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Abstract —In this paper, we study the deployment of multiple mobile charging vehicles to charge sensors in a large-scale wireless
sensor network for a given monitoring period so that none of the sensors will run out of energy, where sensors can be charged by the
charging vehicles with wireless energy transfer. To minimize the network operational cost, we first formulate a charging scheduling
problem of dispatching multiple mobile charging vehicles to collaboratively charge sensors such that the sum of travelling distance
(referred to as the service cost) of these vehicles for this monitoring period is minimized, subject to that none of the sensors will run out
of energy. Due to NP-hardness of the problem, we then propose a novel approximation algorithm with a guaranteed approximation
ratio, assuming that the energy consumption rate of each sensor does not change for the given monitoring period. Otherwise, we
devise a heuristic algorithm through modifications to the approximation algorithm. We finally evaluate the performance of the proposed
algorithms via experimental simulations. Simulation results show that the proposed algorithms are very promising, which can reduce
the service cost by up to 20% in comparison with the service costs delivered by existing ones.

Index Terms —Rechargeable sensor networks, mobile chargers, wireless energy transfer, periodic charging cycles, approximation
algorithms, combinatorial optimization problems

✦

1 INTRODUCTION

W IRELESS sensor networks (WSNs) have played an
important role in many monitoring and surveillance

applications including environmental sensing, target track-
ing, structural health monitoring, etc [1], [14], [19], [39]. As
conventional sensors are powered by batteries, the limited
battery capacity obstructs the large-scale deployment of
WSNs. Although there are many energy-aware approaches
developed in the past decade to reduce sensor energy
consumptions or balance energy expenditures among sen-
sors [2], [3], [9], [23], [30], the lifetime of WSNs remains
a main performance bottleneck in their real deployments,
since wireless data transmission consumes substantial sen-
sor energy.

To mitigate the limited energy problem in sensor net-
works, researchers proposed many different efficient ap-
proaches. One method is to enable sensors to harvest am-
bient energy from their surroundings such as solar energy,
vibration energy, wind energy, etc [11], [13], [26]. However,
the temporally and spatially varying nature of renewable
energy resources makes the prediction of sensor energy
harvesting rates very difficult. For instance, it is shown that
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the energy generating rates in sunny, cloudy and shadowy
days can vary by up to three orders of magnitude in a solar
harvesting system [22]. Moreover, the harvesting energy
sources are intermittent and not always available. Such un-
predictability and intermittency pose enormous challenges
in the efficient usage of harvested energy for various moni-
toring or surveillance tasks.

A recent breakthrough in the wireless power transfer
technique based on strongly coupled magnetic resonances
has drawn plenty of attentions in the research commu-
nity [15], [16]. Kurs et al. demonstrated that it is possible
to achieve an approximate 40% efficiency of wireless power
transfer for powering a 60W light bulb from a distance of
two meters without any wire lines and plugs [15]. Industry
research further achieved a 75% efficiency of wireless power
transfer for transferring 60W of power over a distance of up
to two to three feet [10]. Several commercial products based
on the wireless energy transfer technology now are available
in markets such as sensors [20], RFIDs [31], cell phones [21],
and auto vehicles [5]. It is reported that the wireless energy
transfer market is expected to grow from just $216 million
in 2013 to $8.5 billion in 2018 [32]. Armed with this ad-
vanced technology, sensors can be charged at steady and
high charging rates. Another breakthrough in the ultra-fast
charging battery materials further fuels the feasibility of
the wireless power transfer technique. Scientists from MIT
implemented an ultra-fast charging in material LiFePO4,
which can be charged at a rate as high as 400 Coulombs
per second [12]. The duration of fully-charging a battery
thus can be shortened to a few seconds. Therefore, wireless
power charging is a very promising technique to prolong the
lifetime of WSNs. In this paper, we employ multiple mobile
chargers (i.e., charging vehicles) to replenish sensor energy
in a large-scale WSN for a given monitoring period T so that
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none of the sensors will run out of energy, where each sensor
can be charged by a mobile charger in its vicinity with
the wireless power transfer technique. Since each sensor
consumes its energy on data sensing, data transmission,
data reception, etc., the sensor may need to be charged
multiple times to avoid its energy depletion for the period
of T .

Most existing studies on sensor charging scheduling em-
ploy mobile chargers to charge all sensors periodically [25],
[34], [35] or charge only the sensors that will run out of
energy very soon [7], [18], [24], [29], [37], [38], [41]. One ma-
jor disadvantage of these studies is that the total travelling
distance of the mobile chargers for charging sensors in the
entire monitoring period can be very long, which may not
be necessary, as the energy consumption rates of different
sensors usually are significantly different. For example, the
sensors near to the base station have to relay data for other
remote sensors, their energy consumption rates thus are
much higher than that of the others [17]. Therefore, the
naive strategy of charging all sensors per charging tour
will significantly increase the total travelling distance of
the mobile chargers. Similarly, the charging strategy that
schedules the mobile chargers to charge only the life-critical
sensors also suffers from the same problem as these life-
critical sensors may be far away from each other in the
monitoring area.

The long total travelling distance of mobile chargers can
result in prohibitively high energy consumptions of mobile
chargers on their mechanical movements. It is reported that
the most fuel-efficient vehicle has an energy consumption of
600 kJ per km (i.e., 27 kWh per 100 miles) [28] while the
energy capacity of a regular sensor battery is 10.8 kJ [25].
This implies that the amount of energy consumed by the ve-
hicle travelling for one kilometer is equivalent to the amount
of energy used for charging as many as 55 (≈ 600 kJ

10.8 kJ
)

sensors. Since WSNs usually are deployed for long-term en-
vironmental sensing, target tracking, and structural health
monitoring [1], [14], [19], [39], the monitoring area of a
WSN can be very large (e.g., several square kilometers) [6],
[14], the mobile chargers by the existing studies consume a
large proportion of their energy on travelling, rather than
on sensor charging, thereby leading to a very high cost of
network operations.

Unlike existing studies that ignore the energy consump-
tion of mobile chargers on travelling for charging sensors,
in this paper we propose efficient charging scheduling al-
gorithms to dispatch multiple mobile chargers for sensor
charging in a large-scale WSN for a long-term monitoring
period T , so that not only none of the sensors runs out
of energy but also the total travelling distance of all mo-
bile chargers for the period of T is minimized. As energy
consumption rates of different sensors may significantly
different, different sensors require different charging fre-
quencies during period T , the challenges of scheduling
the mobile chargers are: (1) when should we activate a
charging round to dispatch the mobile chargers to replenish
sensor energy? (2) which sensors should be included in each
charging round? (3) given a set of to-be-charged sensors,
which sensors should be charged by which mobile charger?
(4) what is the charging order of the sensors assigned to each
mobile charger? In this paper we will tackle these challenges

by first formulating a novel optimization problem, and
then devising an efficient approximation algorithm with a
performance guarantee and a heuristic algorithm for the
problem, depending on whether the energy consumption
rate of each sensor is fixed or not for the given monitoring
period.

The main contributions of this paper can be summarized
as follows. We first formulate a novel service cost minimiza-
tion problem of finding a series of charging schedulings
of multiple mobile chargers to maintain the perpetual op-
erations of sensors for a given monitoring period T such
that the total travelling distance of all mobile chargers is
minimized. This objective is critical to reducing the WSN
maintenance cost. Due to NP-hardness of the problem, we
then devise an approximation algorithm with a provable ap-
proximation ratio if energy consumption rates of sensors are
fixed during the monitoring period. Otherwise, we propose
a heuristic solution through modifications to the approxi-
mate solution. We finally conduct extensive experiments by
simulations to evaluate the algorithm performance. Exper-
imental results demonstrate that the proposed algorithms
are very promising, which can reduce the service cost by up
to 20% in comparison with the ones delivered by existing
algorithms. To the best of our knowledge, this is the first
approximation algorithm for scheduling multiple mobile
chargers to charge sensors in a given monitoring period
if the energy consumption rate of each sensor does not
fluctuate in this period. Otherwise, a novel heuristic solution
is proposed.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 introduces preliminaries.
Section 4 devises an algorithm for a q-rooted TSP problem,
which will be served as a subroutine of the proposed
algorithms. Sections 5 and 6 propose approximation and
heuristic algorithms for the problem under fixed and vari-
able sensor energy consumption rates, respectively. Section 7
evaluates the algorithm performance, and Section 8 con-
cludes the paper.

