
1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2877623, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX 2018 1

Task Offloading with Network Function
Requirements in a Mobile Edge-Cloud Network

Zichuan Xu, Member, IEEE, Weifa Liang, Senior Member, IEEE, Mike Jia, Meitian Huang, and Guoqiang
Mao, Fellow, IEEE

Abstract—Pushing the cloud frontier to the network edge close to mobile users has attracted tremendous interest not only from cloud
operators but also from network service providers. In particular, the deployment of cloudlets in metropolitan area networks enables
network service providers to provide low-latency services to mobile users through implementing their specified virtualized network
functions (VNFs) while meeting their Quality-of-Service (QoS) requirements. In this paper, we formulate a novel task offloading
problem in a mobile edge-cloud network, where each offloading task requests a specified network function with a tolerable delay. We
aim to maximize the number of requests admitted while minimizing the operational cost of admitted requests within a finite time
horizon, through either sharing existing VNF instances or creating new VNF instances in cloudlets. We first show that the problem is
NP-hard, and then devise an efficient online algorithm for the problem by reducing it to a series of minimum weight maximum matching
problems. Considering dynamic changes of task offloading request patterns over time, we further develop an effective prediction
mechanism for new VNF instance creations and idle VNF instance releases to further lower the operational cost of the network service
provider. Also, we devise an online algorithm with a competitive ratio for a special case of the problem where the delay requirements of
requests are negligible. We finally evaluate the performance of the proposed algorithms through experimental simulations.
Experimental results indicate that the proposed algorithms are promising.

Index Terms—Mobile edge-cloud networks; Task offloading; operational cost minimization; network function virtualization; throughput
maximization; online algorithms; resource allocations in cloudlets.

F

1 INTRODUCTION

MObile devices such as smart phones and tablets are
becoming the main communication tools. Meanwhile,

face recognition, natural language processing, interactive
gaming, and augmented reality are emerging as new mo-
bile applications. Such mobile applications request a large
amount of computing resource for performance enhance-
ment, thereby leading to high-level energy consumptions.
They also require various network function services in-
cluding firewalls, intrusion detection systems, and load
balancers, to guarantee correct and secure execution of
the applications. Most of such applications have stringent
Quality-of-Service (QoS) requirements (i.e., extremely low
service response delays). However, due to the portable size
of mobile devices, their computing, storage, and battery ca-
pacities are very limited, many computing- and/or storage-
intensive applications may not be suitable to run in mobile
devices, thereby restricting the capability of mobile devices.
One promising technique to leverage the capability of mo-
bile devices is to offload their tasks to nearby cloudlets in a
mobile edge-cloud network via WiFi or 5G for processing.

• Z. Xu is with the School of Software, Dalian University of Technology,
Dalian, 116020, China E-mail: z.xu@dlut.edu.cn

• W. Liang, M. Jia, and M. Huang are with the Research School of
Computer Science, The Australian National University, Canberra, ACT
0200, Australia E-mails: wliang@cs.anu.edu.au, u5515287@anu.edu.au,
and meitian.huang@anu.edu.au

• G. Mao is with the School of Computing and Communications, Uni-
versity of Technology Sydney, Sydney, NSW 2007, Australia E-mail:
Guoqiang.Mao@uts.edu.au

To meet ever-growing resource demands of offloading
tasks from mobile users with stringent QoS requirements,
network service providers usually instantiate some fre-
quently demanded VNF instances of network functions at
cloudlets in mobile edge-cloud networks. The instantiation
of VNF instances at the edge of a network can shorten the
access latency of network services and save time in creating
new VNF instances. Provisioning network services with dif-
ferent types of VNFs in a mobile edge-cloud network poses
many challenges. For example, how many VNF instances
are needed to be instantiated such that the computing re-
source of cloudlets is fully utilized while the cost and delay
of their instantiations are minimized? How should offloaded
tasks be assigned to different cloudlets while meeting their
QoS requirements and minimizing the admission cost by
utilizing existing VNF instances they requested? Finally, can
the demanded number of VNF instances at each cloudlet be
predicted? In this paper we will address the aforementioned
challenges.

To the best of our knowledge, this paper is the first one
to explore the sharing of existing VNF instances of network
functions in cloudlets for cost-efficient task offloading while
meeting QoS requirements of individual offloaded tasks. We
formulate a novel QoS-aware task offloading optimization
problem and developing efficient solutions to the problem.
Due to the nature of dynamic changes of offloading request
patterns over time, we develop an effective prediction mech-
anism to predict VNF instance demands at each cloudlet to
further reduce the operational cost of the service provider,
through dynamic creations and releases of VNF instances at
cloudlets in the network.

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2877623, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX 2018 2

The main contributions of this paper are as follows. We
first formulate a novel QoS-aware task offloading problem
in a mobile edge-cloud network that consists of a number
of cloudlets co-located with Access Points (APs). We aim to
maximize the number of admissions of offloading requests
within a finite time horizon while minimizing the admis-
sion cost of admitted requests, assuming that different task
offloading requests request different VNF services and have
different end-to-end delay requirements. We then devise an
efficient algorithm for admissions of a set of task offloading
requests through a non-trivial reduction that reduces the
problem to a series of minimum weight maximum matching
problems. We also develop an efficient online algorithm for
dynamic offloading request admissions, in addition to an
effective prediction mechanism to predict the demanded
number of VNF instances of each different network function
at each cloudlet. For a special case of the problem where
the end-to-end delay requirement is negligible, we devise
an online algorithm with a provable competitive ratio, by
adopting the primal-dual dynamic updating method [5]. We
finally evaluate the performance of the proposed algorithms
through experimental simulations, and results demonstrate
that the proposed algorithms are promising.

The remainder of the paper is arranged as follows.
Section 2 will survey the state-of-the-art on task offloading
in mobile edge computing environments, and distinguish
our work in this paper from previous studies. Section 3
will introduce the system model, notations and problem
definitions. Section 4 will develop a prediction mechanism,
and devise algorithms for the problem based on the built
prediction mechanism. Section 5 will develop an online al-
gorithm with a provable competitive ratio for a special case
of the problem. Section 6 will provide some experimental
results on the performance of the proposed algorithms, and
Section 7 concludes the paper.

2 RELATED WORK

As a key enabling technology of 5G, mobile edge-cloud net-
works have gained tremendous attention recently [15]. Also,
with the emergence of complicated and resource-hungry
mobile applications, offloading user tasks to cloudlets of a
nearby mobile edge-cloud network is becoming an impor-
tant approach to reduce the energy consumption of mobile
devices and improve mobile user QoSs.

Extensive studies on task offloading in mobile edge-
cloud networks have been conducted [1], [2], [3], [4], [9],
[11], [15], [19], [20], [23]. For example, Chen et al. [1] in-
vestigated the problem of task offloading for mobile edge
computing in a software-defined ultra-dense network with
the aim to minimize the total execution duration of all tasks.
However, they assumed that edge clouds are deployed
at each base station, and VNF placement is not consid-
ered. Chen et al. [2] investigated the problem of multi-user
computation offloading for mobile edge clouds in a multi-
channel wireless interference environment. They formulated
their problem as a multi-player game and designed a mech-
anism for the problem as a Nash equilibrium. However,
they did not consider the placement of virtualized network
functions. Zhang [24] treated data offloading as a coali-
tional game-based pricing scheme, formulated the problem

as coalitional non-transferable utility game, and conducted
theoretical and empirical analysis on their proposed so-
lution. Song et. al [18] investigated the task assignment
problem in a mobile edge network with node, link, and
security constraints, and proposed a heuristic for it. Jia et
al. [11] dealt with minimizing the maximum delay among
offloaded tasks in a distributed cloudlet network through
balancing the workload among cloudlets. Xu et al. [21], [22]
devised efficient approximation and online algorithms to
the assignment of offloading requests to cloudlets. Xia et
al. [19] considered opportunistic task offloading under link
bandwidth, mobile device energy, and cloudlet computing
capacity constraints.

