)

where NFFT denotes the size of the Fast Fourier Transform
(FFT), δ means the time lag at the receiver side, and Z is
the unknown random measurement noise. Nexmon CSI Tool
is designed according to IEEE 802.11n protocol, and the FFT
size is 64.

B. Neural Network Design

To address the mentioned Problem 3, we design a deep
transfer learning network for fingerprint adaptation. As shown
in Fig. 6, we start with a deep convolutional neural network
(CNN), which is a common structure to fulfill the complex
signal feature extraction and dimension reduction tasks. Since
the convolutional layers only learns generic features in the
related data sets, we only impose the MK-MMD domain
adaptation in the final fully connected (FC) layer. This is
because the unique characteristics of different data sets begin
to appear when the structure of neural networks is deep enough
[29].

5To accelerate the model training, we install Pytorch on our server with
Intel(R) Xeon(R) CPU E5-3680 and NVIDIA Tesla P100 GPU.
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MK-
MMD

FC

FC

Softmax

Softmax

Source

Output

Target

Output

CNNs

Input

Fig. 6. The architecture of the proposed deep transfer learning network,
which consists of convolution layers, FC layers, and average pooling
layers. The input of the network are the channel responses at the
time instants Tn and Tn+1 with respect to the grid area Am, which
are H(Am, Tn) and H(Am, Tn+1), respectively. The output of the
network is the estimated position likelihood distribution at Tn and Tn+1,
which are pk

n and pk
n+1, respectively.

TABLE II
AN OVERVIEW OF THE CONSIDERED NEURAL NETWORK

CONFIGURATION AND PARAMETERS.

Module Layers Output Size

CNNs

conv1 112× 112× 1
conv2_x 56× 56× 64
conv3_x 28× 28× 128
conv4_x 14× 14× 256
conv-5_x 7× 7× 512

average pooling 1× 1× 512
FC 1× 1× 512

Output Softmax NR × 1

Motivated by this fact, we design the neural network struc-
ture with five convolutional layers and one average pooling
layer to obtain the feature vectors. An FC layer with softmax
output [37] is used to provide the normalized probability. The
detailed configuration and parameters of the proposed neural
networks are listed in Table II, which is designed with refer-
ence to the commonly used transfer learning neural network.
Meanwhile, in the neural network design, we also propose
to use a joint loss measure, which considers both the cross-
entropy measure to describe the differences between the nor-
malized output probability p̂kn and the ground true label vector
pkn, and the MK-MMD based loss, DMK-MMD(DBn,DBn+1).
The parameters in the network can be adjusted by minimizing
the loss function, which can be written as:

L = −
NR∑
m=1

pkn,m log p̂kn,m +DMK-MMD(DBn,DBn+1), (21)

where pkn,m and p̂kn,m are the normalized probability for the
mth grid area. In addition, we train the parameters of deep
neural networks with Adam optimizer to minimize the above
loss function in the training stage.

In the operating stage, users ask for their position infor-
mation by reporting their real-time CSI to the server. The
trained neural network with the updated parameters outputs
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Fig. 7. The training loss gradually decreases with respect to the number
of epochs. Within less than 20 epochs, the training losses will converge
based on our experimental results, which demonstrates the efficiency of
our proposed neural networks.

a probability vector p̂kn+1,m, which is utilized to obtain the
final estimation location L̂kn. The corresponding mathematical
expression is given by:

L̂kn+1 =

NR∑
m=1

p̂kn+1,m · Lmc . (22)

C. Convergence and Complexity

To design efficient neural network architectures, another
important dimension to be considered is the convergence
property and the implementation complexity, where the con-
vergence speed greatly impacts the offline training cost and
the implementation complexity determines the cost of com-
putational resources. We improve the convergence speed in
the proposed method by adding early stopping points in the
training stages. Specifically, the training stages will be ended at
the ith epoch if the associated training loss becomes larger, e.g.
L(i) ≥ L(i−1). In Fig. 7, we plot the training loss concerning
the number of epochs. We find that the training loss will
converge based on our experimental results within less than
20 epochs, which demonstrates the efficiency of our proposed
neural networks.

The implementation complexity of neural networks is deter-
mined by the sizes of neural networks, which corresponds to
the number of neurons inside each neural network. According
to the empirical formula, as shown in [38], the maximum
number of neurons Nh shall satisfy the following expression,

Nh = 2
√

(Nsc ×Ns ×NRP + 2)×NR, (23)

where NRP is the number of reference points in training
dataset. We summarize the above results in the following
remark and the detailed numerical comparisons are performed
in Section VII.

Remark 1: The implementation complexity scales with the
number of neurons in the neural networks linearly, which is
in the order of O(

√
Nsc ×Ns ×NRP ).
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Fig. 8. A sketch map of the experimental environment, in which the
red, green, and black spots represent the location of reference points
of the initial fingerprint database, test points of requesters, and that
of the access point, respectively. The distance between two adjacent
reference points is about 1.2m. We collect 1500 CSI samples for the
training dataset and 750 CSI samples for the test dataset.