2 RELATED WORK

The wireless power transfer technology based on strongly
magnetic resonances has drawn a lot of attentions and
researchers adopted the wireless energy replenishment to
prolong the lifetime of WSNs [25], [33], [34], [35], [41], [7],
[36], [24], [18], [29]. Most existing studies jointly considered
data flow routing and sensor energy replenishment. For
instance, Shi et al. [25] proposed to replenish sensor energy
in a WSN by employing a wireless charging vehicle to
periodically visit each sensor. They formulated a problem
of maximizing the ratio of the vacation time of the charging
vehicle to the renewable energy cycle time, by considering
both data flow routing and the charging time of each sensor,
assuming that the data generation rate of each sensor does
not change over time. They also extended their work to
more general settings that the charging vehicle can charge
multiple sensors simultaneously [33], or the vehicle can
replenish sensor energy and collect sensor data at the same
time [34], [35]. Zhao et al. [41] considered a joint design of
data gathering and energy replenishment by exploiting sink
mobility. To this end, for every fixed interval, they first chose



0018-9545 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2015.2496971, IEEE
Transactions on Vehicular Technology

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. X, 2015 3

a set of to-be-charged sensors, and then deliver a data gath-
ering solution, such that the network utility is maximized
while maintaining perpetual network operations. They later
extended their work by taking the energy consumptions
of data sensing and reception into consideration [7]. The
consideration of joint data flow routing and energy replen-
ishment in aforementioned studies may be applicable if the
sensing data can be collected later; otherwise, this method
may not work for real-time monitoring. In addition, this
joint method suffers from other drawbacks in real WSN
deployments such as preventing data aggregation at relay
nodes [18].

There are several recent studies adopting on-demand
sensor energy replenishment [36], [24], [18], [29], [37], [38].
For example, Xu et al. [36] considered the problem of
scheduling K mobile chargers to replenish a set of to-be-
charged sensors such that the length of the longest charging
tour among the K charging tours of the K mobile chargers
is minimized, for which they proposed constant approxima-
tion algorithms. Ren et al. [24] studied the employment of a
single mobile charger to charge on-demand sensors under
the travel distance constraint. Liang et al. [18] proposed
an approximation algorithm for minimizing the number of
mobile charging vehicles needed for charging a set of to-be-
charged sensors, subject to the energy capacity constraint
on each mobile vehicle. Wang et al. [29] developed a hybrid
approach for scheduling multiple mobile chargers to charge
sensors: active and passive energy replenishment. Unlike
these mentioned studies, we here consider the charging
scheduling of mobile chargers for a given period T , rather
than only at a specific time point. Furthermore, we are the
first to propose efficient scheduling algorithms to minimize
the total travelling distance of multiple mobile chargers for
maintaining the perpetual operations of sensor networks,
which can significantly reduce the network operational and
maintenance costs.

3 PRELIMINARIES

In this section, we first present the network model and
energy consumption models, then introduce notations and
notions, and finally define the problems and show their NP-
hardness.

3.1 Network model

We consider a wireless sensor network consisting of n
sensors, which are randomly deployed in a two-dimensional
space. Let V be the set of sensors. Each sensor vi ∈ V gener-
ates sensing data with a rate of bi (in bps). Also, each sensor
vi is powered by a rechargeable battery with energy capacity
Bi. There is one stationary base station in the network. We
assume that there is a routing protocol for sensing data
collection that relays sensing data from sensors to the base
station through multihop relays. For example, each sensor
uploads its sensing data to the base station via the path with
the minimum energy consumption. Assume that the entire
network monitoring period is T (T typically is long, e.g.,
several months, even years). Since each sensor consumes
its energy on data sensing, processing, transmission and
reception, it is required to be charged multiple times to
avoid its energy depletion during T .

In this paper we employ q wireless mobile chargers to
replenish energy to sensors in the network, where mobile
charger l is located at depot rl, 1 ≤ l ≤ q. With loss
of generality, let R = {r1, r2, . . . , rq} be the set of depot
locations of the q mobile chargers. To determine charging
trajectories of the q mobile chargers, we define a weighted,
undirected graph G = (V ∪ R,E;w), where for any two
distinct nodes (sensors or depots) u and v in V ∪R, there is
an edge e = (u, v) ∈ E between them with their Euclidean
distance being the weight w(e) of edge e. Each time mobile
charger l is dispatched to charge some sensors, it always
starts from and ends at its depot rl for recharging itself or
refuelling its petrol. In other words, each charging tour of a
mobile charger l in G is a closed tour including depot rl. For
any closed tour C in G, denote by w(C) the weighted sum
of the edges in C, i.e., w(C) =

∑
e∈E(C)w(e). We assume

that each mobile charger has enough energy to charge the
sensors assigned to it in each charging tour [25], [33], [34],
[35]. We consider a point-to-point charging, i.e., to efficiently
charge a sensor by a mobile charger, the mobile charger
must be in the vicinity of the sensor [15] and the sensor
will be charged to its fully capacity.

We assume that the duration of the q mobile chargers per
charging round that includes the time for charging sensors
and their travelling time is several orders of magnitude less
than the lifetime of a fully-charged sensor. The rationale
behind the assumption is as follows. Once a sensor is fully
charged, its lifetime can last from several weeks to months
until its next charging, since the sensor energy can be
well managed through various existing energy conservation
techniques, e.g., duty cycling [2]. On the other hand, the q
mobile chargers can collaboratively finish a charging round
within a few hours, since sensor batteries can be made with
ultra-fast charging battery materials [12], [27]. For example,
in 2009 scientists fromMIT implemented an ultra-fast charg-
ing, in which a battery can be fully charged within a few
seconds [12]. In 2014, scientists from Nanyang Technological
University developed a new lithium-ion battery that can
be charged up to 70% in only 2 minutes, while the new
battery has other advantages, such as a longer lifespan of
over 20 years and easymanufacturing [27]. We thus envision
that ultra-fast charging batteries will be commercialized in
the near future and will be widely used for smartphones,
sensors, electric vehicles, etc. Therefore, we ignore the time
spent by the q mobile chargers per charging round. Note
that [8], [40] and [41] also adopted the similar assumption.

3.2 Energy consumption models

Each sensor will consume its energy on data sensing, data
transmission, and data reception, and the energy consump-
tion models for these three components are shown in Eq. (1),
Eq. (2), and Eq. (3), respectively [17].

Psense = λ× bi, (1)

PTx = (β1 + β2d
α
ij)× bTx

i , (2)

PRx = γ × bRx
i , (3)

where bi (in bps) is the data sensing rate of sensor vi, b
Tx
i

and bRx
i are the data transmission rate and the reception

rate of sensor vi, respectively, dij is the Euclidean distance
between sensors vi and vj , α is a constant that is equal to 2
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or 4, and the values of other parameters are as follows [17].

λ = 60× 10−9 J/b,

β1 = 45× 10−9 J/b,

β2 = 10× 10−12 J/b/m2, when α = 2,

or β2 = 1× 10−15 J/b/m4, when α = 4,

γ = 135 × 10−9 J/b.

3.3 Notations and Notions

A charging scheduling of q mobile chargers is to dispatch each
of the q mobile chargers from its depot to collaboratively
visit a set of to-be-charged sensors in the current round,
and each charger will return to its depot after finishing
its charging tour. Assume that at time tj , let closed tours
Cj,1, Cj,2, . . . , Cj,q be the charging tours of the q mobile
chargers, where tour Cj,l of mobile charger l contains its
depot rl and 1 ≤ l ≤ q. Let Cj = {Cj,1, Cj,2, . . . , Cj,q}
be the set of the q tours at time tj . Notice that it is likely
that some tours Cj,ls may contain none of the sensors, and
if so, V (Cj,l) = {rl} and w(Cj,l) = 0. For the sake of
simplicity, we represent each charging scheduling by a 2-
tuple (Cj , tj), where all sensors in tour Cj,l ∈ Cj will be
charged to their full energy capacities by mobile charger
l, all the q mobile chargers are dispatched at time tj , and
0 < tj < T . Denote by V (Cj,l) and V (Cj) the set of nodes
in Cj,l and Cj , respectively. Then, V (Cj) = ∪q

l=1V (Cj,l).
The charging cycle of a sensor vi ∈ V is the duration

between its two consecutive chargings, and its maximum
charging cycle τi is the maximum duration in which it
will not run out of its energy. Since different WSNs adopt
different sensing and routing protocols, different sensors
may have different energy consumption rates and different
maximum charging cycles. If the energy consumption rate
of each sensor vi ∈ V does not vary for the period of
T , denote by ρi and τi its energy consumption rate and
maximum charging cycle, then τi = Bi

ρi
, where Bi is the

energy capacity of sensor vi and the energy consumption
rate ρi of sensor vi usually is determined by the data
generation rate of the sensor and the sum of data rates
from other sensors that the sensor must forward to the base
station [2]. It is obvious that sensors with shorter maximum
charging cycles need to be charged more frequently than
sensors with longer maximum charging cycles. Since each
time the q mobile chargers are dispatched to charge a set of
sensors, they will consume their electricity or petrol, thereby
incurring a service cost. We thus define the service cost of
the q mobile chargers as the sum of their travel distances for
charging sensors for the period of T .

3.4 Problem definitions

We note that not every sensor must be replenished in each
charging round as the energy consumption rates of different
sensors may be significantly different. Therefore, a naive
strategy of charging all sensors per round will increase
the service cost substantially. Also, as some to-be-charged
sensors and their nearest depots in a large-scale sensor
network can be far away from each other, it is crucial to
schedule the q mobile chargers by taking both the maximum
charging cycles and the geographical locations of the sensors
into account.