None of the mentioned studies considered task offload-
ing with VNF service requirement. However, there are sev-
eral dedicated studies focussing on VNF placement in con-
ventional networks or mobile edge network [13], [16], [23].
For example, Kuo et al. [13] studied the problem of service
chain embedding in SDNs with both node and edge capacity
constraints. They proposed a primal-dual based solution
with bounded error, and a randomized approximation algo-
rithm with average performance guarantees. All the afore-
mentioned studies assumed that each offloaded task will be
assigned an amount of dedicated computing resource. No
consideration has ever been given for existing VM or VNF
instance sharing in cloudlets, not to mention there is any
prediction mechanism to predict future demands on VNF
instances of different network functions by their creations
and releases to further reduce the service costs and delays.
With imminent 5G technology, provisioning extremely low-
latency services has emerged as a new trend, and existing
studies ignore the latency in either wireless access networks
(from mobile devices to APs) or mobile edge networks
(between APs and the core network). It must be mentioned
that the work in this paper is an extension of the work from
our conference paper [10].

3 PRELIMINARIES

In this section, we first introduce the system model and
notations, and then define the problems precisely.

3.1 System model

Given a mobile edge-cloud network G = (V ∪ C,E) where
V is the set of AP nodes, C is a set of cloudlets co-located
with some AP nodes, and E is the set of links between
AP nodes. Since cloudlets are usually co-located with APs
in coffee shops, base stations, libraries, school buildings,
airports, or shopping malls in metropolitan areas within the
proximity of mobile users, only a limited number of servers
can be installed within each cloudlet, due to the space
or cooling limitation of the locations. Thus, each cloudlet
clj ∈ C is assumed to have computing capacity capj with
1 ≤ j ≤ |C|, where |C| is the cardinality of set C. Assuming
that time is divided into equal time slots, the amounts of
available computing and storage resources in each cloudlet
at each time slot vary, due to admissions and departures
of offloading task requests. Let capj(t) be the amount of
available computing resource of cloudlet clj at time slot t
with 1 ≤ t ≤ T and 1 ≤ j ≤ |C|, where T is the monitoring

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2877623, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX 2018 3

period in terms of numbers of time slots. Figure 1 is an
example of a mobile edge-cloud network.

Fig. 1: An example of a mobile edge-cloud network

3.2 Task offloading and VNF instances
With the development of mobile technology, mobile ap-
plications are becoming more and more complicated, by
consuming not only energy, computing and storage resource
but also requesting advanced network services that are
represented as various VNFs. Offloading tasks from mobile
devices can save both energy and computing resources
of mobile devices while meeting increasing demands on
advanced network services of the requests. To this end,
computing resource in each cloudlet is used to instantiate
a certain number of VNFs running in VMs, referred to as
VNF instances. We thus assume that there is a set F of VNFs
in the mobile edge-cloud network G. Denote by fi a type-i
of VNF in F with 1 ≤ i ≤ |F|.

An implementation of a type-i network function fi in a
VM in a cloudlet clj is termed as an instance of fi ∈ F .
Without loss of generality, we assume that the amount of
computing resource in clj allocated to a VNF instance of fi
is to guarantee its maximal packet processing rate µij in clj .
Denote by RCunit the amount of resource that is needed
to process a unit packet rate, and the amount of resources
needed by an instance of fi is µij · RCunit. There may
and may not have multiple VNF instances of each fi ∈ F
in a cloudlet. We further assume that each cloudlet has
instantiated some VNF instances of each fi already. Denote
by nij(t) the number of existing VNF instances of network
function fi in cloudlet clj at time slot t. Each VNF instance
can process one or multiple user requests that specify this
type of VNF and the aggregate packet rate in the VNF
instance is no more than its maximum processing rate µij .

Each mobile device can offload its task to some instances
of VNF fi it requested via a nearby AP. Let S(t) be the set of
offloading task requests at time slot t. Each user task request
rk ∈ S(t) is represented by a tuple (vk, Fk, λk, τk, dk),
where vk is of the user’s closest AP vk ∈ V , Fk is the
network function that rk requests, λk is the packet rate of
request rk, τk is the duration of request rk, and dk is the end-
to-end delay requirement of the request. Note that the value
of λk can be derived from historical information of similar
types of user requests. We thus assume that the packet rate
of each request is given as a priori.

3.3 End-to-end delays of offloading requests

The end-to-end delay experienced by each admitted request
rk includes the upload delay of uploading the packet traffic
of a mobile user to its nearby AP, the queuing delay in
the cloudlet clj for the processing of the packet traffic on
the requested VNF instance, the packet processing delay in
the VNF instance, the instantiation delay of creating a VNF
instance if needed, the network latency between the AP and
a cloudlet clj , and the result return delay from the AP to the
user. For the sake of convenience, we assume that the packet
upload delay and the result return delay are equal. These
delays are defined as follows.

Upload delay: Packets of request rk are uploaded to its
nearby AP of its mobile user. Assuming that λk is the packet
rate of rk and the bandwidth of the AP is Bk, the achieved
data rate Wk (bits per second) via the wireless channel of
the AP for rk is

Wk = Bk log2

(
1 +

pk · hk
σ2 + Ik

)
, (1)

where σ2 is the noise power of mobile devices and Ik is
the inter-cell interference power [1], hk is the channel gain
between the user of request rk and the AP, and pk is the
transmission power of the user with request rk.

Let sp be a packet size in bits. The upload delay of rk is

d(k, λk) = λk · sp/Wk. (2)

Notice that when sp · Wk < λk, the packet rate of
request rk can be decreased due to the incurred delay of
transmitting packets. Such decreased packet rates may affect
the arrival rates of the queues in each cloudlet and their
queuing delays. For the sake of simplicity, we assume that
there is a buffer at each AP and a buffering mechanism
is available to allow the decreased packet rate to reach its
original rate. Notice that the impact of the queue in each
AP on the arrival packet rate of the queue in each cloudlet
depends on many factors such as the buffer size at each AP
and the adopted dispatch methods. This is out the scope of
this paper, we thus consider it as our future work.

Queuing delay and processing delay: Each packet of rk
with packet rate λk will be queued in the cloudlet assigned
to the request for a VNF instance of network function Fk
prior to its processing by the instance, which will incur both
queuing delay in the cloudlet and the processing delay in
the VNF instance. Since different requests need different
types of network functions, we assume that there is an
M/M/n queue at each cloudlet for each type of network
function fi ∈ F . The requests in each queue will be pro-
cessed by its type of VNF instances. The average queuing
delay dqueueij of the M/M/n queue for network function fi
at cloudlet clj is

dqueueij (Λij) = 1/(nij(t) · µij − Λij), (3)

where Λij is the sum of packet rates of all requests that
request the VNF instances of fi in cloudlet clj , i.e.,

Λij =
∑

rj′∈Rij
λj′ + λk, (4)

The processing delay pij of a packet in a VNF instance

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2877623, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX 2018 4

of fi of cloudlet clj is

pij = 1/µij . (5)

Instantiation delay: Without loss of generality, we as-
sume that the instantiation delay of a VNF instance in a
cloudlet is a given constant dinsi for a VNF instance of fi.

Network latency: Assuming that the routing path for
the data traffic in G between the user of a request and the
cloudlet for processing the user’s data traffic is a shortest
path between them, the network latency of a request rk
thus is the accumulative delay incurred in the links of
the shortest path pvk,clj between its closest AP vk and its
assigned cloudlet clj . As AP nodes in G are connected by
high-speed optical cables, there is sufficient bandwidth with
each such a link for data traffic, the queuing delay in each
link thus is negligible. Let d(e) be the delay on link e in G.
The network latency dnetkj experienced by routing data traffic
of rk using a shortest path pvk,clj can be defined as

dnetkj =
∑

e∈pvk,clj
d(e). (6)

The end-to-end delay Dk experienced by implementing
request rk in a VNF instance of Fk (= fi) at cloudlet clj
also depends on whether the VNF instance is existent or
newly created. If the VNF instance is existent, there will
be no instantiation delay for the VNF instance. Otherwise, a
new VNF instance needs to be instantiated, and there will be
no queuing delay in cloudlet clj incurred since the request
implementation is the very first one on it.

