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Abstract— IEEE 802.11e standard has been published in 2005.
In the next few years, we may expect a proliferation of 802.11e
capable stations. In the mean time, the legacy 802.11 stations will
exist. Therefore, it is of practical significance to study the network
performance when 802.11 stations and 802.11e stations coexist.
In this paper, a novel Markov chain based analytical model
is proposed to investigate the coexistence of DCF and EDCA,
which are the fundamental access mechanisms for 802.11 and
802.11e respectively1. The performance impact of the differences
between DCF and EDCA is analyzed, including the contention
window (CW) size, the interframe space (IFS), the backoff
counter decrement rule, and the transmission timing when the
backoff counter reaches zero. Based on the proposed model, the
saturated throughput is analyzed. Simulation study is carried out
to evaluate the accuracy of the proposed model.

I. INTRODUCTION

IEEE 802.11e standard has been published in 2005. In the

next few years, we may expect a proliferation of 801.22e

capable stations, which is referred to as QoS stations (QSTA)

in the paper. In the mean time, the legacy 802.11 stations,

referred to as non-QoS stations (non-QSTA) in the paper,

will exist for a rather long time period. Therefore, it is of

practical significance to study the network performance when

non-QSTAs and QTSAs coexist in the same base station set

in which the access point (AP) is capable of supporting IEEE

802.11e standard.

Distributed Coordination Function (DCF) and Enhanced

Distribution Channel Access (EDCA) are the fundamental

access mechanisms for 802.11 and 802.11e respectively. The

major difference between DCF and EDCA is that DCF uses

the same backoff parameter set for all stations, while EDCA

classifies traffic into four access categories (ACs), i.e., voice,

video, best effort, and background, using a set of AC spe-

cific parameters, i.e., the contention window (CW) size, the

interframe space (IFS) 2, and the Transmission Opportunity

(TXOP) limit. In addition, some other detailed differences

between DCF and EDCA exist [1]:

1This research is supported by the Australian Research Council’s Discovery
funding scheme (project number DP0559248).

2A QSTA waits an AIFS (arbitration IFS) after a successful transmission
and an EIFS (extended interframe space) after a collision. Here EIFS is the
sum of an AIFS and an ACK timeout duration. For simplicity, we use the
term “IFSE” to represent both of them when it is not necessary to specify
their difference. Similarly, the term “IFSD” is used to represent both DIFS
(DCF IFS) and DIFS+ACK timeout time duration for non-QSTAs when there
is no need to specify their difference.

1) Each time a station starts a new backoff procedure or

resumes the suspended backoff procedure, it must sense

the channel idle for a complete IFS interval from the

end of the last busy channel. A QSTA will decrease

its backoff counter by one at the beginning of the time

slot immediately following the IFSE , irrespective of

the channel status in that time slot. In comparison,

a non-QSTA must sense the channel idle in the time

slot immediately following the IFSD too in order to

decrease its backoff counter by one at the beginning of

the next following time slot. That is, a non-QSTA needs

to wait an extra idle time slot. A special case should be

noted, when a non-QSTA or a QSTA starts a backoff

procedure with an initial backoff counter of zero, both

of them can start a transmission immediately after the

corresponding IFS. This is the only case that a non-

QSTA does not need to wait the extra time slot after the

idle IFSD in its channel contention procedure.

2) When a non-QSTA decreases its backoff counter to

zero at the beginning of a time slot, it will start a

transmission immediately, which is independent of the

channel status in this time slot. On the contrary, a QSTA

will not transmit immediately when its backoff counter

is decreased to zero at the beginning of a time slot. It

can only start a transmission at the beginning of the

next time slot provided that the channel remains idle in

the current time slot. Otherwise the QSTA must wait a

complete idle IFSE after the busy channel and start the

transmission after the IFSE .

Extensive work has been done on analyzing the performance

of DCF or EDCA separately. A comprehensive literature

review can be found in [2], [3]. Comparatively, the coexistence

of DCF and EDCA has not been given sufficient consideration.