Given a metric complete graph G = (V ∪ R,E) with
q mobile chargers located at q depots in R, a distance
function w : E 7→ R

+, a monitoring period T , and a
maximum charging cycle function τ : V 7→ R

+, assume
that the location coordinates (xi, yi) ∈ (X,Y ) of each sensor
vi ∈ V are given. The service cost minimization problem with
fixed maximum charging cycles in G is to find a series of
charging schedulings (C1, t1), (C2, t2), . . . , (Cp, tp) of the q
mobile chargers such that the total length of all closed tours
(or the service cost) is minimized, where p is a positive
integer to be determined by the algorithm. Specifically, the
problem is formulated as follows.

minimize

p∑

j=1

w(Cj) =

p∑

j=1

q∑

l=1

w(Cj,l), (4)

subject to that, for each sensor vi ∈ V ,

1) the time gap between its any two consecutive charg-
ing schedulings (Cj1 , tj1) and (Cj2 , tj2) is no more
than its maximum charging cycle τi (assuming that
tj1 < tj2 ), i.e., tj2 − tj1 ≤ τi, where sensor vi is
contained in both charging schedulings Cj1 and Cj2
and there is no charging scheduling (Cj , tj) such
that sensor vi is contained in Cj and tj1 ≤ tj ≤ tj2 ;

2) the duration from its last charging to the end of
period T is no more than τi,

where Cj = {Cj,1, Cj,2, . . . , Cj,q}, Cj,l is the charging tour
of mobile charger l located at depot rl, 1 ≤ l ≤ q, and
0 < t1 < t2 < · · · < tp < T .

In this problem, we not only need to determine the
number of rounds p to schedule mobile chargers for sensor
charging, but also to decide which sensors to be charged
in which rounds and by which chargers. Intuitively, during
the period of T , if more rounds are scheduled, then there
are less number of sensors to-be-charged in each round. On
the other hand, if less number of rounds is scheduled, there
are more sensors to-be-charged in each round. Our objective
is to minimize the total traveling distance of the q mobile
chargers for the p charging rounds. The challenge of this
optimization problem is to determine both p and the set of
to-be-charged sensors in each round in order to minimize
the total traveling distance of q mobile chargers.

So far, we have assumed that the maximum charging
cycle of each sensor vi ∈ V in the entire period T is fixed.
However, in reality, it may experience significant changes
over time, since the data rates of different sensors usually
depend on the specific application of a WSN, some sensors
may be required to increase their data rates for better moni-
toring the area of these sensors at some time while the others
may be required to reduced their data rates for saving their
energy. For this general setting, we define the service cost
minimization problem with variable maximum charging cycles
as follows. Given a wireless sensor network G, a period
T , q mobile chargers located at q depots, the maximum
charging cycle τi(t) of each sensor vi that varies with time
t, the problem is to find a series of charging schedulings of
the q mobile chargers such that the service cost of them is
minimized, subject to that none of the sensors runs out of
energy for the period of T .

We finally define a q-rooted TSP problem, which will
be used as a subroutine for the problems of concern in
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this paper. Assume that there is a set of to-be-charged-
sensors V c ⊆ V at some time point. Given a subgraph
Gc = (V c ∪ R,Ec;w) of G with |R| = q ≥ 1 and q mobile
chargers, the problem is to find q closed toursC1, C2, . . . , Cq

inGc such that the total length of the q tours,
∑q

l=1 w(Cl), is
minimized, subject to that these q tours cover all sensors in
V c, i.e., V c ⊆

⋃q
l=1 V (Cl), and each of the q tours contains a

distinct depot inR. The q-rooted TSP problem is NP-hard as
the classical TSP problem is a special case of it when q = 1.

3.5 NP-hardness

Theorem 1. The service cost minimization problem with
fixed maximum charging cycles is NP-hard.

Proof: We show the NP-hardness of the problem by a
reduction from the classical NP-hard problem - travelling
Salesman Problem (TSP). We reduce the TSP problem in
a metric complete graph H = (N,A) to the service cost
minimization problem in a graph G = (V ∪ {r}, E) with
a monitoring period T = 2s as follows. We choose an
arbitrary node v0 ∈ N as the depot r, i.e., q = 1. Let
V = N \{v0} andE = A. For each sensor vi ∈ V , let τi = 1s
be the maximum charging cycle of sensor vi. Initially, we
assume that each sensor at time 0 has a full energy capacity
Bi. Thus, each sensor must be charged at least once within
T = 2s; otherwise it will be dead.

Assume that (C1, t1), . . . , (Cp, tp) are the optimal charg-
ing schedulings for the service cost minimization problem
in G with 0 < tj ≤ T and 1 ≤ j ≤ p. Let C∗ be the
optimal solution to the TSP problem in H . We show that
w(C∗) =

∑p
j=1 w(Cj) as follows. On one hand, we can

transform the closed tour C∗ into a feasible solution to
the service cost minimization problem in the constructed
rechargeable sensor network by charging all sensors in
tour C∗ at time t = 1s. Thus,

∑p
j=1 w(Cj) ≤ w(C∗). On

the other hand, since each sensor v ∈ V must appear
at least once in the p closed tours with each tour con-
taining the depot r (= v0), we can construct a Eulerian
circuit C′ that visits all the edges of the p tours. The
weighted sum of the edges in C′ thus is equal to the
total length of the p tours, i.e., w(C′) =

∑p
j=1 w(Cj). We

then obtain a less cost closed tour C from C′ by remov-
ing the multiple appearances of each node in C′. As the
weights of the edges in C′ follow the triangle inequality,
then w(C∗) ≤ w(C) ≤ w(C′) ≤

∑p
j=1 w(Cj). Therefore,

w(C∗) = w(C) = w(C′) =
∑p

j=1 w(Cj), and the closed
tour C derived from the union of (C1, t1), . . . , (Cp, tp) is an
optimal solution to the TSP problem in graph H .

4 ALGORITHM FOR THE q-ROOTED TSP PROBLEM

In this section, we propose a 2-approximation algorithm for
the q-rooted TSP problem, which will serve as a subroutine
of the approximation algorithm for the service cost mini-
mization problem.

The basic idea of the algorithm for the q-rooted TSP
problem is that we first find q-rooted trees with the mini-
mum total cost, and we then show that the total cost of the
q-rooted trees is a lower bound on the optimal cost of the
q-rooted TSP problem. We finally convert each of the trees

into a closed tour with the cost of the tour no more than
twice the cost of the tree.

We start with the q-rooted minimum spanning forest (q-
rooted MSF) problem: given a graph Gc = (V c ∪ R,Ec;w),
q = |R|, and w : Ec 7→ R

+, the problem is to find q
trees T1, T2, . . . , Tq spanning all nodes in V c with each tree
containing a distinct depot in R such that the total cost of
the q trees,

∑q
l=1 w(Tl), is minimized.

For the q-rooted MSF problem, an exact algorithm is
given as follows. We start by constructing an auxiliary graph
Gr = (V c ∪ {r}, Er;wr) from Gc = (V c ∪ R,Ec;w) by
contracting the q depots in R into a single root r: (i) remove
the q depots in R and introduce a new node r;

(ii) for each rl ∈ R, introduce an edge (v, r) ∈ Er for
each edge (v, rl) ∈ Ec, where v ∈ V c; (iii) wr(v, r) =
minl{w(v, rl)}. We then find an MST T of Gr . We finally
break T into q disjoint trees T1, T2, . . . , Tq by un-contracting
the roots in R. This un-contraction means that an edge (v, r)
is mapped to an edge (v, rl), where wr(v, r) = w(v, rl).
Note that each tree Tl roots at depot rl. The detailed algo-
rithm is presented in Algorithm 1.

Algorithm 1 q-rooted MSF

Input: Gc = (V c ∪R,Ec;w), w : Ec 7→ R
+, and q = |R|.

Output: a solution for the q-rooted MSF problem
1: Construct a graph Gr = (V c ∪ {r}, Er;wr) from Gc by

contracting the q depots in R into a single root r;
2: Find an MST T in Gr ;
3: Decompose the MST T into q disjoint rooted trees

T1, T2, . . . , Tq by un-contracting depots in R.

Lemma 1. There is an algorithm for the q-rooted MSF
problem, which delivers an optimal solution and takes
O(n2) time, where n = |V c ∪R|.

Proof: Assume that trees T ∗
1 , T

∗
2 , . . . , T

∗
q form an op-

timal solution to the q-rooted MSF problem. We show that
the solution consisting of trees T1, T2, . . . , Tq, delivered by
Algorithm 1, is optimal. On one hand, since the q trees
T1, T2, . . . , Tq form a feasible solution, then

∑q
l=1 w(T

∗
l ) ≤∑q

l=1 w(Tl). On the other hand, as each tree T ∗
l contains

a depot rl ∈ R, we can construct a spanning tree T ′ in
graph Gr by contracting the q depots into a single root
r, and w(T ′) =

∑q
l=1 w(T

∗
l ). As the MST T is the min-

imum one, we have w(T ) ≤ w(T ′). Since
∑q

l=1 w(Tl) =
w(T ),

∑q
l=1 w(Tl) = w(T ) ≤ w(T ′) ≤

∑q
l=1 w(T

∗
l ).