Having the equations Eq. (1) to Eq. (6), the value of Dk

is

Dk =

{
2d(k, λk) + dqueueij (Λij) + pij + 2dnetkj if nij(t) > 0,
2d(k, λk) + dinsi + pij + 2dnetkj otherwise,

(7)

where Fk = fi. Request rk is admissible if there is an
admission schedule in which Dk is no greater than dk, i.e.,

Dk ≤ dk. (8)

3.4 Admission cost
Implementing each request needs to guarantee that its traffic
is processed by VNFs and transferred to its destination,
which consumes both computing resource in cloudlets and
network bandwidth resource in links of the edge-cloud
network G, thereby incurring the cost of resource consump-
tions. We refer to this cost as the admission cost of each
request in the rest of the paper.

Given a request rk ∈ S(t) with a specified network
function Fk (= fi), its implementation can either make use
of an existing VNF instance of Fk (= fi) in cloudlet clj
if it joins in other admitted requests or create a new VNF
instance. Specifically, let Rij be the set of offloaded requests
with network function fi in cloudlet clj when rk is being
considered for admission. If the admission of rk to Rij will
not violate the delay constraint of any admitted request in
Rij∪{rk}, the cost by admitting rk in cloudlet clj then is the
cost sum of its data packet transmission cost (between its lo-
cation via its nearby AP) and cloudlet clj and its processing
cost at clj . Otherwise, we allocate the demanded resources
for rk by creating more VNF instances for Fk (= fi) in clj if

there are available computing resources in cloudlet clj . Since
VNF instance creation takes time and consumes a certain
amount of computing resource, we assume that the creation
of new instances incurs a cost, and different VNF instance
creations result in different costs.

The admission cost cost(k) per packet of the data traffic
of rk thus is the sum of the packet routing cost, the creation
of new instances for rk, and the processing cost in a VNF
instance of fi (= Fk) assuming that the VNF instance is
deployed in cloudlet clj , i.e.,

cost(k) =

cinsi + λkτk(C(fi, clj) +

∑
e ∈ Pvk,cljc(e))

if a type-i VNF instance is created for rk
λkτk(C(fi, clj) +

∑
e ∈ Pvk,cljc(e)) otherwise,

(9)

where Pvk,clj is the shortest path between the request user
location vk and cloudlet clj to process the request VNF, c(e)
is the cost of transmitting a packet via edge e, C(fi, clj) is
the processing cost of a packet in an instance of fi in clj ,
and cinsi is the cost of instantiating a type-i VNF instance.

3.5 Problem definition
Given a mobile edge-cloud network G(V ∪ C,E), a set F
of network functions provided by the network, a finite time
horizon T , a set of task offloading requests S(t) at a time
slot t in which each request rk has a packet rate λk and
an end-to-end delay requirement dk, assuming that some
VNF instances of a network function f ∈ F have been
instantiated in cloudlets of C, the throughput maximization
problem in G is to find a schedule of request admissions
during time horizon T such that as many as requests are
admitted while the accumulative operational (admission)
cost of the admitted requests is minimized, subject to the
computing resource capacity on each cloudlet in C.

In other words, let R(t) and S(t) be the sets of admitted
requests by an algorithm and all arrived requests at time
slot t, respectively. Clearly, R(t) ⊆ S(t) with 1 ≤ t ≤
T , the throughput maximization problem is to maximize∑T
t=1 |R(t)| while minimizing

∑T
t=1

∑
rk∈R(t) cost(k), sub-

ject to computing resource capacity on each cloudlet.
Theorem 1. The throughput maximization problem inG(V ∪

C,E) is NP-hard.

Proof: We consider a special case of the problem
where there are only two cloudlets with identical computa-
tional capacities in the network and the monitoring period
is only one time slot t. We assume that each request in
S(t) requests a different network function service without
the end-to-end delay requirement. Our task is to assign
the requests in S(t) to the two cloudlets to see whether
all the requests can be admitted. Clearly, for each request
rk ∈ S(t), we need to create a VNF instance to implement its
network function that demands c(Fk) computing resources,
subject to the computing capacities on the two cloudlets. We
reduce the summation problem to this special throughput
maximization problem as follows.

Given n positive integers a1, a2, . . . , an, the summation
problem is to partition the n integers into two subsets such
that the sum of integers in each subset is equal, which is NP-
hard. As the special case of the minimum operational cost

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2877623, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX 2018 5

problem is equivalent to the summation problem if we only
consider the computing resource demands of the requests
while ignoring the other costs, the throughput maximization
problem thus is NP-hard, too.

4 ONLINE ALGORITHM FOR THE THROUGHPUT
MAXIMIZATION PROBLEM

In this section, we first consider request admissions in the
beginning of each time slot t. We then propose an efficient
online algorithm for the throughput maximization problem.

4.1 Algorithm for task offloading at time slot t

Given a set of requests S(t) in the beginning of each time
slot t, we aim to admit as many as requests in S(t) while
minimizing the accumulative operational cost and meeting
their end-to-end delay requirements. The basic idea behind
the proposed algorithm is to reduce the throughput max-
imization problem in G to a series of minimum weight
maximum matching problems on a set of auxiliary bipartite
graphs. The matched edges in the maximum matching in
an auxiliary bipartite graph correspond to an assignment of
task offloading requests to different cloudlets while meeting
the end-to-end delay requirement of each admitted request.
The detailed reduction is as follows.

For each cloudlet clj , we construct a bipartite graph
Gj(t) = (Xj ∪ {x0,j} ∪ Yj , Ej ;w). The nodes in Gj(t)
is partitioned into two disjoint sets. The first one is Yj
representing the set of requests that need to be assigned
to existing or new instances of cloudlets. The second one
is Xj ∪ {x0,j | 1 ≤ j ≤ |C|}, where Xj is the set of VNF
instances in cloudlet clj with each VNF instance being repre-
sented by xij and node x0,j represents available computing
resource for creating new instances for any VNF in clj .

The edges between nodes in Yj and the ones in Xj ∪
{x0,j | 1 ≤ j ≤ |C|} in Ej can be constructed as follows.

Let Rij be the admitted requests that are using the VNF
instance xij . There is an edge (rk, xij) ∈ Ej between request
node rk ∈ Yj and node xij ∈ Xj if the following conditions
are met: (i) fi is the VNF of request rk; and (ii) the addition
of rk into the set Rij of admitted requests sharing xij does
not violate the delay constraints of other admitted requests
in Rij . Notice that the addition of rk into Rij can impact the
queuing delay of the executing requests in Rij . To check its
addition does not violate any delay requirements, we only
need to recalculate the queuing delay by Eq. (3), assuming
that rk is admitted to Rij . If neither of the two conditions
is met, a new VNF instance for request rk will be created in
clj if cloudlet clj has sufficient computing resource. Then,
an edge between rk and x0,j is added to Ej if its demanded
computing resource is no greater than capj(t) and the end-
to-end delay (including the instantiation delay) is no greater
than dk. The weight wkj assigned to each edge (rk, xij) ∈
Ej is the admission cost of request rk in cloudlet clj for the
duration τk, as defined in Eq. (9).

An auxiliary bipartite graph G(t) =
⋃|C|
j=1Gj(t) =

(X(t) ∪ Y (t), E(t);w) is then derived from Gj(t) with
1 ≤ j ≤ |C|, where X(t) = ∪|C|j=1(Xj ∪ {x0,j}), Y (t) =

∪|C|j=1Yj = {r1, r2, . . . , rn}, and E(t) = ∪|C|j=1Ej .

To admit requests in S(t) in the beginning of time slot
t, the proposed algorithm proceeds iteratively. Let G1(t) =
G(t). Within iteration l, 1 ≤ l ≤ |C|, a minimum weight
maximum matching Mt,l in Gl(t) is found. The demanded
resources of the matched requests in Mt,l are allocated, and
these requests are then removed from S(t). The available
VNF instances and resources at each cloudlet are updated
accordingly, and the next auxiliary bipartite graph Gl+1(t)
is constructed. This procedure continues until there does not
have any matching in Gl+1(t) or l = |C|+ 1.