VII. EXPERIMENT RESULTS

In this section, we provide some numerical results to show
the effectiveness of the proposed deep transfer learning based
approach for neural networks update in terms of effectiveness
and complexity. Firstly, we have collected CSI data at all the
reference points at time instant T0 and constructed the database
DB0, and then trained the neural network. In order to ensure
the localization performance of the proposed system, we label
the newly collected CSI fingerprint at time instant Tn by the
method mentioned in Section IV and update the fingerprint
database and neural network parameters secondly. So these
data are not used in evaluating the position accuracy. Thirdly,
we have collected some CSI data with known locations to
verify the localization performance after fingerprint transfer.
In order to demonstrate the robustness of the system, we
verify the proposed scheme in both laboratory and corridor
environments, whose layouts are shown in Fig. 8. With labo-
ratory equipment, furniture, and people movements in the real
situation, the tested wireless fading conditions cover most of
the daily indoor scenarios with mixed LOS and NLOS paths.

A. Accuracy of Reporter Location Estimation
In this part, we investigate the accuracy of the reporter

location estimation as we proposed in SectionIV. Considering
even small errors in reporter location will contaminate the
fingerprint database, we are required to verify the reliability of

TABLE III
MEAN LOCALIZATION ERRORS OF REPORTERS FOR DIFFERENT

METHODS

Solution GPS Only PDR Only Proposed Solution

Mean error 3.82 m 1.35 m 0.37 m
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Fig. 9. CDF of the localization distance errors for different algorithms in
the test scenarios. The proposed deep transfer learning based approach
is compared with two baselines to test the algorithm effectiveness.

the proposed solution by comparing with GPS only and PDR
only based solution in the scenario shown in Fig. 8. Table III
shows the mean localization errors provided by reported by
different methods. We can find that the proposed solution of
reporter location estimation with more accurate initial location
estimation and pedestrian dead reckoning can outperform the
others, considering the weak signal of GPS indoors and the
accumulation of PDR errors.

B. Effect of Fingerprint Transfer
In this experiment, we investigate the effect of fingerprint

database update. We compared the proposed schemes with the
following baseline approaches by measuring the cumulative
distribution function (CDF) [39] of distance error in the test
scenario. To be more specific, we compare the proposed
schemes with two baselines, e.g., Baseline 1: non-updated
KNN based scheme and Baseline 2: JDA based transfer
scheme. For Baseline 1, we do not use the newly collected
CSI data and obtain the position estimation by the original
fingerprint database DB0. For Baseline 2, we use the newly
collected CSI data labeled by the method described in Section
IV to update the fingerprint database.

Fig. 9 describes the CDF of the localization distance error
during the operating stage. The proposed regression based
algorithms show superior localization accuracy over Baseline
1 and Baseline 2. By comparing JDA based approach (red
solid curves) and the deep transfer learning based approach
(black solid curves) with a non-update KNN based scheme,
we can find that the fingerprint transfer based schemes exhibit
better localization performance. By comparing the JDA based
and the deep transfer learning based approaches, the latter one
achieves a mean error of 1.08 m for the test scenarios, which
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TABLE IV
MEAN LOCALIZATION ERRORS OF REQUESTER FOR DIFFERENT

METHODS

Methods Mean Localization Error

Baseline 1 1.83 m
Baseline 2 1.37 m
MDS [23] 1.23 m
MPF [24] 1.35 m
GPR [25] 2.30 m

DAN with FC feature extractor 1.17 m
DAN with CNN feature extractor 1.08 m

shows better localization accuracy than 1.37 m of the former
one. This is due to the fact that the deep transfer learning
based approach is able to utilize the complex structure of
the neural network to better minimize MK-MMD and build
the relationship between the updated fingerprint database and
locations, while the transfer ability of the transfer matrix in
JDA based approach is very limited.

Moreover, the following methods are implemented and
compared: MDS [23], MPF [24], GPR [25], and DAN with
FC layer architecture. We summarize the comparisons of
these methods in Table IV. We can find conclude that the
proposed DAN with CNN feature extractor reduces the mean
localization errors by 41%, 21%, 12%, 20%, 53% and 8%
as compared with Baseline 1, Baseline 2, MDS, MPF, GPR
and DAN with FC feature extractor, respectively. The above
results demonstrate the superiority of the proposed DAN based
method regardless of the feature extractor architecture for the
transfer learning neural network.

C. Effect of Updated Samples

In this experiment, we investigate the test localization
accuracy with different percentages of newly collected samples
in the original dataset, considering that not all the CSI samples
can be updated through the crowdsourcing approach. Based on
this consideration, we can figure out the time period of per-
forming a fingerprint transfer to calculate the frequency needed
to update the neural network. To this end, the percentage of
newly collected samples is set to be 30%, 50%, and 70%,
respectively.