In [1], [4], some detailed differences between DCF and EDCA

are discussed, but an analytical model was not given. In this

paper, we will propose a novel Markov chain based analytical

model for analyzing the coexistence of DCF and EDCA, where

the aforementioned differences will be considered. The rest of

the paper is organized as the follows: Section II illustrates

our proposed model; saturated throughput is analyzed in

Section III; simulation study is shown in Section IV; finally

Section V concludes the paper.
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II. A MARKOV CHAIN BASED ANALYTICAL MODEL

The following assumptions are used: (i) Traffic at each

station is saturated; (ii) Each QSTA carries traffic of one AC

only; (iii) The transmission probability of a specific QSTA

or non-QSTA in a generic time slot is a constant, which is

represented by “τE” or “τD”respectively. They are unknown

variables to be solved; (iv) The number of non-QSTAs (“ND”),

and QSTAs (“NE”) are fixed and known; (v) For simplicity,

the system being analyzed considers the coexistence of non-

QSTAs and QSTAs carrying the traffic of one AC only, i.e. the

coexistence of non-QSTAs with QSTAs carrying voice, video,

best effort or back ground traffic respectively; (vi) Only one

fixed-size data frame is transmitted in each transmission.

A. Discrete time two-dimensional Markov chains

Fig. 1-3 illustrate the proposed two-dimensional discrete

time Markov chain models: the model in Fig. 1 is used to

model the channel contention procedure of a non-QSTA; the

model in Fig. 2 is for a QSTA carrying voice or video traffic,

because their IFSE is equal to IFSD; the one in Fig. 3 is

for a QSTA carrying best effort or background traffic, because

their IFSE is larger than IFSD.

There are two stochastic processes within each Markov

chain model. The first process, u(t), represents the value of

the backoff counter. Here a special value of u(t) = −1 is used

to represent a transmission from the given station, which starts

when the channel turns busy and ends when the idle IFSD

interval after the busy channel is completed3. The second

process, v(t), indicates the station’s status. Here v(t) = 0
represents that the station is in a normal backoff procedure or

it is transmitting. v(t) = −1 represents the station’s backoff

procedure is being interrupted by a transmission from other

stations. v(t) > 0 represents that the station is waiting the

v(t)th idle time slot after the IFSD.
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Fig. 1. The Markov chain model for a non-QSTA.

In Fig. 1, state (k,0), 1 ≤ k ≤ CWmax_D represents an

idle time slot in which a specific non-QSTA decreases its

backoff counter to k. Here CWmax_D is the CWmax value

for the non-QSTA. State (k,-1), 1 ≤ k ≤ CWmax_D represents

a transmission from other stations which interrupts the non-

QSTA’s backoff procedure. State (k,1), 1 ≤ k ≤ CWmax_D

3The reason why we includes the IFSD in the transmission duration is
that it is the smallest IFS in the system, and no transmission is possible in
this interval. In the rest of this paper, this definition of a transmission duration
is used.
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Fig. 2. The Markov chain model for a QSTA carrying voice or video traffic.
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Fig. 3. The Markov chain model for a QSTA carrying best effort or
background traffic.

represents an idle time slot immediately following a transmis-

sion from other stations. State (-1,0) represents a transmission

from the non-QSTA itself. The transition probability θD(k),
0 ≤ k ≤ CWmax_D represents that the non-QSTA starts a

new backoff backoff procedure with an initial backoff counter

k. The transition probabilities γD(d) and 1− γD(d), d = 1, 2
represent the channel status in the dth time slot following

a transmission: the channel turns busy with the probability

γD(d), or it remains idle with the probability 1− γD(d). The

transition probability ωD is the average probability that the

channel remains idle in a time slot for the non-QSTA during

its backoff procedure, and 1 − ωD is the probability that the

channel turns busy. State(1,0) or (1,1) represents the idle time

slot immediately before the non-QSTA decreases its backoff

counter to zero and start a transmission. After leaving the state

(1,0) or (1,1), the non-QSTA will enter into state (-1,0) to start

a transmission with a probability of 1.

Slight differences exist in the Markov chains shown in Fig.

2 and Fig. 3, which represent the differences between DCF and

EDCA described in Section I. The parameters θE(k), γE(d),
CWmax_E , and ωE have similar meaning as the corresponding

terms θD(k), γD(k), CWmax_D, and ωD in Fig. 1. The

differences between the model for DCF and that for EDCA

are:
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First, following the end of IFSE , the QSTA will decrease

its backoff counter by one, while a non-QSTA must wait one

extra time slot after the IFSD. Therefore, no special state is

required in Fig. 2 and Fig. 3 to represent the time slot after the

IFSE . Moreover, after completing the IFSE following the

QSTA’s own transmission, the QSTA shall reach state (k−1, 0)
or (k − 1,−1) if it starts a new backoff procedure with a

non-zero initial backoff counter k, while a non-QSTA shall

reach state (k, 0) or (k,−1) if it has a non-zero initial backoff

counter k.