The union of all found minimum weight maximum
matchings ∪|C|l=1Mt,l forms a solution to the problem, i.e.,
each matched edge corresponds to an admission of a request
in S(t). The weighted sum

∑L
l=1 c(Mt,l) of all edges in

∪Ll=1Mt,l is the accumulative admission cost of admitted
requests in S(t), where L is the number of iterations which
depends on the requests in S(t) and L ≤ |C|. Alternatively,
L ≤ max1≤l≤L{deg(Gl(t))} which deg(Gl(t)) is the maxi-
mum degree of nodes in auxiliary graph Gl(t). The detailed
algorithm is given in Algorithm 1, which is referred to as
OL_STS in the rest of this paper.
Algorithm 1 OL STS(G(t))

Input: G(t), |C| cloudlets with each having its available
resource capacity capj(t), the number of instances nij
of VNFs of each fi ∈ F in cloudlet clj , and a set of
requests S(t) at each time slot t with 1 ≤ j ≤ |C|.

Output: maximize the number of requests admitted (i.e., a
subset S′(t) ⊆ S(t)) for each time slot t while minimiz-
ing the total admission cost.

1: Mt ← ∅; cost(t) ← 0; /* the assignment of requests in
S(t) while minimizing their implementation cost cost(t)
*/

2: Construct the weighted bipartite graph G(t);
3: G1(t)← G(t); l← 1;
4: while there is a maximum matching Mt,l in Gl(t) do
5: Find the minimum weight maximum matching Mt,l

in Gl(t);
6: if Mt,l 6= ∅ then
7: Mt ← Mt ∪ Mt,l, c(Mt,l) ←

∑
e∈Mt,l

w(e),
cost(t)← cost(t) + c(Mt,l);

8: Allocate resources to the matched requests in Mt,l;
9: Update the amounts of available resources and VNF

instances of each network function in each cloudlet;
10: S(t) ← S(t) \ r(Mt,l); /* Remove requests in Mt,l

from S(t), where r(Mt,l) is the set of matched
requests in Mt,l */

11: l← l + 1;
12: Construct Gl(t);
13: return Mt corresponds to the assignment of requests in

S(t), while cost(t) is their admission cost.

4.2 Online algorithm
So far we considered the admissions of task offloading
requests at a single time slot t. In reality, request arrives
and departs dynamically without the knowledge of future
request arrivals. The request admissions at the current time
slot impact the admissions of future requests due to resource
occupations by them. In the following we deal with dynamic
request admissions for a given time horizon T . We note that

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2877623, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX 2018 6

the VNF instances created for previous request admissions
are still in the system despite that the admitted requests
finished. These existing VNF instances will become idle if
they are utilized by later requests, and their maintenance
will be overwhelming. Meanwhile, newly arrived requests
that demand other types of VNF instances cannot be met
due to lack of sufficient resources. We here propose an
effective prediction mechanism to determine various VNF
instance creations and releases for cost savings.

To respond to changing request patterns over time, the
system will perform resource collection through releasing
the occupied resources by idle VNF instances back to the
system if the maintenance overhead on the idle VNFs is
beyond a given cost threshold after a certain number of time
slots. Specifically, let nij(t) be the number of VNF instances
of network function fi in cloudlet clj at time slot t and the
actual usage number of the VNF instances of fi be n′ij(t)
(≤ nij(t)), the number of idle VNF instances of fi in cloudlet
clj at time slot t then become

ψij(t) = nij(t)− n′ij(t). (10)

Let φij be a fixed cost for the maintenance of an idle
VNF instance of fi in cloudlet clj per time slot. There
is a given threshold θ (≥ n0 · maxfi∈F{C(fi)}) for the
overhead of maintaining idle VNF instances in cloudlets.
The system will release the resources occupied by the idle
VNF instances at the time slot when their accumulative
maintenance overhead is greater than θ. Clearly, at least
n′ij VNF instances of fi should be kept in order to meet
the end-to-end delay requirements of running requests in
Rij(t), where n′ij(t) can be calculated according to the delay
requirements of requests in Rij(t) and Eq. (3).

To determine which idle VNF instances should be re-
leased to the system, we make use of historic offloading
request traces (patterns) at each cloudlet to predict the
number of VNF instances of each network function needed
in the cloudlet in future. Specifically, we adopt an auto-
regression method to predict the number of VNF instances
n̂ij(t) of fi in cloudlet clj at the next time slot, using the
information of the previous p time slots, assuming that the
value of p is given.

n̂ij(t) = a1 · nij(t− 1) + a2 · nij(t− 2) + . . .

+ ap · nij(t− p), (11)

where ap′ is a constant with 0 ≤ ap′ ≤ 1,
∑p
l=1 al = 1, and

ap1 ≥ ap2 if p1 < p2. Thus, the number nij(t) of instances
of fi in clj that should be kept after time slot t− 1 is

nij(t) = max{n̂ij(t), n′ij(t)}. (12)

Similarly, if the number of VNF instances of a network
function fi is growing steadily at each time slot, more
computing resources are needed to create its VNF instances,
this will incur an extra cost since the instances are created
one by one. To reduce the creation cost, we may proactively
create the expected number of its VNF instances at once to
meet its future need. This can be achieved, using the similar
auto-regression method. That is, let mij(t) be the number of
new VNF instances of fi in cloudlet clj added at time slot t.
If the number of instances added since the last time slot t0
exceeds a given threshold ξ, i.e.,

∑t
l=t0

mij(l) ≥ ξ, then the

predicted number of new instances m̂ij of fi at time slot t is

m̂ij(t) = b1 ·mij(t− 1) + b2 ·mij(t− 2) + . . .

+ bp ·mij(t− p), (13)

where bp′ is a constant with 0 ≤ bp′ ≤ 1,
∑p
l=1 bl = 1, and

bp1 ≥ bp2 if p1 < p2. The number of instances of fi after
time slot t− 1 installed in clj should be m̂ij(t) + nij(t).

In all discussions so far, we assumed that there are suffi-
cient resources at each cloudlet to create the expected num-
ber of VNF instances for each network function. However,
if there are insufficient available resources at each cloudlet
to meet the resource demands of different types of VNF
instances, then questions arise as to which VNF instances
should be created and how many of them to create? To fairly
allocate the limited computing resources to VNF instance
creations of different types of network functions, we adopt
a strategy by proportionally scaling down the demanded
number of VNF instances of each network function at each
cloudlet as follows.

Let RCj and DJj be the residual computing resource
and the total computing resource demanded by different
types of VNF instance creations in cloudlet clj , respectively.
IfDIj ≤ RCj , then all demanded VNF instances of different
network functions will be created; otherwise, let χj =

RCj
DIj

be the ratio of available resource to the demanded resource
in clj at time slot t. For each expected number of VNF
instances of fi, e.g., the total computing resource for creating
mij(t) VNF instances for fi is mij(t)C(fi), we actually
create m′ij(t) = bmij(t) · χjc VNF instances for fi at clj .

The proposed online algorithm for the throughput max-
imization problem is given in Algorithm 2, which is re-
ferred to as algorithm OL_MTS.

4.3 Algorithm complexity analysis
We first show that the solutions delivered by the proposed
algorithms, Algorithm 1 and Algorithm 2, are feasible.
We then analyze the time complexity of the proposed algo-
rithms as follows.
Theorem 2. Given a mobile edge-cloud networkG(V ∪C,E),

the number nij(t) of VNF instances of each network
function fi ∈ F in each cloudlet clj with 1 ≤ i ≤ |F| and
1 ≤ j ≤ m, and a set S(t) of requests at time slot t, there
is an algorithm, Algorithm 1, for admitting the requests
in S(t) such that as many as requests are admitted while
the operational cost is minimized. The proposed algo-
rithm delivers a feasible solution. The time complexity
of the algorithm is O(dmax(|C| · |F| + |S(t)|)3), where
dmax is the maximum degree of nodes in G(t), or the
maximum number of cloudlets that any request can be
assigned. Usually, the number of cloudlets in a mobile
edge-cloud network is expected to be proportional to the
logarithmic of the network size.