Localization errors under different new CSI samples per-
centage are illustrated in Fig. 10, where the corresponding
average localization errors are 1.36 m (blue solid curves),
1.08 m (black solid curves) and 0.85 m (red solid curves),
respectively. It is worth noting that when the size is changed
from 30% to 70%, the localization errors reduce to half at
the cost of approximately two times the data collection and
labeling. Based on the above results, we find that if half of
the fingerprint database can be updated by the newly collected
samples, the crowdsourcing localization system can provide an
accuracy of about one meter.

D. Computational Complexity

Although in terms of localization errors, the proposed
schemes provide satisfactory performance, the implementation
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Fig. 10. CDF of the localization errors for different percentage of newly
collected samples to explore the time period of fingerprint transfer.

TABLE V
TOTAL RUNNING TIME COMPARISON FOR THE CONSIDERED METHODS.

Samples Number Baseline 1 Baseline 2 Proposed Method

1 0.01s 13.9s 0.6s

100 0.02s 15.9s 4.7s

1000 0.1s 31.6s 5.61s

complexity is still uncertain. Therefore, in the second experi-
ment, we show the effectiveness of the proposed schemes by
comparing the computational time cost with the considered
baseline schemes.

In Table V, we compare the total running time of different
schemes with different numbers of test samples on the same
experimental platform. As shown in Table V, KNN based
scheme (Baseline 1) costs the least time, regardless of the num-
ber of samples, because only the matching and classification
processes are conducted, instead of the complex fingerprint
transfer process. For the JDA based scheme (Baseline 2),
most of the calculation time is used to complete the iterative
process to find the suitable transfer matrix. That’s why the
JDA algorithm requires the largest running time regardless of
the sample number. Thanks to the parameter storage capacity
of the neural network architecture, the trained network helps
to quickly calculate the position information of the test signal
in the online phase. Compared with two baseline methods,
our proposed deep transfer learning based method provides
high positioning accuracy with low computational complexity,
which reduces the calculation overload of the localization
system.

E. Effect of Reused Layers
We used the model trained by the original fingerprint

database as the base model and reused a part of its layers
during retraining. As mentioned in Table II, the proposed deep
learning model has 18 layers and about 33 million parameters.
The number of reused, or frozen, layers are gradually increased
from only the first layer to all layers except for the 18th layer.
During this process, as we fed the newly collected CSI data
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Fig. 11. The mean localization error and training time for the different
reused layers of the original trained model.

to retrain the model, the localization accuracy and the training
time of the model are shown in Fig. 11. Due to the inconsistent
direction of the gradient descent every time the model is
retrained, the time required for the new model to retrain, when
some layers are reused has no accurate quantitative meaning.
However, it can still be seen qualitatively that the turning point
of the model training time appears to be the 17th layer (the
pooling layer), while the turning point of the model accuracy
lies on the 18th layer, the FC layer.

This observation indicates that, for a well-trained local-
ization model, its layers before the flatten layer own certain
common knowledge about the data and can be transferred to
other models without retraining or tuning, whereas the fully
connected layers’ parameters cannot be utilized directly. In
other words, the convolutional layers and the pooling layers
play the role of feature extraction, while the fully connected
layers further fit the data and perform the prediction. On the
other hand, it can be seen that the majority of the training
time consumption lies in the convolutional layers. The training
of the fully connected layers only involves thousands of
parameters and can save about 74% of the training time.

F. Effect of Operating Time

In this experiment, we test the localization accuracy per-
formance of the deployed crowdsourcing-based localization
system at different time moments to verify the system stability.
We selected four different time moments: one hour, one day,
one week, and one month after the system was deployed
to test the positioning accuracy. It is worth noting that we
assume that 50% of the fingerprint database has been updated
by crowdsourcing reporters before each test. We compare
the localization performance of the proposed crowdsourcing-
based scheme with the non-update based scheme, and the
experimental result is shown in Fig. 12.

From the given experimental results, we find that the
localization accuracy of the proposed crowdsourcing system
has been controlled within 1.6m during a month with a slight
decline. As a comparison, the mean localization error of the
non-updated based scheme has reached about 3m after one
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Fig. 12. The mean localization error for different fingerprint update
schemes at different time moments after localization system deployed.

month due to the unusable fingerprint database caused by
environmental changes, which is obviously unacceptable. As
a result, we can conclude that the localization performance
of the proposed crowdsourcing-based localization system does
not degrade with time.

VIII. CONCLUSION

In this paper, we presented a self-calibrating crowdsourcing
localization system that is based on multi-kernel deep transfer
learning for efficiently exploiting the availability of frequently
updated fingerprinting signals. The proposed system simulta-
neously updates the fingerprint database and the corresponding
localization function, enabling the utilization of both historical,
as well as updated fingerprint information for high precision
localization. The presented indoor laboratory experimental re-
sults with the proposed system using two Nexus 5 smartphones
at 2.4GHz with 20MHz bandwidth have shown that the pro-
posed framework achieves about one meter level accuracy with
relatively low computational complexity. This performance is
achieved with 50% of the fingerprint update needed in the
conventional transfer matrix based method.
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