Therefore,
∑q

l=1 w(Tl) =
∑q

l=1 w(T
∗
l ), i.e., the found trees

T1, T2, . . . , Tq form an optimal solution to the problem. The
time complexity of Algorithm 1 is analyzed as follows.
Constructing graph Gr takes time O(Ec) = O(n2). Finding
the MST T in Gr takes O(n2) time, while un-contracting the
MST T also takes time O(Ec) = O(n2). Algorithm 1 thus
runs in O(n2) time.

With the help of the exact algorithm for the q-rooted MSF
problem, we now devise a 2-approximation algorithm for
the q-rooted TSP problem in Algorithm 2.

We show that Algorithm 2 delivers a 2-approximate
solution by the following theorem.

Theorem 2. There is a 2-approximation algorithm for the q-
rooted TSP problem, which takes time O(|V c ∪R|2).

Proof: Assume that closed tours C∗
1 , C

∗
2 , . . . , C

∗
q form

an optimal solution to the q-rooted TSP problem in Gc.
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Algorithm 2 q-rooted TSP

Input: Gc = (V c ∪R,Ec;w), w : Ec 7→ R
+, and q = |R|.

Output: A solution C for the q-rooted TSP problem
1: Find q optimal trees T1, T2, . . . , Tq for the q-rooted MSF

problem in Gc by calling Algorithm 1;
2: For each tree Tl, double the edges in Tl, find a Eulerian tour

C′
l , and obtain a less cost closed tour Cl by short-cutting

repeated nodes in C′
l . Let C = {C1, C2, . . . , Cq}.

For each tour C∗
l , we can obtain a tree T ′

l by removing
any edge in C∗

l . Then, w(T
′
l ) ≤ w(C∗

l ), 1 ≤ l ≤ q. It
is obvious that trees T ′

1, T
′
2, . . . , T

′
q form a feasible solu-

tion to the q-rooted MSF problem. As trees T1, T2, . . . , Tq

form the optimal solution by Lemma 1,
∑q

l=1 w(Tl) ≤∑q
l=1 w(T

′
l ) ≤

∑q
l=1 w(C

∗
l ). Also, we can see that the

total cost of each found tour Cl is no more than twice
the total cost of tree Tl, i.e., w(Cl) ≤ 2w(Tl). Therefore,∑q

l=1 w(Cl) ≤
∑q

l=1 2w(Tl) ≤ 2
∑q

l=1 w(C
∗
l ). The time

complexity analysis is straightforward, omitted.

5 APPROXIMATION ALGORITHM WITH FIXED MAX-
IMUM CHARGING CYCLES

In this section, we devise an approximation algorithm for
the service cost minimization problem, assuming that each
sensor has a fixed maximum charging cycle. We start with
the basic idea behind the algorithm. We then present the
approximation algorithm, and we finally analyze the ap-
proximation ratio of the proposed approximation algorithm.

5.1 Overview of the approximation algorithm

Given a maximum charging cycle function: τ : V 7→ R+

and a monitoring period T , if there is a series of mobile
charger schedulings for T such that no sensor depletes its
energy, then we say that these schedulings form a feasible
solution to the service cost minimization problem, i.e., for
each sensor vi ∈ V , the maximum duration between its
any two consecutive chargings is no more than τi. A series
of feasible charging schedulings of the q mobile chargers is
an optimal solution if the service cost of the solution is the
minimum one.

The basic idea behind the proposed approximation al-
gorithm is to construct another charging cycle function
τ ′(·) for the sensors based on the maximum charging cycle
function τ(·), by exploring the combinatorial property of the
problem.We construct a very special charging cycle function
τ ′(·) such that charging cycles of the n sensors will form a
geometric sequence as follows.

Let τ1, τ2, . . . , τn be the maximum charging cycles of
sensors v1, v2, . . . , vn in the network. Assume that τ1 ≤
τ2 ≤ · · · ≤ τn. Let τ

′
1, τ

′
2, . . . , τ

′
n be the charging cycles of the

sensors and τ ′i ≤ τ ′j if τi ≤ τj . We construct τ ′(·) as follows.
We partition the set V of the sensors into K + 1 disjoint
subsets V0, V1, . . . , VK , where K = ⌊log2

τn
τ1
⌋, and sensor

vi ∈ V with its maximum charging cycle τi is contained in
Vk if 2kτ1 ≤ τi < 2k+1τ1. Then, k = ⌊log2

τi
τ1
⌋. Let τ ′i = 2kτ1.

We assign each sensor in Vk with the identical charging cycle
2kτ ′1 = 2kτ1. Consequently, the charging cycles of sensors
in V0, V1, . . . , VK are τ1, 2τ1, . . . , 2

Kτ1, respectively. We can
see that the assigned charging cycle τ ′i of sensor vi is no less
than the half its maximum charging cycle τi, since

τ ′i = 2
⌊log2

τi
τ1

⌋
τ1 > 2

log2
τi
τ1

−1
τ1 =

τi
2
, ∀vi ∈ V . (5)

5.2 Approximation algorithm

Given the charging cycle function τ ′(·), we can see that τ ′j
is divisible by τ ′i for any two sensors vi and vj if τi ≤ τj
and 1 ≤ i < j ≤ n. For simplicity, assume that the
monitoring period T is divisible by the maximum assigned
charging cycle τ ′n, let T = 2mτ ′n = 2m2Kτ1, where m is a
positive integer. Furthermore, we assume that each sensor
is fully charged at time t = 0. The solution delivered by the
proposed algorithm consists of a series of schedulings of the
q mobile chargers. Specifically, we first find a sequence of
schedulings of the q mobile chargers for a period τ ′n. Then,
we repeat the found schedulings for the next time period of
τ ′n, and so on. We repeat these scheduling sequence for the
period of T no more than ⌊T/τ ′n⌋ − 1 = 2m− 1 times.

In the following, we construct a series of schedulings
for a period τ ′n = 2Kτ1. Recall that we have partitioned the
sensor set V into K + 1 disjoint subsets V0, V1, . . . , VK , and
the charging cycle of each sensor in Vk is 2kτ1, 0 ≤ k ≤ K .
We further partition the period τ ′n into 2K equal time
intervals with each interval lasting τ1, and label them from
the left to right as the 1st, 2nd, . . ., and the 2Kth time
interval. Clearly, all sensors in V0 must be charged at each
of these 2K time intervals; all sensors in V1 must be charged
at every second time interval; and all sensors in Vk must be
charged at every 2k time interval, 0 ≤ k ≤ K . That is,

At time τ1, charge the sensors in V0.
At time 2τ1, charge the sensors in V0 ∪ V1.
At time 3τ1, charge the sensors in V0.
At time 4τ1, charge the sensors in V0 ∪ V1 ∪ V2.
...
At time jτ1, charge the sensors in ∪(j mod 2k)=0Vk where

0 ≤ k ≤ K ′, K ′ = ⌊log2 j⌋, and 1 ≤ j ≤ 2K .
...
At time 2Kτ1, charge the sensors in ∪K

i=0Vi = V .

There are 2K charging schedulings of the q mobile
chargers and one charging scheduling is dispatched at each
time interval. Let Cj = {Cj,1, Cj,2, . . . , Cj,q} be the set of
closed tours of the q mobile chargers at time interval j,
where 1 ≤ j ≤ 2K . Furthermore, it can be seen that in the
2K charging schedulings, there are 2K−1 identical charging
schedulings with each only containing the sensors in V0,
there are 2K−2 identical charging schedulings with each
containing the sensors only in V0 ∪ V1. In general, there are
2K−1−k identical charging schedulings with each containing
the sensors only in V0 ∪ V1 · · · ∪ Vk , 0 ≤ k ≤ K − 1. Finally,
there is one charging scheduling containing the sensors in
V0∪V1 · · ·∪VK = V . Denote byDk = {Dk,1, Dk,2, . . . , Dk,q}
the set of q closed tours for the q-rooted TSP problem in the
induced graph G[R ∪ V0 · · · ∪ Vk], which is delivered by
Algorithm 2 and 0 ≤ k ≤ K .

The series of charging schedulings for a period τ ′n
thus is (C1, τ1), . . . , (Cj , jτ1), . . . , (C2K , 2Kτ1), where the 2-
tuple (Cj , jτ1) represents that the q mobile chargers are
dispatched at time jτ1 and the set of to-be-charged sen-
sors is ∪Cj,i∈Cj

V (Cj,i) = ∪(j mod 2k)=0Vk , 0 ≤ k ≤ K ′,

K ′ = ⌊log2 j⌋, and 1 ≤ j ≤ 2K . As a result, there are
p = 2m · 2K − 1 charging schedulings found for a period of
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T = 2mτ ′n as follows.
(C1, τ1), . . . , (C2K−1, (2

K − 1)τ1), (C2K , 2Kτ1),

(C1, τ ′n+τ1), . . . , (C2K−1, τ
′
n+(2K−1)τ1), (C2K , τ ′n+2Kτ1),

..

.

(C1, (2m − 1)τ ′n + τ1), . . . , (C2K−1, (2m− 1)τ ′n + (2K − 1)τ1).