Proof: We first show that the solution delivered by
Algorithm 1 is feasible, i.e., for each admitted request, (i)
its demanded resources and its end-to-end delay require-
ment are met; and (ii) there is no resource capacity violation
in each cloudlet, as follows.

Following Algorithm 1, in the beginning of time slot
0, there are no requests in the system, the claim is true.

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2877623, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX 2018 7

Algorithm 2 OL MTS(G)

Input: G(C ∪ V,E), |C| cloudlets with resource capacity
capj(t), a set of network functions in F , a set of requests
S(t) at each time slot t with 1 ≤ t ≤ T , each idle VNF
instance of fi has a maintenance cost φij , and the given
release and creation cost thresholds θ and ξ.

Output: The number of requests admitted in the finite time
horizon T .

1: cost← 0; M ← ∅; /* the total cost of admitted requests
to the system during a period T , and request assignment
M */;

2: for all t with 1 ≤ t ≤ T do
3: /* Stage one (a): Release some occupied resources by

idle VNF instances if needed */
4: lij ← t0; /* The resource release procedure was

performed at the last time slot t0 with t0 < t */
5: for each cloudlet clj do
6: for each network function fi ∈ F do
7: if

∑t
l=t−lij ψij(l) · φij ≥ θ then

8: Predict the number n̂ij(t) of instances of fi to
be kept in clj by Eq. (11);

9: Keep max{n′ij(t), n̂ij(t)} VNF instances of fi
in clj ;

10: Release the occupied resources of nij(t) −
max{n′ij(t), n̂ij(t)} VNF instances of fi in clj ;

11: Update the available resources at clj ;
12: lij ← t; /* reset the start time slot of the next

idle VNF instances of fi release in clj */
13: /* Stage one (b): increase the number of VNF in-

stances of fi */;
14: Iij ← t0; /* the number of instances of fi was

increased in the last time slot t0 with t0 < t */
15: for each cloudlet clj do
16: for each fi ∈ F do
17: if

∑t
l=t−Iij mij(l) · φij ≥ ξ then

18: Predict the number of instances of fi to be
increased âij by Eq. (13);

19: for each cloudlet clj do
20: Let RCj be the residual computing resource of

cloudlet clj , and DIj be the total computing re-
source needed by creating new instances;

21: if RCj < DIj then
22: χj ← RCj

DIj
;

23: For each network function fi, there will be bχj ·
(nij(t)+m̂ij(t))c VNF instances in clj at time slot
t;

24: else
25: There will be nij(t) + m̂ij(t) VNF instances of fi

in clj at time slot t;
26: Update the available resources at cloudlet clj ;
27: Iij ← t; /* reset the start time slot of the next VNF

instance increase of fi in clj*/
28: /* Stage two: perform request admissions*/
29: M ← ∅; cost← 0;
30: for each t with 1 ≤ t ≤ T do
31: Mt and cost(t) delivered by invoking algorithm

OL_STS(G(t));
32: M ←M ∪Mt; cost← cost+ cost(t);
33: return M is an assignment of requests, while cost is the

total admission cost to the system during a period T .

We assume that all admitted requests in the first t − 1 time
slots meet conditions (i) and (ii). We now consider request
admissions at time slot t. According to Algorithm 1, the
request admissions at time slot t has a number of iterations.

Within iteration l with 1 ≤ l ≤ L ≤ |C|, all matched
requests in Mt,l of graph Gl(t) will be admitted. Following
the construction of Gl(t), each admitted request in Mt,l will
meet conditions (i) and (ii); otherwise, no such an edge
exists in Gl(t). While all existing (running) requests sharing
the VNF instances with a matched request in Mt,l will still
meet their individual delay requirements when the matched
request is admitted. Then, the resources in each cloudlet
are updated after allocating the demanded resources for the
matched requests in Mt,l. The solution ∪Ll=1Ml thus is a
feasible solution to the problem, where L is the number of
iterations of the while loop in the algorithm.

We then analyze the time complexity of Algorithm 1. It
can be seen that the construction ofG(t) takesO(|X(t)|·|C|·
|Y (t)|) = O(|F| · |C| · |S(t)|), while the dominant time of the
algorithm is to find a minimum weight maximum matching
inGl(t) per iteration which takesO((|C|·|F|+|S(t)|)3) time.
The number of iterations within each time slot is O(dmax),
where dmax is the maximum degree of nodes in G(t), i.e.,
the number of possible cloudlets that any request can be
admitted while meeting its end-to-end delay requirement,
thus dmax ≤ |C|.
Theorem 3. Given a mobile edge-cloud network G(V ∪C,E)

in which cloudlets are co-located with some of the AP
nodes, the number nij(t) of existing VNF instances of
each network function fi ∈ F in each cloudlet clj with
1 ≤ i ≤ |F| and 1 ≤ j ≤ |C|, a set of requests S(t) at
each time slot t, and a given monitoring period T with
1 ≤ t ≤ T , there is an online algorithm, Algorithm 2,
for the throughput maximization problem, which de-
livers a feasible solution. The time complexity of the
algorithm isO(T ·dmax(|C|·|F|)3+

∑T
t=1 |S(t)|3)), where

dmax is the maximum degree of nodes in G(t), or the
maximum number of cloudlets to which a request can
be assigned.

Proof: Following Algorithm 2, there are T time
slots with each invoking Algorithm 1, it thus takes
O(T ·dmax(|C| · |F|)3 +

∑T
t=1 |S(t)|3) time. And the solution

delivered is feasible, as within each time slot, all newly
admitted requests and existing running requests at that
time slot meet conditions (i) and (ii), by Theorem 2. The
rest is to analyze the time complexity on VNF instance
releases and creations at each cloudlet. It can be seen that
idle VNF instance releases take O(|C| · |F|) time as there
are |C| cloudlets and each cloudlet can accommodate the
VNF instances of |F| different network functions. The time
complexity of Algorithm 2 then follows.

5 ONLINE ALGORITHM FOR THE THROUGHPUT
MAXIMIZATION PROBLEM WITHOUT END-TO-END
DELAY REQUIREMENTS

We now consider the throughput maximization problem
without end-to-end delay requirements, by assuming that
requests arrive in the system one by one without the knowl-
edge of their future arrivals. We propose an online algorithm
with a competitive ratio.

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2877623, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX 2018 8

5.1 Primal-dual formulation

The basic idea of the proposed algorithm is to adopt
the primal-dual dynamic updating method [5], [6], where
shadow price variables for cloudlets in G are maintained
to abstract the statuses of resource usages in cloudlets. A
threshold is defined to decide whether a request can be
admitted or not, by comparing the lowest shadow price
with the given threshold. The shadow prices are updated
accordingly if the request is admitted, for the sake of future
request admissions. To this end, we formulate this special
problem by an Integer Linear Programming (ILP) as follows.

Let S be the sequence of requests that arrive in the
system one by one. For each arrived request rk ∈ S, there
is a decision variable xkj to indicate whether request rk
is assigned to cloudlet clj if it is admitted. Recall that
each cloudlet may have VNF instances instantiated already,
or have available computing resource to create new VNF
instances. For the sake of simplicity, we assume that each
cloudlet clj has a duplicated virtual cloudlet, denoted by c′j ,
which represents the amount of computing resource in clj
that can be used to create new VNF instances. Denote by
C ′ the set of virtual cloudlets C ′ = {cl′j | ∀clj ∈ C}. The
objective of the ILP thus is

LP : max
∑|S|

k=1

∑|C∪C′|

j=1
xkj . (14)

subject to the following constraints.∑|C∪C′|

j=1
xkj ≤ 1, 1 ≤ k ≤ |S| (15)∑|S|

k=1
xkj · λk ≤ nij · µij , ∀clj ∈ C, ∀1 ≤ i ≤ |F| (16)∑|S|

k=1
xkj · λk ·RCunit ≤ capj , ∀clj ∈ C ′ (17)∑|S|

k=1

∑|C′|

j=1
xkjc

ins
i +

∑|S|

k=1

∑|C|

j=1
xkjλk · τk · (C(fi, clj)