Second, state (0,g) (g = 0,−1 in Fig. 2 and −1 ≤ g ≤ C in

Fig. 3) is used to represent the channel contention procedure

of the QSTA when its backoff counter has been decreased to

zero. These states do not exist in the Markov chain shown

in Fig. 1 because a non-QSTA shall start a transmissions

immediately once its backoff counter reaches zero.

Finally, the Markov chain shown in Fig. 3 is used for a

QSTA with an IFSE larger than IFSD. State (k,g), −1 ≤
k ≤ CWmax_E , 1 ≤ g ≤ C (C = AIFS − DIFS) in the

chain is used to represent the gth idle time slot following a

transmission, which is still within the IFSE interval.

As the state (-1,0) in each Markov chain represents the

station’s own transmission, its steady-state probability is equal

to τD (in Fig. 1) or τE (in Fig. 2 and Fig. 3) respectively, which

needs to be solved.

B. The zone specific transmission probability

Before we investigate the aforementioned Markov chains

in further detail, we shall analyze the so-called zone specific

transmission probability [5] in this section, which will be

helpful for our further analysis.

Fig. 4 illustrates the time slots between two successive

transmissions in the system being analyzed. Fig. 4(a) considers

IFSD

IFSE

2 r . . . 

Busy

Channel

zone 1

zone 2

1

time slots

[ 2, r]

r is within a

ranng of [1, M]

Busy

Channel

(a) A system in which non-QSTAs and QSTAs
carrying voice or video traffic coexist.

IFSD

IFSE

2 r . . . . . . 

Busy

Channel
time slots

[ C+1, r]

zone 1

zone 2

1

time slots

[ 2, C]

r is within a

ranng of [1, M]

Busy

Channel

C C+1C+2

zone 3

(b) A system in which non-QSTAs and QSTAs carrying best
effort or background traffic coexist.

Fig. 4. Time slots between two successive transmissions in the system.

a system where non-QSTAs coexist with QSTAs carrying

voice or video traffic, for which IFSD = IFSE . Here the

maximum number of the possible consecutive idle time slots

between two successive transmissions in the system is bounded

by M, where M = min(CWmax_D, CWmax_E). As shown in

Fig. 4(a), no transmission is possible in the IFSD immediately

following the busy channel. In the first time slot after the

IFSD, referred to as zone 1, non-QSTAs which get involved

in the previous transmission, as well as QSTAs, may start a

transmission. The transmission probability in this zone is thus

given by

β(1) =

ND∑
i=0

{[
1 − (1 − τD)i(1 − τE)NE

]
φ(i)

}
, (1)

where φ(i) =

(
ND

i

)
τ i
D(1 − τD)ND−i represents the

probability that i out of ND non-QSTAs get involved in the

previous transmission. In the remaining time slots, referred to

as zone 2, all non-QSTAs and QSTAs may start a transmission.

The transmission probability in zone 2 can be obtained by

β(2) = 1 − (1 − τD)ND (1 − τE)NE . (2)

Fig. 4(b) considers a system where non-QSTAs coexist with

QSTAs carrying best effort or background traffic, for which

IFSE ≥ IFSD and M = min(CWmax_D, C + CWmax_E).
For ease of illustration, we consider that C ≥ 2. Also it is not

possible that a transmission occurs in the IFSD after the busy

channel. In the first time slot after the IFSD, referred to as

zone 1, only non-QSTAs which get involved in the previous

transmission may start a transmission. In the time slots [2,C],

referred to as zone 2, all non-QSTAs may start a transmission.

In the remaining time slots, referred to as zone 3, all non-

QSTAs and QSTAs may transmit. The corresponding zone

specific transmission probabilities can be obtained by


β(1) =
∑ND

i=0

{[
1 − (1 − τD)i

]
φ(i)

}
,

β(2) = 1 − (1 − τD)ND ,
β(3) = 1 − (1 − τD)ND (1 − τE)NE .