Note that we do not perform a charging scheduling at time
T = 2mτ ′n as there is no such need in the end of period T .
The proposed algorithm is described in Algorithm 3.

Algorithm 3 MinDis

Input: G = (V ∪ R,E;w), maximum charging cycles τ : V 7→
R

+, q chargers, and a monitoring period T .
Output: A series of charging schedulings C for period T
1: Let τ1, τ2, . . . , τn be the sorted maximum charging cycles of

sensors v1, v2, . . . , vn in ascending order;

2: For each sensor vi, let τ
′
i = 2

⌊log2
τi
τ1

⌋
;

3: Partition sensors in V into K + 1 disjoint subsets

V0, V1, . . . , VK , where sensor vi ∈ Vk if 2kτ1 = 2
⌊log2

τi
τ1

⌋
τ1,

0 ≤ k ≤ K, and K = ⌊log2
τn
τ1
⌋. All sensors in Vk have the

same charging cycle 2kτ ′
1.

4: for k ← 0 to K do
5: Find q charging tours Dk = {Dk,1, Dk,2, . . . , Cj,q} in

the induced subgraph G[R ∪ V0 · · · ∪ Vk] by applying
Algorithm 2;

6: end for
7: C ← ∅; /* the solution */
8: /* Construct schedulings (C1, τ1), . . . , (C2K , 2Kτ1) */
9: for j ← 1 to 2K do
10: /* Find the charging scheduling Cj of the q mobile

chargers at time tj = jτ1 */
11: Let Cj = Dk, where k is the largest integer so that j

mod 2k = 0, where 0 ≤ k ≤ K′ and K′ = ⌊log2 j⌋;
12: C ← C ∪ {(Cj , tj)};
13: end for
14: for m′ ← 2 to ⌊T/τ ′

n⌋ do
15: for j ← 1 to 2K do
16: C = C ∪ {(Cj ,m

′ · τ ′
n + tj)}

17: end for
18: end for
19: return C.

5.3 Algorithm analysis

In the following we dedicate ourselves to analyzing the
approximation ratio of the proposed approximation algo-
rithm. We start by showing that Algorithm 3 delivers a
feasible solution to the service cost minimization problem by
Lemma 2. We then provide a lower bound on the minimum
cost of the problem by Lemma 3. We finally derive the
approximation ratio of Algorithm 3 based on the lower
bound, which is stated in Theorem 3.

Lemma 2. Algorithm 3 delivers a feasible solution to the
service cost minimization problem.

Proof: It is obvious that the solution delivered by
Algorithm 3 is feasible, as the charging cycle τ ′i of each
sensor vi ∈ V in the solution is no more than its maximum
charging cycle τi, i.e., τ

′
i ≤ τi. Thus, no sensors will die in

the period T , the claim then follows.
The following lemma provides a lower bound on the

optimal service cost, which bounds the service cost of the
solution delivered by Algorithm 3.

Lemma 3. Given the sensor set partitioning V0, V1, . . . , VK

based on the maximum charging cycles of sensors, each

sensor in Vk is assigned with the same charging cycle
2kτ1, 0 ≤ k ≤ K . Let OPT be the service cost of
an optimal solution to the service cost minimization
problem. Denote by D∗

k = {D∗
k,1, D

∗
k,2, . . . , D

∗
k,q} the

optimal q closed tours for the q-rooted TSP problem
in the induced graph G[R ∪ V0 ∪ V1 ∪ · · · ∪ Vk], then
OPT ≥ m2K−k · w(D∗

k), assuming that T = 2mτ ′n,
where w(D∗

k) =
∑q

l=1 w(D
∗
k,l), K = ⌊log2

τn
τ1
⌋, and

0 ≤ k ≤ K .

Proof: To show that OPT ≥ m2K−k · w(D∗
k), we

partition the entire period T = 2mτ ′n = 2m · 2Kτ1 into
m · 2K−k time intervals with each lasting time tk = 2k+1τ1.
Let (0, tk], (tk, 2tk], . . . , ((j − 1)tk, jtk], . . . , ((m2K−k −
1)tk, m2K−ktk] be these m · 2K−k intervals, where time
interval j is the interval ((j−1) · tk, j · tk], 1 ≤ j ≤ m ·2K−k.
Note that m2K−ktk = m2K−k2k+1τ1 = T .

In the following we first show that there is at least one
time interval among the m2K−k time intervals such that (i)
the service cost of charging schedulings within the interval
is no more than 1

m2K−k of the service cost OPT in the

optimal solution; (ii) each sensor in
⋃k

i=0 Vi must be charged
at least once in this interval; and (iii) the service cost within
this interval in the optimal solution is no less than the cost
w(Ck) of a feasible solution Ck to the q-rooted TSP problem
in graphG[R∪V0∪· · ·∪Vk]. SinceD

∗
k is the optimal solution

to the q-rooted TSP problem, w(D∗
k) ≤ w(Ck) ≤

OPT
m2K−k .

Assume that an optimal solution consists of p charging
schedulings (C∗

1 , t
∗
1), (C

∗
2 , t

∗
2), . . . , (C

∗
p , t

∗
p) with 0 < t∗1 ≤

· · · ≤ t∗p < T . Recall that OPT is the sum of lengths of
the p charging schedulings i.e., OPT =

∑p
s=1 w(C

∗
s ) =∑p

s=1

∑q
l=1 w(C

∗
s,l). We partition the p charging schedul-

ings into m2K−k disjoint groups according to their dis-
patching times, the charging scheduling C∗

s is in group j
if its dispatching time t∗s is within time interval j, i.e.,
t∗s ∈ ((j − 1)tk, jtk], where 1 ≤ s ≤ p and 1 ≤ j ≤ m2K−k.
Denote by Gj and w(Gj) the set of charging schedulings in
group j and the cost sum of charging schedulings in Gj ,
respectively, i.e., w(Gj) =

∑
C∗

s∈Gj
w(C∗

s ), 1 ≤ j ≤ m2K−k.

Then,
∑m2K−k

j=1 w(Gj) = OPT . Among the m2K−k groups,
there must be a group Gj whose service cost w(Gj) is no
more than 1

m2K−k of the optimal cost OPT , i.e.,

w(Gj) ≤
OPT

m2K−k
. (6)

We then show that each sensor in
⋃k

i=0 Vi must be
charged at least once by the charging schedulings in Gj by

contradiction. Assume that there is a sensor vi ∈
⋃k

i=0 Vi

which will not be charged by any charging scheduling in

Gj . Since vi ∈
⋃k

i=0 Vi, its maximum charging cycle τi must
be strictly less than 2 · 2kτ1 = 2k+1τ1 by inequality (5), i.e.,
τi < 2k+1τ1. On the other hand, as vi will not be charged by
any charging scheduling in Gj while it is still survived, this
implies that its maximum charging cycle must be no less
than the length tk of the time interval, i.e., τi ≥ tk = 2k+1τ1,
this results in a contradiction. Thus, vi must be charged by
at least one charging scheduling in Gj .

We finally construct a feasible solution Ck =
{Ck,1, Ck,2, . . . , Ck,q} to the q-rooted TSP problem in graph
G[R ∪ V0 ∪ · · · ∪ Vk] based on the charging schedulings in
Gj such that the service cost w(Ck) is no more than w(Gj).
Since each closed tour in Gj contains a depot rl ∈ R, we
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partition the closed tours in Gj by the depot that each tour
contains. To this end, we partition tours in Gj into q disjoint
subgroups Gj,1,Gj,2, . . . ,Gj,q , where subgroup Gj,l includes
all closed tours in Gj that contains depot rl, 1 ≤ l ≤ q. For
each subgroup Gj,l, since each tour contains depot rl, the
union of all close tours in Gj,l forms a connected Eulerian
graph. Then, we can derive a Eulerian circuit C′

k,l from this
Eulerian graph and w(C′

k,l) = w(Gj,l). We further obtain a
closed tourCk,l including only nodes inR∪V0∪· · ·∪Vk once
from C′

k,l , by the removal of the nodes not inR∪V0∪· · ·∪Vk

and the nodes with multiple appearances, and performing
path short-cutting. Since edge weights satisfy the triangle
inequality, we have

w(Ck,l) ≤ w(C′
k,l) ≤ w(Gj,l), 1 ≤ l ≤ q. (7)

As each sensor in
⋃k

i=0 Vi will be charged at least once
by the charging schedulings in Gj , and tour Ck,l contains

depot rl, we have
⋃k

i=0 Vi ⊆
⋃q

l=1 V (Ck,l). Then, all tours
in Ck form a feasible solution to the q-rooted TSP problem in
graph G[R∪V0 ∪ · · · ∪Vk]. Let D

∗
k = {D∗

k,1, D
∗
k,2, . . . , D

∗
k,q}

be the optimal q tours. Then,

q∑

l=1

w(D∗
k,l) ≤

q∑

l=1

w(Ck,l). (8)

By combining inequalities (6), (7), and (8), the lemma
then follows.

According to Lemmas 2 and 3, we show the approxima-
tion ratio of Algorithm 3 by the following theorem.