+
∑

e∈Pvk,clj
ce) ≤ B (18)

xkj ∈ {0, 1} ∀clj ∈ C ∪ C ′, rk ∈ S, (19)

where B is a pre-defined budget for the cost of imple-
menting all admitted requests, which is a constant. Con-
straints (15) guarantee that each request is assigned to at
most one VNF instance (either an existing or newly cre-
ated one). Constraints (16) indicate that the accumulative
packet rate of the requests assigned to an existing VNF
instance does not exceed its maximum packet (processing)
rate, whereas Constraints (17) indicate that the amount of
computing resource allocated to the creation of new VNF
instances for admitted requests at each cloudlet should
not exceed the amount of available computing resource
of the cloudlet. Constraints (18) indicate the total cost of
implementing all requests in S is no greater than a given
budget B. In the proposed online algorithm, budget B can
be set to a large value initially, and then easily tuned an
appropriate value through binary search. Also, B is used
in finding the dual of LP for online algorithm design. It
determines the number of update steps of the shadow price
variable related to the cost and represents the accuracy in
the update of the shadow price. Thus, budget B affects the
competitive ratio of the proposed online algorithm. This will
be elaborated later in this section. Constraints (19) impose

the integral constraint on each variable xkj .
Let βk, γij , δj and η be the dual variables of constraints

(15), (16), (17), and (18), respectively. The dual DP of LP is
given below, and its objective is to

DP : min η·B+

|S|∑
k=1

βk+

|C|∑
j=1

|F|∑
i=1

γij ·nij ·µij+
|2C|∑

j=|C|+1

δj ·capj ,

(20)
subject to the following constraint.

|C∪C′|∑
j=1

βk +

|C|∑
j=1

|F|∑
i=1

γij · λk +

2|C|∑
j=|C|+1

δj · λk ·RCunit

+

|C′|∑
j=1

η · cinsi +

|C|∑
j=1

η · λk · τk ·A ≥ 1,

(21)

where A = C(fi, clj) +
∑
e∈Pvk,clj

ce.
The dual constraint (21) can be rewritten as

|C∪C′|∑
j=1

βk ≥ 1−
|C|∑
j=1

|F|∑
i=1

γij · λk −
2|C|∑

j=|C|+1

δj · λk ·RCunit−

|C′|∑
j=1

η · cinsi −
|C|∑
j=1

η · λk · τk ·A.

(22)
Notice that RCunit is the amount of resource that is needed
to process a unit packet rate, and µij is the packet processing
rate of a VNF instance of fi.

5.2 Online algorithm

We now describe the proposed online algorithm. Since the
knowledge of future request arrivals is not given in ad-
vance, we need a smart admission policy to regulate the
admission of the request being considered to minimize its
impact on future request admissions. To this end, we define
the shadow price Pj of each cloudlet clj , the maximum
resource usage I∗ of any request, and a constant ∆ to guide
resource reservation for future requests, where Pj denotes
the marginal increase of strengthening the capacity and
budget constraints (16), (17), and (18), i.e.,

Pj = γij + δj ·RCunit +
η · cinsi
λk

+ η · τk ·A. (23)

The maximum resource consumption I∗ over all cloudlets
for any request with unit packet rate is

I∗ = max{RCunit, cinsi + τk ·A}. (24)

A constant ∆ with an accuracy parameter ε to adjust re-
source reservation for a request then is

∆ = I∗/ε, (25)

where 0 < ε < 1.
We then define the admission control policy of the online

algorithm. For each arrived request rk ∈ S, we iden-
tify a cloudlet with the minimum shadow price Pj∗ , i.e.,
clj∗ = arg minclj∈C∪C′ Pj for the admission of request rk.
Request rk will be accepted if Pj∗ ≤ 1, or rejected otherwise.
If it is admitted at cloudlet clj∗ , then all dual variables of

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2877623, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX 2018 9

Algorithm 3 OL OBO (G(t), S(t)).

Input: A mobile edge-cloud network G(V ∪C, E) and a set
F of network functions provided by the network, a set
S of requests that arrive one by one.

Output: Admit or reject each arrived request immediately,
and an assignment of admitted requests to VNF in-
stances in the cloudlets of C.

1: while an arrived request rk do
2: clj∗ ← arg minclj∈C Pj ;
3: if Pj∗ ≥ 1 then
4: Reject request rk;
5: else
6: Assign request rk to a VNF instance of type-i in-

stances at cloudlet clj∗ ;
7: Update dual variables βk, γij , δj , and η respectively,

following rules in (26), (27), (28), and (29).

the constraints of DP will be updated, using the following
updating rules:

βk ← (1− Pj∗), (26)

γij∗ ← γij∗
(

1 +
λk

nij∗µij

)
+

λk
∆nij∗µij

, (27)

δj∗ ← δj∗
(

1 +
λk ·RCunit

capj∗

)
+

λk
∆ · capj∗

, (28)

and

η ← η
(

1 +
cins + λk · τk ·A

B

)
+
cins + λk · τk ·A

∆ ·B
. (29)

The detailed online algorithm, referred to as algorithm
OL_OBO, is described in Algorithm 3.

5.3 Algorithm analysis

The rest is to analyze the competitive ratio of Algorithm 3.
We first analyze the dual feasibility in the following lemma.

Lemma 1. The dual feasibility of the dual variables is pre-
served, following the updating rules of (26), (27), (28),
and (29).

Proof: We show that all dual variables βk, γij , δj , and
η are nonnegative, and the dual constraint (22) is met. For
the dual variables, the four updating rules always keep
them nonnegative, as they are set at zeros initially, and
their values increase after each update. To show that con-
straint (22) is met, we consider whether an arrived request
rk will be admitted or rejected. If it is rejected, the admission
control policy is not met, i.e., Pj∗ > 1, which means that
the right hand side of (22) is non-positive. Since βk is set
to 0 initially. Constraint (22) is met. Otherwise (request rk
is admitted), updating the dual variables makes the right
hand side of constraint (22) become smaller, preserving the
feasibility of the constraint.

We then show an upper bound on the dual objective after
the admission of rk.

Lemma 2. If request rk is admitted, the objective value of
the dual program increases by no more than λk · (1 + ε).

Proof: Whenever request rk is admitted, the dual
variables corresponding to cloudlet clj in which it is ad-
mitted will be updated by rules (26), (27), (28), and (29),

respectively. The objective value of the dual programming
thus increases by

Γrk =
(λk · γij
nij · µij

+
λk

∆ · nij · µij

)
· nij · µij

+
(λk ·RCunit · δj

capj
+

λk
∆ · capj

)
· capj

+
(η · cinsi + η · λk · τk ·A

B
+
cinsi + λk · τk ·A

∆ ·B

)
B

+ λk
(
1− Pj

)
= λk + λk

2 + cinsi /λk + τk ·A
∆

= λk + λk · ε ·
2 + cinsi /λk + τk ·A

I∗
< λk(1 + ε).(30)

We finally analyze the constraint violations on the com-
puting capacity of each cloudlet and the budget constraint
in LP after considered the first k requests. Let Lij(k) be
the total packet rate of the requests admitted by the nij
VNF instances of type-i network function at cloudlet clj ,
and let γij(k) be the value of the dual variable γij after the
admission of request rk. We then have the following lemma.
Lemma 3. The violation of the computing capacity of each

cloudlet clj in LP is at most by a multiplicative O(1/ε).

Proof: Recall that for an arrived request rk, Lij(k) =
γij(k) = 0 initially for all cloudlets clj ∈ C and all fi ∈ F
with 1 ≤ i ≤ |F|. If request rk is admitted, the values of
Lij(k) and γij(k) will be updated by

Lij(k) = Lij(k − 1) + λk, (31)

and

γij(k) = γij(k − 1)
(

1 +
λk

nij · µij

)
+

λk
∆nijµij

. (32)

By induction analysis, we have

γij(k) ≥
exp

Lij(k−1)

nij ·µij
−1

∆

(
1 + λk

nij ·µij

)
+ λk

∆nijµij

= 1
∆

(
exp

(
Lij(k−1)
nij ·µij

)(
1 + λk

nij ·µij

)
− 1
)

≈ 1
∆

(
exp

(
Lij(k−1)
nij ·µij

)
exp

(
λk

nij ·µij

)
− 1
)

=
exp(

Lij(k)

nij ·µij
)−1

∆ . (33)

Notice that exp(x) ≈ 1+x is used to find an approximation
of the inequality. Similar results can be found for the avail-
able computing resource capj and budget constraint B.