(3)

From Fig. 4, a new discrete time one-dimensional Markov

chain can be created, which is shown in Fig. 5. The stochastic

process in this Markov chain represents the number of con-

secutive idle time slots between two successive transmissions

in the system. The state (r) in the Markov chain model

represents the rth consecutive idle time slot from the end

of the previous transmission in the system. The transition

probability β_r represents the corresponding zone specific

transmission probability β(k) after the rth idle time slot

following the previous transmission4, given in (1)-(3). State

(M) represents the M th idle time slot, and a transmission will

occur immediately after it. Therefore the system will move

from state (M) to state (0) with a probability 1. The steady state

probability s(r) for this Markov chain can be easily obtained,

4The similar symbol will be applied to other terms in the rest of this paper,
including ρD_r , ρE_r , ωD_r , ωE_r , ψD_r , ψE_r , ε_r , and �_r . They
also represent the corresponding zone specific probabilities after the rth idle
time slot following the previous transmission.
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Fig. 5. The Markov chain model for modeling the number of consecutive
idle time slots between two successive transmissions in the system.

and its expression is not given in in this paper due to length

limitation. With the solution of s(r), we may go further to

analyze each system in detail.

C. The system of non-QSTAs and QSTAs carrying voice or

video traffic

1) Average collision probabilities,ρD and ρE: 5 According

to Fig. 4(a), in zone 1, for a non-QSTA, only other non-QSTAs

which get involved in the previous transmission and QSTAs

may transmit and cause a collision. In zone 2, all other non-

QSTAs and QSTAs may transmit and cause a collision. Thus

the collision probability for a specific non-QSTA should be

zone specific, which can be obtained by{
ρD(1) =

∑ND−1
i=0 {

[
1 − (1 − τD)i(1 − τE)NE

]
ξ(i)},

ρD(2) = 1 − (1 − τD)ND−1(1 − τE)NE ,

where ξ(i) =

(
ND − 1

i

)
τ i
D(1−τD)ND−1−i represents the

probability that i out of the remaining ND−1 non-QSTAs get

involved in the previous transmission. For a QSTA, the zone

specific collision probability is given by{
ρE(1) =

∑ND

i=0

{[
1 − (1 − τD)i(1 − τE)NE−1

]
φ(i)

}
,

ρE(2) = 1 − (1 − τD)ND (1 − τE)NE−1.

Thus, the corresponding average collision probabilities can be

obtained as the sum of the weighted contention zone specific

collision probabilities:{
ρD =

∑M

r=0

[
s(r)ρD_r

]
,

ρE =
∑M

r=0

[
s(r)ρE_r

]
.

(4)

2) The average probabilities that the channel remains idle

in a time slot, ωD and ωE: For a non-QSTA in the backoff

counter decrement procedure, it sees an “idle” time slot when

no other stations start a transmission in the same time slot.

The zone specific probability that a non-QSTA sees an idle

time slot is then given by{
ωD(1) =

∑ND−1
i=0

[
(1 − τD)i(1 − τE)NE ξ(i)

]
,

ωD(2) = (1 − τD)ND−1(1 − τE)NE .

For a QSTA, we can obtain the zone specific probabilities as{
ωE(1) =

∑ND

i=0

[
(1 − τD)i(1 − τE)NE−1φ(i)

]
,

ωE(2) = (1 − τD)ND (1 − τE)NE−1.

5The average collision probabilities are not used in the proposed Markov
chains directly, but they will be used to obtain transition probabilities in the
Markov chains.

Thus, the corresponding average probabilities can also be

obtained as the sum of the weighted contention zone specific

collision probabilities:{
ωD =

∑M

r=0

[
s(r)ωD_r

]
,

ωE =
∑M

r=0

[
s(r)ωE_r

]
.

3) The transition probabilities, γD(d) and γE(d): The

Markov chains shown in Fig. 1 and 2 are used for this system,

where γD(d), d=1, 2 and γE(1) are used.

According to Fig. 4(a), the 1st time slot and the 2nd

time slot after the IFSD are located in zone 1 and zone 2

respectively, and the 1st time slot after the IFSE is located

in zone 1, therefore we can have


γD(1) =
∑ND−1

i=0

{[
1 − (1 − τD)i(1 − τE)NE

]
ξ(i)

}
,

γD(2) = 1 − (1 − τD)ND−1(1 − τE)NE ,

γE(1) =
∑ND

i=0

{[
1 − (1 − τD)i(1 − τE)NE−1

]
φ(i)

}
.