Theorem 3. There is a 2(K + 2)-approximation algo-
rithm for the service cost minimization problem with
fixed maximum charging cycles, which takes time
O(⌊log τmax

τmin
⌋n2 + T

τmin
n), where τmax = maxni=1{τi},

τmin = minn
i=1{τi}, and K = ⌊log2

τn
τ1
⌋.

Proof: By Lemma 2, Algorithm 3 delivers a
feasible solution. The rest is to analyze its ap-
proximation ratio. Recall that the charging schedul-
ings delivered by Algorithm 3 for period T =
2mτ ′n are: (C1, τ1), . . . , (C2K , 2Kτ1), (C1, τ

′
n+ τ1), . . . , (C2K , τ ′

n+
2Kτ1), . . . , (C1, (2m−1)τ ′

n+τ1), . . . , (C2K−1, (2m−1)τ ′
n+(2K−

1)τ1). The total service cost during T then is

(2m− 1)

2K∑

j=1

w(Cj) +
2K−1∑

j=1

w(Cj) ≤ 2m

2K∑

j=1

w(Cj). (9)

Recall that Dk = {Dk,1, Dk,2, . . . , Dk,q} is the set of
q closed tours for the q-rooted TSP problem in graph
G[R∪V0 ∪· · ·∪Vk] delivered by Algorithm 2. Let C(τ ′n) =
{(C1, τ

′
1), (C2, τ

′
2), . . . , (C2K , τ ′n)}. From the construction of

C(τ ′n), we can see that there are 2K−1−k identical charging
schedulings in C(τ ′n) with each only containing the nodes
in R ∪ V0 ∪ V1 · · · ∪ Vk . Denote by w(Dk) the cost of the
charging scheduling Dk, where 0 ≤ k ≤ K − 1. And there
is one charging scheduling in C(τ ′n) containing the nodes in
R∪V0 ∪ · · · ∪VK = R∪V , denote by w(DK) the cost of the
charging scheduling DK . We then rewrite the upper bound
on the service cost in Inequality (9) as

2m
2K∑

j=1

w(Cj) = 2m(w(DK) +
K−1∑

k=0

2K−1−kw(Dk)). (10)

Denote by D∗
k = {D∗

k,1, D
∗
k,2, . . . , D

∗
k,q} the set of the

optimal q closed tours for the q-rooted TSP problem in graph
G[R ∪ V0 ∪ · · · ∪ Vk]. Since Dk is an approximate solution

by Theorem 2, w(Dk) ≤ 2w(D∗
k), 0 ≤ k ≤ K . Also, by

Lemma 3, w(D∗
k) ≤

OPT
m2K−k . We have

2m(w(DK) +

K−1∑

k=0

2K−1−kw(Dk))

≤ 4m(
OPT

m
+

K−1∑

k=0

2K−1−k OPT

m2K−k
) = 2(K + 2)OPT. (11)

The time complexity of Algorithm 3 is analyzed as
follows. Partitioning the sensor set V into K + 1 disjoint
subsets V0, V1, . . . , VK takes O(n) time, based on the as-
signed charging cycles for the n sensors. Given the sensor
set V (Dk) = R ∪ V0 · · · ∪ Vk, it takes O(|V (Dk)|

2) time to
find a 2-approximate solution to the q-rooted TSP problem
by Theorem 2, where 0 ≤ k ≤ K . Since V (Dk) ⊆ V ∪ R,
it takes no more than (K + 1)O(n2) = O(Kn2) time
to construct D0,D1, . . . ,DK . Then, C1, C2, . . . , C2K are ob-
tained from D0,D1, . . . ,DK by only replication, and it takes
O(2Kn) time. Having these 2K charging schedulings, the
rest ones can be obtained by repeatedly copying these 2K

charging schedulings but assigning them different dispatch-
ing times. Therefore, the running time of Algorithm 3 is
O(Kn2) + O(2Kn) + O((2m − 1)2Kn) = O(Kn2 + 2m ·
2Kn) = O(Kn2 + T

τmin
n).

6 HEURISTIC ALGORITHM WITH VARIABLE MAXI-
MUM CHARGING CYCLES

So far we have developed an approximation algorithm for
the service cost minimization problem, assuming that the
maximum charging cycle of each sensor is fixed for the
given monitoring period. This assumption however some-
times may be restrictive and unrealistic in some applica-
tions. In this section we devise a novel heuristic algorithm
by removing this assumption.

6.1 Dynamic maximum charging cycles of sensors

Within the period T , the energy consumption rates of sen-
sors may dynamically change over time, resulting in the
changes of sensor maximum charging cycles eventually. To
respond to such a variation, each sensor monitors its own
energy information, including its residual energy and its
energy consumption rate periodically. Based on the energy
information, it predicts its residual lifetime with existing
prediction techniques. For example, a sensor can use an
Exponentially Weighted Moving-Average prediction tech-
nique as follows [4]. Let ρ̂i(t + 1) be the predicted energy
consumption rate of sensor vi at time t + 1, ρ̂i(t + 1) =
ω ·ρi(t)+(1−ω)·ρ̂i(t), where ω is a constant with 0 < ω < 1,
ρ̂i(t) and ρi(t) are the predicted and monitored energy
consumption rates of sensor vi at time t, respectively.

Assume that the residual energy of sensor vi at time t
is rei(t), sensor vi estimates its residual lifetime li(t) and

maximum charging cycle τi(t) by l̂i(t) =
rei(t)
ρ̂i(t+1) and τ̂i(t) =

Bi

ρ̂i(t+1) , respectively. Meanwhile, the base station maintains

the updated energy information of each sensor. We assume
that there is a variation threshold of the maximum charging
cycle at each sensor. If the variation is under the pre-defined
threshold, nothing is to be done. Otherwise, the sensor sends
an updating request of its energy information to the base
station and the base station takes proper actions.



0018-9545 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2015.2496971, IEEE
Transactions on Vehicular Technology

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. X, 2015 9

6.2 Heuristic Algorithm

Assume that the base station receives the maximum charg-
ing cycle updatings from some sensors at time t, this implies
that the charging schedulings based on the previous maxi-
mum charging cycles of these sensors may not be applicable
any more, otherwise these sensors will deplete their energy
prior to their next chargings. For example, assume that a
sensor has changed its maximum charging cycle from a
longer one to a shorter one, it might be dead if the sensor is
still charged according to its previous longer charging cycle
since the sensor now can last for only a shorter cycle once it
is fully charged.

The basic idea of the heuristic algorithm is as follows.
When the base station receives maximum charging cycle
updatings, it checks whether the previous schedulings are
still applicable for these updated maximum charging cycles.
If so, nothing needs to be done. Otherwise, it re-computes
a new series of schedulings, by first applying the approxi-
mation algorithm based on the updated maximum charging
cycles, followed by modifications to the solution delivered
by the approximation algorithm.

Assume that the previous maximum charging cycle of
sensor vi is τ̂i(t− 1) and it was charged at a charging cycle
τ̂ ′i(t− 1) in the previous series of schedulings. At time t, the
base station receives the maximum charging cycle updating
of sensor vi, which changes from τ̂i(t− 1) to τ̂i(t). The base
station then checks the feasibility of the previous schedul-
ings as follows. If τ̂ ′i(t−1) ≤ τ̂i(t) < 2τ̂ ′i(t−1), the previous
schedulings are still feasible as sensor vi will be charged
with a charging cycle τ̂ ′i(t − 1) no more than its current
maximum charging cycle τ̂i(t). Otherwise (τ̂i(t) < τ̂ ′i(t− 1)
or τ̂i(t) ≥ 2τ̂ ′i(t − 1)), we re-compute a new series of
schedulings based on the updated maximum charging cy-
cles since the previous schedulings are not feasible any more
(i.e., τ̂i(t) < τ̂ ′i(t − 1)), or though the schedulings still are
feasible, they are not optimal in terms of the service cost
(i.e., τ̂i(t) ≥ 2τ̂ ′i(t − 1)). In the following, we re-compute a
new series of schedulings.

We first invoke the proposed approximation algorithm
based on the updated maximum charging cycles. Let
τ̂1(t), τ̂2(t), . . . , τ̂n(t) be the updated maximum charging
cycles of the n sensors. Assume that residual lifetimes of the

n sensors are l̂1(t), l̂2(t), . . . , l̂n(t), respectively. We further
assume that the solution delivered by the approximation
algorithm based on the updated maximum charging cycles
consists of
(C1, t + τ̂1(t)), (C2, t + 2τ̂1(t)), . . . , (C

2K
, t + 2K τ̂1(t)),

(C1, t+τ̂ ′

n(t)+τ̂1(t)), (C2, t+τ̂ ′

n(t)+2τ̂1(t)), . . . , (C2K , t+τ̂ ′

n(t)+2K τ̂1(t)),

.

.

.