Let

1/Z∗ = min{1, RCunit, cinsi /λk, τk ·A}, (34)

which means that
Z∗ ≥ 1. (35)

Therefore, if γij > Z∗, we have

γij + δj ·RCunit +
η · cinsi
λk

+ η · τk ·A > 1, (36)

which means that cloudlet clj will not admit request rk.
Since the proposed online algorithm admits requests one

by one, we have γij < Z∗ in the last update of γij for the

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2877623, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX 2018 10

processing of request rk−1. Furthermore, the value of γij
increases by no more than I∗ at each update, thus γij ≤
I∗ + Z∗. Incorporating Inequality (33), we have

Lij(k)

nij · µij
≤ log((I∗ + Z∗)∆ + 1) = O(1/ε) (37)

That is, the computing capacity violation of cloudlet clj by
admitting request rk is at most by a factor of O(1/ε).

Theorem 4. Given a mobile edge-cloud network G(V ∪C,E)
in which cloudlets are co-located with some of the AP
nodes, the number nij of existing VNF instances of net-
work function fi ∈ F in each cloudlet clj with 1 ≤ i ≤
|F| and 1 ≤ j ≤ |C|, a set of requests S that arrive one
by one without the knowledge of future request arrivals,
there is an online algorithm with a provable competitive
ratio of 1

λmax
(1 − ε), Algorithm 3, for a special case of

the throughput maximization problem without the end-
to-end delay requirement, where λmax is the maximum
packet rate among all requests and ε is a constant with
0 < ε < 1, i.e., λmax = arg max{λk | 1 ≤ k ≤ |S|}. The
running time of the algorithm is O(|S|).

Proof: By Lemma 2, let |S| = k, the objective value
of the dual programming DP increases at most λk(1 + ε) if
the latest request rk is admitted by a cloudlet. As a result,
the objective value of the LP is at least 1

λk(1+ε) ≥
1
λk

(1 −
ε) ≥ 1

λmax
(1 − ε). The throughput delivered by the online

algorithm is at least 1
λmax

(1 − ε) of the optimal one, where
λmax is the maximum packet rate of all requests.

The running time of Algorithm 3 is analyzed as fol-
lows. In Step 2, the minimum value of Pj can be maintained
in a min-heap, making this step O(1) time. Also, the up-
dating of the dual variables takes O(1) time. As there are in
total |S| requests to be considered, the running time of the
algorithm thus is O(|S|).

6 PERFORMANCE EVALUATION

In this section we evaluate the performance of the proposed
algorithms by experimental simulations.

6.1 Experimental settings

We assume that mobile edge-cloud networks are generated
by the tool GT-ITM [7], with various network sizes from 50
to 250. Within each generated mobile edge-cloud network,
there are 20% of its APs attached with cloudlets. Each
cloudlet clj has a computing capacity capj randomly drawn
from the range between 3 GHz and 10 GHz [8]. We assume
that there are 10 different types of network functions, where
the computing resource demand by each instance of a net-
work function varies from 40MHz to 400MHz. We further
assume that the link delay between two APs is a value
between 2 milliseconds (ms) and 5ms [12]. The running time
of an algorithm is based on a machine with a 3.7GHz Intel
i7-8700K CPU and 16GiB RAM. Unless otherwise stated,
these parameters are considered as the default settings.

The default number of requests per time slot is randomly
drawn from the interval [150, 250], and each request has a
packet rate between 50 and 100 packets per second [17],
and the tolerable delay requirement dk of request rk is a

value between 0.01 and 0.3 seconds. The network function
requested by each request is randomly selected from the
10 different types of network functions. Using the hourly
price of a general purpose m3.xlarge Amazon EC2 instance
as a reference, the operating cost is set to $0.25 per MHz in
each time slot, while the cost of instantiating a new function
instance varies between $20 to $50. We assume that the cost
of transferring a packet between two APs is proportional to
their distance, thus the cost of transferring a packet along a
network link varies between $0.002 and $0.005.

We evaluate the proposed algorithms against two bench-
mark algorithms. The first one is a greedy baseline which
is described as follows. The greedy algorithm assigns each
request rk to the cloudlet with the highest rank, where the
rank of a cloudlet is the product of its available numbers
of VNF instances and the inverse of the operational cost
of admitting rk in the cloudlet. The rationale behind this
method is to find a cloudlet with high numbers of available
VNF instances and low admission cost, such that as many
requests can be admitted while the total admission cost
is minimized. We refer to this highest-rank-first baseline
heuristic as HRF. The second benchmark algorithm is based
on the basic idea of the algorithm in [14]. Notice that the
problem in [14] is to minimize the weighted sum of the ad-
mission cost and response delay of admitted requests. Direct
comparison between our algorithm with this algorithm may
not be fair. Instead, we use the strategy of this algorithm
to guide request admissions via a weighted function of the
admission cost and the response delay per request, which
is referred to as algorithm CD_WT. Also, algorithm OL_OBO
will be compared with benchmark algorithm OL_BK that
simply rejects requests when resources in cloudlets are not
adequate to meet their resource demands.

6.2 Algorithm performance within a single time slot

We first investigate the performance of the proposed algo-
rithm OL_STS against that of algorithms HRF and CD_WT
within a single time slot, by varying the number of requests
from 50 to 250 while fixing the network size at 100, the
number of cloudlets at 10, and creating some VNF instances
at each cloudlet randomly as existing VNF instances.

We can see from Figures 2(a) and 2(b) that algorithm
OL_STS admits more requests than algorithms HRF and
CD_WT at a higher operational cost. This is because OL_STS
assigns multiple requests to cloudlets simultaneously, mul-
tiple instances of network functions are placed among the
cloudlets. Furthermore, since OL_STS admits more requests,
it incurs a higher operational cost of implementing the ad-
mitted requests. Not surprisingly, algorithm CD_WT admits
the least number of requests among the three comparison
algorithms, because the metric it adopts only considers
operational costs and delays. However, algorithm CD_WT
does achieve the lowest operational cost and average delay
per request, as shown in Figures 2(b) and 2(c).

Fig. 2(c) plots the average delay experienced by each
admitted request. It can be seen that the average delays
delivered by the three algorithms increase at first when the
number of requests varies from 50 to 150, while the average
delays decrease when the maximum number of requests
reaches 250. The rationale behind this is that when the

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2877623, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX 2018 11

(a) The number of admitted
requests

(b) Operational cost (c) Average delay (d) Running time (seconds)

Fig. 2: Performance of algorithms OL_STS, HRF and CD_WT by varying the number of requests from 50 to 250, while the
number of cloudlets in the network is 10.

number of requests increases from 50 to 150, the number of
admitted requests keeps increasing, thereby increasing the
average delay in the waiting queues of cloudlets. However,
when the number of requests increases from 150 to 250,
as the waiting queues at cloudlets are already saturated.
Fig. 2(d) illustrates the running times of the three algo-
rithms, from which it can be seen that the running times
increase with the number of requests.

We then evaluate the impact of network size on the
performance of the proposed algorithms by varying the
network size from 50 to 800 while fixing the ratio of the
number of cloudlets to the network size at 0.1, and creating
some VNF instances for each type of network function at
each cloudlet randomly. It can be seen from Fig. 3(a) that
the number of requests admitted by algorithm OL_STS
increases first from 50 to 200 and then decreases when
the network size keeps increasing from 200 to 800. This is
because a larger network means more cloudlets, and thus
can admit more requests with the growth of its size. How-
ever, if the network size keeps increasing, some requests
will reach their assigned cloudlets via longer routing paths,
thereby increasing the probability of violating their delay
requirements. This is evidenced by Fig. 3(c), from which we
can see the average delay of an admitted request increases
with the growth of network size. Fig. 3(b) shows similar
results on the operational cost.