4) The probabilities that a station obtains an initial backoff

counter k, θD(k) and θE(k): Due to length limitation, just

θD(k) is analyzed in this paper. A new Markov chain is created

to model the number of transmission attempts of a non-QSTA

for sending a data frame, as shown in Fig. 6.

1 2
h m-1... ...

D
ρ−1

D
ρ

1

mD
ρ−1

D
ρ−1

D
ρ−1

D
ρ

D
ρ

D
ρ

D
ρ

D
ρ

Fig. 6. The Markov chain for modeling the number of transmission attempts
of a non-QSTA for sending a data frame.

In this Markov chain, h is the number of transmission

attempts for sending a data frame by which the range

[0 CWmax_D] is firstly used, m is the maximum number of

transmission attempts for sending a data frame, and ρD is

the average collision probability for a non-QSTA, which is

obtained in (4). Each state (y) represents the yth transmission

attempt of a non-QSTA for sending a data frame. We can easily

obtain the steady state probability d(y), which represents the

probability that the yth transmission attempt is implemented

for sending a data frame. Due to length limitation, the expres-

sion of d(y) is not given in this paper.

Therefore, the probability θD(k) that a non-QSTA station

obtains an initial backoff counter value k can be obtained by

θD(k) =
m∑

y=1

d(y)c(k)

CW (y) + 1
,

where CW (y) is the CW value for the yth transmission

attempt for sending a data frame, which should follow the

exponential increasing rule defined in IEEE 802.11 standard.

c(k) is equal to either 1 or 0. c(k) = 1 represents that the

value k is included in the range [0 CW(y)], otherwise it is not

included.
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D. The system of non-QSTAs and QSTAs carrying best effort

or background traffic

Based on the description about zone specific transmission

probability in Section II-B, we can easily solve the correspond-

ing zone specific probabilities for a non-QSTA in the system

shown in Fig. 4(b):


ρD(1) =
∑ND−1

i=0

{[
1 − (1 − τD)i

]
ξ(i)

}
,

ρD(2) = 1 − (1 − τD)ND−1,
ρD(3) = 1 − (1 − τD)ND−1(1 − τE)NE ,

ωD(1) =
∑ND−1

i=0

[
(1 − τD)iξ(i)

]
,

ωD(2) = (1 − τD)ND−1,
ωD(3) = (1 − τD)ND−1(1 − τE)NE ,

and we may obtain the average probabilities accordingly:{
ρD =

∑M

r=0

[
s(r)ρD_r

]
,

ωD =
∑M

r=0

[
s(r)ωD_r

]
.

According to Fig. 4(b), a QSTA’s backoff procedure is

implemented in zone 3 only, where all other stations may

transmit. Therefore we can obtain{
ρE = 1 − (1 − τD)ND−1(1 − τE)NE−1,
ωE = (1 − τD)ND−1(1 − τE)NE−1,

Accordingly, other transition probabilities can be obtained

by {
γD(1) =

∑ND−1
i=0

[
1 − (1 − τD)i

]
ξ(i),

γD(2) = 1 − (1 − τD)ND−1,

and 


γE(1) =
∑ND

i=0

{[
1 − (1 − τD)i

]
φ(i)

}
,

γE(k) = 1 − (1 − τD)ND , 2 ≤ k ≤ C
γE(C + 1) = 1 − (1 − τD)ND (1 − τE)NE−1.

Finally, θD(k) and θE(k) can be obtained by using the same

approach described in Section II-C.4, and their expression is

not given in this paper due to length limitation.

E. Summary

Finally, this section summarizes the relationship of earlier

analysis.

1) In Section II-A, three novel Markov chains shown in Fig.

1-3 are created for each station category. In addition to

τD and τE , other unknown transition probabilities are

introduced, including θD(k), θE(k) γD(d), γE(d), ωD,

and ωE .

2) In Section II-B, the zone specific transmission proba-

bility β(k) is obtained in terms of τD and τE . A new

Markov chain shown in Fig. 5 is created for each system

being analyzed, and its steady state probability s(r) can

be obtained in terms of β(k). Thus, s(r) can also be

obtained in terms of τD and τE .

3) In Section II-C and Section II-D, based on the results

obtained in Section II-B, the unknown transition prob-

abilities θD(k), θE(k) γD(d), γE(d), ωD, and ωE , can

also be obtained in terms of τD and τE .