(C1, t + xτ̂ ′

n(t) + τ̂1(t)), . . . , (Cy, t + xτ̂ ′

n(t) + yτ̂1(t),

where t+xτ̂ ′
n(t)+yτ̂1(t) < T , t+xτ̂ ′

n(t)+(y+1)τ̂1(t) ≥ T , and
x and y are positive integers. The most updated charging cy-
cles of the n sensors in the solution are τ̂ ′1(t), τ̂

′
2(t), . . . , τ̂

′
n(t),

where τ̂ ′i(t) = 2
⌊log2

τ̂i(t)

τ̂1(t)
⌋
τ̂1(t).

Note that the solution delivered may not be feasible as
different sensors may have different amounts of residual
energy. This violates the condition of applying the approxi-
mation algorithm, that is, all sensors must be fully charged
initially. The residual energy in some sensor vi may not sup-

port its operation until its next charging time t + τ̂ ′i(t), i.e.,
l̂i(t) < τ̂ ′i(t). Denote by V a the set of sensors with l̂i(t) <
τ̂ ′i(t). We then schedule the mobile chargers to replenish sen-
sors in V a to avoid their energy depletion, through adding a
new charging scheduling (C′

0, t) and modifying the first 2K

schedulings from (C1, t + τ̂1(t)), (C2, t + 2τ̂1(t)), . . . , (C2K , t +

2K τ̂1(t)) to (C′1, t+ τ̂1(t)), (C
′
2, t+2τ̂1(t)), . . . , (C

′
2K

, t+2K τ̂1(t)).
Also, the charging schedulings delivered by the heuristic
algorithm after the first 2K schedulings are the same as
them delivered by the approximation algorithm. The rest
is to construct the first 2K + 1 charging schedulings.

Let V a
t = {vi|vi ∈ V a & l̂i(t) < τ̂1(t)}, which implies

that the residual lifetime of each sensor in V a
t is less than

τ̂1(t) and V a
t ⊆ V a. We construct a scheduling (C0, t),

in which all sensors in V a
t will be charged at time t.

We then, like the node set partition in the approximation
algorithm, partition the set V a \ V a

t into K + 1 disjoint sets
V a
0 , V

a
1 , . . . , V

a
K according to their residual lifetimes, where

K=⌊log2
τ̂n(t)
τ̂1(t)

⌋ and a sensor vi∈V
a \ V a

t is contained in

V a
k if 2kτ̂1(t) ≤ l̂i(t) < 2k+1τ̂1(t). Note that the residual

lifetime l̂i(t) of each sensor vi in V a
k at time t is no less

than 2kτ̂1(t) but no greater than its charging cycle τ̂ ′i(t), i.e.,
2kτ̂1(t) ≤ l̂i(t) < τ̂ ′i(t). To avoid the energy depletion of
sensor vi, we can add it into any one of the schedulings:
{(C0, t), (C1, t + τ̂1(t)), (C2, t + 2τ̂1(t)), . . . , (C2k , t + 2k τ̂1(t))}.
However, to minimize the service cost, we add sensor vi
into a nearest scheduling Cj , The detailed construction of
the 2K + 1 schedulings is as follows.

We construct the 2K + 1 schedulings by iteratively in-
voking Algorithm 1 for the q-rooted minimum spanning

forest problem. Denote by V (C
(k)
j ) and V (C

(k+1)
j ) the con-

structed node sets of scheduling C′
j before and after iteration

k, respectively, where 0 ≤ k ≤ K . Note that C
(k)
j =

{C
(k)
j,1 , . . . , C

(k)
j,q } and V (C

(k)
j ) =

⋃q
l=1 V (C

(k)
j,l ). After K + 1

iterations, we let V (C′
j) = V (C

(K+1)
j ). We finally obtain

scheduling C′
j by applying Algorithm 2 for the q-rooted

TSP problem in the induced graph G[V (C′
j)]. Consequently,

each sensor in V a
t ∪ V a

0 ∪ · · · ∪ V a
K = V a will be charged in

time. Initially, let V (C
(0)
0 ) = V a

t ∪ R and V (C
(0)
j ) = V (Cj),

where 1 ≤ j ≤ 2K . At iteration k (0 ≤ k ≤ K), we first
construct an auxiliary graph G(k) = (V a

k ∪R(k), E(k);w(k))

based on node sets V a
k and V (C

(k)
0 ), V (C

(k)
1 ), . . . , V (C

(k)
2k ),

where there is a root r
(k)
j in R(k) representing node set

V (C
(k)
j ), 0 ≤ j ≤ 2k, and E(k) = V a

k × V a
k ∪ V a

k × R(k).

Then, |R(k)| = 2k + 1. For each edge (u, v) ∈ V a
k × V a

k ,
w(k)(u, v) is the Euclidean distance between nodes u and

v. For each edge (u, r
(k)
j ) ∈ V a

k × R(k), w(k)(u, r
(k)
j ) is the

smallest Euclidean distance between node u and nodes in
V (C

(k)
j ). We then obtain 2k + 1 minimum cost rooted trees

T
(k)
0 , T

(k)
1 , . . . , T

(k)
2k , by invoking Algorithm 1 on G(k),

where tree T
(k)
j contains root r

(k)
j and 0 ≤ j ≤ 2k. Note

that each sensor in V a
k is contained in a tree T

(k)
j and

V a
k = V (T

(k)
0 )∪V (T

(k)
1 )∪· · ·∪V (T

(k)

2k
)−R(k). Then, the sen-

sors in tree T
(k)
j will be charged in scheduling (C′

j , t+jτ̂1(t)).

To this end, we let V (C
(k+1)
j ) = V (C

(k)
j ) ∪ V (T

(k)
j )− {r

(k)
j }

if 0 ≤ j ≤ 2k, otherwise (2k + 1 ≤ j ≤ 2K), V (C
(k+1)
j ) =
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V (C
(k)
j ). We refer to this heuristic algorithm as MinDis-var.

Theorem 4. There is a heuristic algorithm for the service cost
minimization problem with variable maximum charging

cycles, which takes O( τmax

τmin
n2 + T

τmin
n +

τ2
max

τ2
min

) time,

where n = |V |, τmax = maxni=1{τi}, and τmin =
minni=1{τi}.

Proof: We fist show that the heuristic algorithm deliv-
ers a feasible solution. To this end, it is sufficient to show
that each sensor vi ∈ V a, whose residual lifetime l̂i(t) at
time t is less than its next charging cycle τ̂ ′i(t), will be

charged between current time t and time t + l̂i(t). First, it
is obvious that each sensor in V a

t will be charged at time
t. Then, the sensor set V a − V a

t is partitioned into K + 1
subsets V a

0 , V
a
1 , . . . , V

a
K , where sensor vi is contained in V a

k

if 2kτ̂1(t) ≤ l̂i(t) < 2k+1τ̂1(t), 0 ≤ k ≤ K . Following the
heuristic algorithm, each sensor vi in V a

k will be charged
in some scheduling in {(C′0, t), (C

′
1, t + τ̂1(t)), . . . , (C

′
2k
, t +

2k τ̂1(t))}, i.e., sensor vi will be charged at some time be-

tween t and time t+ 2kτ̂1(t) ≤ t+ l̂i(t), as 2
k τ̂1(t) ≤ l̂i(t).

We then analyze the time complexity of the heuris-
tic algorithm as follows. The invoking of Algorithm 3
takes time O(Kn2 + T

τmin
n) by Theorem 3. Then, the

heuristic algorithm constructs K + 1 auxiliary graphs
G(0), G(1), . . . , G(K) and finds 2k + 1 trees in each graph.
For each graph G(k), the time of constructing graph G(k) is:
|V a

k | + |R(k)| + |V a
k | · |V

a
k | + |V a

k | · |R
(k)| · |V | = O(n) +

O(2k) + O(n2) + O(2kn2) = O(2kn2). Also, the time of
finding the 2k + 1 trees in graph G(k) is O(|V a

k ∪ R(k)|2) =
O(n2) + O(2kn) + O(22k) by Lemma 1. Therefore, the
running time of the heuristic algorithm isO(Kn2+ T

τmin
n)+

∑K
k=0(O(2kn2) + O(n2) + O(2kn) + O(22k)) = O(Kn2 +
T

τmin
n) +O(2Kn2) +O(22K) = O( τmax

τmin
n2 + T

τmin
n+

τ2
max

τ2
min

)

as ⌊ τmax

τmin
⌋ = 2K .

7 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-
posed algorithms through experimental simulations. We
also study the impact of important parameters on the al-
gorithm performance, including network size, data aggre-
gation, and the ratio of the maximum data generation rate
to the minimum data generation rate.

7.1 Simulation environment

We consider a WSN consisting of from 100 to 500 sensors
in a 1, 000m × 1, 000m square area, in which sensors are
randomly deployed. The base station is located at the center
of the square. The battery capacity Bi of each sensor vi is
10.8 kJ [25]. The data sensing rate bi of each sensor vi
is randomly chosen from an interval [bmin, bmax], where
bmin =1 kbps and bmax =10 kbps [25]. The coefficient α
in Eq. (2) is 2. Furthermore, we assume that each sensor vi
performs data aggregations on both pass-by traffic and self-
sensed data with a data aggregation factor θ, i.e., the data
transmission rate bTx

i of sensor vi is bTx
i = θ · (bRx

i + bi),
where bRx

i and bi are the data reception rate and data
sensing rate of sensor vi, respectively, and θ is constant with
0 < θ ≤ 1 [17]. The default value of θ is 1.