4) Now all unknown parameters have been expressed in

terms of τD and τE . By considering the state relationship

in the Markov chains shown in Fig. 1-3, each steady

state probability can be expressed in terms of τD and

τE . As the sum of a Markov chain’s steady state

probability should be equal to 1, one independent non-

linear equation about τD and τE can be drawn from each

Markov chain. Thus, a group of two non-linear equations

can be obtained for each system being analyzed, and τD

or τE can be solved.

III. SATURATED THROUGHPUT ANALYSIS

In this section, we shall analyze the saturated throughput.

In each time slot between two successive transmissions in the

system, one of the following four events may occur: (i) a

successful transmission from a non-QSTA; (ii) a successful

transmission from a QSTA; (iii) a collision; (iv) an idle time

slot. According to Fig. 4(a) and Fig. 4(b) , the corresponding

zone specific probabilities for each system can be obtained by


ψD(1) =
∑ND

i=0

[
iτD(1 − τD)i−1(1 − τE)NE φ(i)

]
,

ψD(2) = NDτD(1 − τD)ND−1(1 − τE)NE ,

ψE(1) =
∑ND

i=0

[
NEτE(1 − τD)i(1 − τE)NE−1φ(i)

]
,

ψE(2) = NEτB(1 − τE)NE−1(1 − τD)ND ,

ε(k) = β(k) − ψD(k) − ψE(k),
�(k) = 1 − β(k), k = 1, 2,

and 


ψD(1) =
∑ND

i=0

{[
iτD(1 − τD)i−1

]
φ(i)

}
,

ψD(2) = NDτD(1 − τD)ND−1,
ψD(3) = NDτD(1 − τD)ND−1(1 − τE)NE ,
ψE(1) = 0,
ψE(2) = 0,
ψE(3) = NEτE(1 − τD)ND (1 − τE)NE−1,

ε(k) = β(k) − ψD(k) − ψE(k),
�(k) = 1 − β(k), k = 1, 2, 3,

respectively, where ψD(k) and ψE(k) are the probabilities

that a successful transmission from a non-QSTA and a QSTA

respectively occurs in a time slot in zone k, ε(k) is the

probability that a collision occurs in a time slot in zone k, �(k)
is the probability that no transmission occurs in a time slot in

zone k, and β(k) is the zone specific transmission probability

given in (1) - (3).

Therefore, the average effective payload for non-QSTAs or

QSTAs between two successive transmissions in the system

can be obtained by{
E[DCF ] =

∑M

r=0

[
ψD_rs(r)P

]
,

E[EDCA] =
∑M

r=0

[
ψE_rs(r)P

]
,

where s(r) is the steady state probability for the Markov chain

shown in Fig. 5, and P is the payload size of a data frame,

which is considered as a known constant.
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The average time duration between two successive trans-

mission can be obtained as:

L =

M∑
r=0

{s(r)[(ψD_r + ψE_r)Ts

+ ε_rTc + �_rTimeSlot]},

where Ts and Tc are time required for a successful transmis-

sion and a collision respectively, which can also be considered

as known constants.

Finally, the throughput for each station of each category can

be obtained by{
ThroughputDCF = E[DCF ]/L/ND,
ThroughputEDCA = E[EDCA]/L/NE .

IV. SIMULATION STUDY

The simulation study is carried out with OPNET [6]. The

parameter setting of DCF and EDCA is as shown in Table-I,

which is consistent with those defined in [7, Table 20df, p.49].

TABLE I

WLAN SIMULATION PARAMETER SETTING

Frame payload size 8000 bits

data rate 1Mbps

Maximum retransmission limit 7

DCF parameter set CWmin = 31, CWmax = 1023,
DIFS=SIFS+2TimeSlot

EDCA voice parameter set CWmin = 7, CWmax = 15,
AIFS=DIFS

EDCA video parameter set CWmin = 15, CWmax = 31,
AIFS=DIFS

EDCA best effort parameter set CWmin = 31, CWmax = 1023,
AIFS=DIFS+TimeSlot

EDCA background parameter set CWmin = 31, CWmax = 1023,
AIFS=DIFS+5TimeSlot

Four scenarios are simulated, and each of them contains

equal number of non-QSTAs and QSTAs of one traffic class.

The results are shown in Fig. 7.

As shown in Fig. 7, the analytical results from the pro-

posed model can generally agree well the simulation results,

especially when the number of stations is large. However, a

larger discrepancy between the analytical and the simulation

results at smaller number of stations is observed. It results from

the assumption used in the model, that is, the transmission

probability at a generic time slot is constant. This assumption

is more accurate when the number of stations is larger [8].

We observe the significant priority of EDCA voice or video

over DCF, as well as that of DCF over EDCA background,

which are caused by the large difference between their CW

sizes or IFSs. A slight priority of DCF over EDCA best

effort is also observed, which results from that IFSD is

one time slot shorter than IFSE . It is obvious that traffic

priority differentiation can still be implemented effectively in

the coexistence condition. However, the results also imply that

non-QSTAs may suffer a serious service starvation if they

coexist with QSTAs carrying voice or video traffic.

2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

number of stations of each category

th
ro

u
g

h
p

u
t 

(b
it
s
/s

e
c
)

DCF−simulation
DCF−analysis
EDCA voice−simulation
EDCA voice−analysis

(a) DCF + EDCA voice

2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

number of stations of each category

th
ro

u
g

h
p

u
t 

(b
it
s
/s

e
c
)

DCF−simulation
DCF−analysis
EDCA video−simulation
EDCA video−analysis

(b) DCF + EDCA video

2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

number of stations of each category

th
ro

u
g

h
p

u
t 

(b
it
s
/s

e
c
)

DCF−simulation
DCF−analysis
EDCA best effort−simulation
EDCA best effort−analysis

(c) DCF + EDCA best effort

2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

number of stations of each category

th
ro

u
g

h
p

u
t 

(b
it
s
/s

e
c
)

DCF−simulation
DCF−analysis
EDCA background−simulation
EDCA background−analysis

(d) DCF + EDCA background

Fig. 7. Simulation and analytical results.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel Markov chain based

analytical model for investigating the coexistence performance

of DCF and EDCA. Some important factors were considered

in our analysis, including the CW size, the IFS, the backoff

counter decrement rule, and the transmission timing when the

backoff counter reaches zero. We also obtained the saturated

throughput with the proposed model. The simulation study

verified the accuracy of the proposed model. The results we

observed indicated that traffic priority differentiation can still

be effectively implemented in the coexistence environment,

but non-QSTAs may suffer a serious service starvation by

coexisting with QSTAs carrying high-priority traffic. However,

only the simple scenarios are analyzed in this paper, and we

consider that more complex and more practical coexistence

scenarios should be analyzed in our future research for further

investigation.

REFERENCES

[1] G. Bianchi, I. Tinnirello, and L. Scalia, “Understanding 802.11e
contention-based prioritization mechanisms and their coexistence with
legacy 802.11 stations,” Network, IEEE, vol. 19, no. 4, pp. 28–34, 2005.

[2] L. Xiong and G. Mao, “Saturated throughput analysis of IEEE 802.11e
using two-dimensional Markov chain model,” in The Third International

Conference on Quality of Service in Heterogeneous Wired/Wireless Net-

works (QShine), Waterloo, Canada, July, 2006.
[3] E. A. Venkatesh Ramaiyan, Anurag Kumar, “Fixed point analysis of sin-

gle cell IEEE 802.11e WLANs: uniqueness, multistability and throughput
differentiation,” SIGMETRICS Perform. Eval. Rev., vol. 33, no. 1, pp.
109–120, 2005.

[4] J. Majkowski and F. Casadevall Palacio, “Coexistence of IEEE 802.11B
and IEEE 802.11E Stations in QoS Enabled Wireless Local Area Net-
work,” in Communication Systems and Applications 2006, 2006.

[5] J. Robinson and T. Randhawa, “Saturation throughput analysis of IEEE
802.11e enhanced distributed coordination function,” Selected Areas in

Communications, IEEE Journal on, vol. 22, no. 5, pp. 917–928, 2004.
[6] OPNET University Program, http://www.opnet.com/services/university/.
[7] IEEE 802.11e standard, 2005.
[8] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coor-

dination function,” Selected Areas in Communications, IEEE Journal on,
vol. 18, no. 3, pp. 535–547, 2000.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings. 
 

2271

Authorized licensed use limited to: UNIVERSITY OF SYDNEY. Downloaded on January 10, 2009 at 21:11 from IEEE Xplore.  Restrictions apply.