There are 5 depots in the WSN (i.e., q = 5) and there is a
mobile charger at each depot. To reduce the total travelling
distance of the q mobile chargers, one depot is co-located
with the base station, as the most energy-consuming sensors
in a WSN usually are close to the base station for relaying
data from other remote sensors. The rest of q − 1 depots
are randomly distributed in the area. The entire monitoring
period T is one year, which is partitioned into equal time
slots with each lasting ∆T (∆T typically is much shorter
than T , e.g., ∆T is one month). We assume that the data
sensing rate bi of each sensor vi ∈ V does not change within
each time slot ∆T . Even if it does change within the time
slot, the difference can be neglected.

To evaluate the performance of the proposed algorithms
MinDis and MinDis-var against the state-of-the-art algo-
rithms, we implement three benchmark algorithms of sensor
charging Periodic [25], [34], [35], [33], OnDemand, and
Partition of [29], [41], which are described as follows.
In algorithm Periodic, the base station periodically dis-
patches the q mobile chargers to charge every sensor in
the network with charging period being τmin. The charg-
ing tours of the q chargers will be found by applying
Algorithm 2. In algorithm OnDemand, each sensor sends
a charging request to the base station when its residual
energy is below a given energy threshold. Having received
a set of such requests, the base station then dispatches the
q mobile chargers to charge the sensors whose estimated
residual lifetimes are less than a given threshold ∆l with
∆l = τmin. The charging tours of the q mobile chargers are
finally obtained by applying Algorithm 2 for the q-rooted
TSP problem in the induced graph of the to-be-charged
sensors. Finally, in algorithm Partition, the monitoring
region is divided into q subregions, in other words, the sen-
sors in the network are first partitioned into q disjoint sets
V1, V2, . . . , Vq with each set corresponding to the sensors in
its subregion, where a sensor vi is contained in set Vj if
depot rj is its nearest depot among the q depots. Then, the
sensors in Vj will be charged by only the mobile charger
located at depot rj , where 1 ≤ j ≤ q. Each sensor vi ∈ Vj

sends a charging request to the base station when it will
deplete its energy soon. Once receiving the request, the base
station dispatches the mobile charger at depot rj to charge
a subset V ′

j of sensors of Vj with the residual lifetime of
each sensor in V ′

j being less than a given threshold ∆lj ,
i.e., V ′

j = {vi | vi ∈ Vj , li < ∆lj}, and the charging
tour of the charger is a shortest closed tour visiting the
sensors in V ′

j and depot rj , where ∆lj=τ jmin and τ jmin is
the shortest maximum charging cycle of sensors in set Vj ,

i.e., τ jmin=minvi∈Vj
{τi}.

It must be mentioned that each value in all figures
is the average of the results by applying each mentioned
algorithm to 100 different network topologies with the same
network size.

7.2 Performance with fixed maximum charging cycles

We first evaluate the performance of the proposed approx-
imation algorithm MinDis against algorithms OnDemand,
Partition, and Periodic by varying network size n,
assuming that maximum charging cycles within T are fixed.
Fig. 1 shows that the service costs delivered by algorithms
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Fig. 1. Performance of algorithms MinDis, OnDemand, Partition,
and Periodic by varying the network size from 100 to 500 sensors.
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Fig. 2. The ratio of the service cost by algorithm MinDis to that by
algorithm OnDemand with confidence intervals of 95%.

MinDis, OnDemand, and Partition are much less than
that by algorithm Periodic. For example, Fig. 1 demon-
strates that the service cost by algorithm MinDis only about
from 15% to 25% of the cost by algorithm Periodic, and
the costs by algorithms OnDemand and Partition are from
19% to 28% of that by algorithm Periodic. Also, it can
be seen from Fig. 1 that the proposed algorithm MinDis
delivers a solution with the least service cost of mobile
chargers, while the service costs delivered by algorithms
OnDemand and Partition are almost identical and the
one by algorithm OnDemand is only marginal better than
that by algorithm Partition, ranging from 0.3% to 1.5%
improvement. Fig. 2 plots the ratio of the service cost by
algorithm MinDis to that by algorithm OnDemand with a
confidence interval of 95%, from which it can be seen that
the service cost by algorithm MinDis is about from 79%
to 93% of the service cost by algorithm OnDemand and
the ratio becomes smaller with the increase of the network
size. In the following, we only compare the performance of
algorithms MinDis, OnDemand, and Partition, and omit
the performance of algorithm Periodic, since the service
cost delivered by the algorithm is much higher than that by
the three algorithms.

We then examine the impact of the data aggregation
factor θ on the performance of the three algorithms, by
decreasing θ from 1.0 to 0.1. Fig. 3 clearly presents that
the service costs by algorithms MinDis, OnDemand, and
Partition decrease when θ becomes smaller and the

Fig. 3. Performance of algorithms MinDis, OnDemand, and Partition
by decreasing the data aggregation factor θ from 1.0 to 0.1 when n =
500.

1 2 3 4 5 6 7 8 9 10
Max Data Rate (kbps)

0 0

200 200

400 400

600 600

800 800

1000 1000

1200 1200

1400 1400

Se
rv

ic
e 

C
os

t (
km

)

MinDis
OnDemand
Partition

Fig. 4. Performance of algorithms MinDis, OnDemand, and Partition
by varying the maximum data rate bmax from 1 kbps to 10 kbps when
bmin = 1 kbps and n = 500.

service costs by the three algorithms are almost identical
when θ = 0.1. The rationale behind the phenomenon is
that the data transmission rates of sensors can be greatly
reduced by a small data aggregation factor θ while the
sensor energy consumption on data transmission is usually
the dominant one [17]. As a result, the maximum charging
cycles of sensors becomes longer with a smaller value of θ
and the service cost of mobile chargers thus is significantly
reduced.

We finally study the impact of the maximum data rate
bmax on the algorithm performance, by varying bmax from
1 kbps to 10 kbps when bmin = 1 kbps. Fig. 4 demonstrates
that the service cost by algorithm MinDis is only from
79% to 82% of the service cost by algorithm OnDemand and
their performance gap increases when bmax becomes larger.
Furthermore, Fig. 4 clearly shows that the service costs by
the three algorithms increase with the increase of bmax. This
is because that the energy consumption rates of sensors
becomes higher when the maximum data rates of sensors
bmax increases. As a result, sensors must be charged more
frequently, which incurs more service cost of the mobile
chargers.

In the following, we omit the performance of algo-
rithm Partition, since the service costs by algorithms
OnDemand and Partition are almost identical, which
have already been shown in figures 1, 3, and 4.
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Fig. 5. Performance of algorithms MinDis-var and OnDemand by
varying the network size when ∆T is one month.

Fig. 6. Performance of algorithms MinDis-var and OnDemand by
decreasing the data aggregation factor θ from 1.0 to 0.1 when ∆T is
one month and n = 500.

7.3 Performance with variable maximum charging cy-
cles

In this subsection, we first investigate the performance
of the proposed heuristic algorithm MinDis-var against
algorithm OnDemand with variable maximum charging cy-
cles. Fig. 5 and Fig. 6 illustrate the performance of both
algorithms, by varying network size n and the data aggre-
gation factor θ, respectively. It can be seen that algorithm
MinDis-var is still very competitive as it did under fixed
maximum charging cycles.

We finally study the impact of the dynamics of max-
imum charging cycles on the algorithm performance, by
varying parameter ∆T from 1 week (i.e., extremely dy-
namic) to 10 weeks (i.e., rather stable). Fig. 7 shows that the
service cost by algorithm MinDis-var decreases with the
increase of the stability of the sensor maximum charging
cycles (a larger ∆T ), while the service cost by algorithm
OnDemand almost does not change with the increase of
∆T . We also note that algorithm MinDis-var significantly
outperforms algorithm OnDemand even when the maxi-
mum charging cycles are stable only in a short time slot
∆T (e.g., ∆T= one week), which indicates that algorithm
MinDis-var can quickly adapt to the changes of maximum
charging cycles.

8 CONCLUSIONS

In this paper, we studied the use of multiple mobile chargers
to charge sensors in a wireless sensor network so that none

Fig. 7. Performance of algorithms MinDis-var and OnDemand by vary-
ing ∆T from 1 week to 10 weeks when bmin = 1 kbps, bmax = 2 kbps,
and n = 500.

of the sensors runs out of energy for a given monitor-
ing period, for which we first formulated a novel service
cost minimization problem of finding a series of charging
schedulings of the mobile chargers tomaintain the perpetual
operations of sensors so that the total travelling distance
of the mobile chargers for the period is minimized. As
this optimization problem is NP-hard, we then devised an
approximation algorithm with a provable approximation
ratio if the maximum charging cycle of each sensor is fixed
in the given monitoring period. Otherwise, we developed
a novel heuristic solution through modifications to the ap-
proximate solution. We finally evaluated the performance
of the proposed algorithms through extensive experimental
simulations and experimental results showed that the pro-
posed algorithms are very promising.
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