(a) The number of admitted re-
quests

(b) The operational cost

(c) Average delay

Fig. 3: Performance of algorithms OL_STS, HRF and CD_WT
by varying the network size from 50 to 800.

We finally study the impact of the maximum delay
requirement among requests on the performance of the
proposed algorithms by varying the maximum delay re-
quirement of a request from 0.04 seconds to 0.12 seconds.
It can be seen from Figs. 4(a) and 4(b) that more requests
can be admitted if they have longer delay requirements,
while the operational cost will increase due to the fact
that more request admissions cause longer waiting delays
in the queues of cloudlets. More importantly, the average
delay per admitted request is increasing with the growth
on the maximum delay requirement. In addition, algorithm
OL_STS admits more requests with a higher operational cost
than that by algorithms HRF and CD_WT in the long run, as
shown in Figures 4(a), 4(b), and 4(c).

(a) The number of admitted re-
quests

(b) Operational cost

(c) Average delay

Fig. 4: Performance of algorithms OL_STS, HRF and CD_WT
when the maximum delay requirement of requests varies
from 0.04 to 0.12.

6.3 Performance evaluation of the online heuristic
In the following we first evaluate the performance of al-
gorithm OL_MTS within a finite time horizon that consists
of 100 time slots. We assume that the number of requests
at each time slot follows the Poisson distribution with a
mean of 200, and each admitted request spans from 5 to 10
time slots randomly. Fig. 5(a) shows the number of requests
admitted by algorithms OL_MTS, OL_STS without applying
the prediction mechanism, HRF and CD_WT during the given
time horizon, from which we can see that algorithm OL_MTS

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2877623, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX 2018 12

outperforms both algorithms HRF and CD_WT consistently.
Fig. 5(b) plots the accumulative operational cost curves of
the aforementioned algorithms. We can see that algorithm
OL_MTS admits more requests than algorithms HRF and
CD_WT at a higher operational cost compared to the other
two algorithms. In particular, algorithm OL_MTS admits
more requests than algorithm OL_STS without applying
the proposed prediction mechanism. The reason is that
algorithm OL_MTS pre-instantiates VNF instances if nec-
essary and such pre-instantiation increases the admission
probability of requests as it saves time and reduces delay
through creating new instances, thereby meeting the delay
requirements of admitted requests.

(a) The accumulated number of
admitted requests

(b) The accumulated opera-
tional cost

Fig. 5: Performance of algorithms OL_MTS, OL_STS, HRF
and CD_WT in a time horizon of 100 time slots.

We then investigate the impact of important parame-
ters ai and bj for controlling the prediction mechanism of
algorithm OL_MTS, where ai and bj are the weights for
the historical trace of existing VNF instances and newly
created VNF instances in the last ρ time slots, respectively.
We assume that the sequences for ai and bj are geometric
sequences with a common ratio 1/2ρ with ρ ≥ 1, i.e.,
ai+1 = ai

2ρ and bj+1 =
bj
2ρ , and we vary the length of the

historical trace ρ from 2 to 15. Fig. 6 shows the result. From
Figures 6 (a) and (b), we can see that there is no clear impact
of ρ for the number of admitted requests; instead, the aver-
age operational cost of a request initially decreases when ρ
increases from 1 to 2 first, but then increases with a longer
historical trace from 2 to 16. The reason is that the length of
the historical trace only affects the number of VNF instances
that should be created, and has no direct impact on the
total amount of available resources that greatly affects the
number of admitted requests. Furthermore, a larger value
of p means larger values for the terms with lower indexes in
each of the geometric sequences, implying that the recent
historical data will have higher impact on the predicted
number of VNF instances. This makes the prediction model
accurately predict resource dynamics of cloudlets, thereby
avoiding unnecessary creations of new VNF instances and
reducing the VNF instantiation cost. However, with the
increase of historical trace length of ρ, more weight is placed
on older and less relevant data points. It can be seem that the
best average operational cost per request is achieved when
ρ = 2. Similar results can be found for bj in Figures 6(c) and
6(d), respectively.

We thirdly evaluate the impact of the end-to-end delay
requirement dk of each request rk on the performance of
algorithms OL_MTS and HRF in a network with 100 APs and
10 cloudlets, by varying dk from 0.04 seconds to 0.12 sec-
onds. It can be seen from Fig. 7(a) that the longer the max-

(a) The number of admitted re-
quests

(b) The average operational cost
per request

(c) The number of admitted re-
quests

(d) The average operational cost
per request

Fig. 6: Impact of ai and bj on the performance of algorithms
OL_MTS, HRF and CD_WT in a time horizon of 100 time slots,
by varying p from 1 to 16.

imum delay per request is, the more requests the network
can admit, while the operational cost is also increasing as
shown in Fig. 7 (b).

(a) The number of admitted re-
quests

(b) The operational cost

Fig. 7: Performance of different algorithms, by varying dk of
each request rk from 0.04 to 0.12 for a time horizon of 100
time slots.

We finally address the impact of the idle cost threshold
θ of VNF instances and the creation cost threshold ξ on
the performance of algorithm OL_MTS for a time horizon
consisting of 100 time slots.

Figures 8(a) – 8(c) illustrate the outcomes, by varying
the idle cost threshold θ from 100 to 10,000 while fixing
ξ at 1,000. Specifically, a small idle cost threshold θ will
result in frequent invoking of the prediction mechanism.
This means that idle VNF instances can be released back
to the system more frequently, and therefore more requests
can be admitted by utilizing the released cloudlet resources
as shown in Fig. 8(a) when the idle cost threshold θ is set
at 100. However, this usually incurs a higher operational
cost due to the large number of requests admitted and the
creation cost of new VNF instances for admitted requests by
the released cloudlet resources. Furthermore, as shown in
Fig. 8(b), when the threshold increases from 5,000 to 10,000,
the operational cost experiences a slight increase due to the
increase on the maintenance cost of idle VNF instances.

Figures 8(d) – 8(f) show the results by varying the

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2877623, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX 2018 13

(a) Numbers of admitted re-
quests by varying threshold θ

(b) The operational cost by vary-
ing threshold θ

(c) Numbers of admitted re-
quests by varying threshold ξ

(d) The operational cost by vary-
ing threshold ξ

Fig. 8: Performance of different algorithms for a time hori-
zon of 100 time slots, by varying the idle cost threshold and
the creation cost threshold from 100 to 10,000.

creation cost threshold ξ from 100 to 10,000 while fixing θ at
1,000. We can see from Fig. 8(d) that the number of admitted
requests increases from 100 to 5,000 steadily when ξ varies
from 100 to 10,000, and then decreases when ξ reaches
10,000. The reason is that more new VNF instances can be
created with a larger threshold ξ. However, when ξ is large
enough (= 10,000 as shown in the figures), the prediction
mechanism on the number of new VNF instances will be
invoked rarely. This means that newly arrived requests may
be frequently allocated to new VNF instances, and many
such newly created VNF instances will became idle over
time, thereby occupying resources and limiting the number
of requests that can be admitted. In addition, as shown in
Figures 8(e) and 8(f), the curves of the operational cost and
average delay exhibit similar patterns to the curve of the
number of admitted requests by the proposed algorithm.
That is, more admitted requests implies a higher operational
cost, as new VNF instances created for admitted requests
may be placed into cloudlets far away from the locations of
the admitted requests.

6.4 Performance evaluation of the proposed online al-
gorithm for the problem without delay constraints

The rest is to evaluate the performance of the proposed on-
line algorithm OL_OBO, by varying the number of requests
from 50 to 200 while fixing the network size at 100 and the
number of cloudlets at 10. It can be seen from Fig. 9(a) that
algorithm OL_OBO outperforms the benchmark algorithm
OL_BK, since a well-designed admission control policy is
adopted. However, algorithm OL_BK performs simple ad-
missions, only rejecting requests when insufficient resources
are available in cloudlets, which could affect the admission
of future requests. Also, we can see that the accumulated
admitted requests increases first and then keeps steady
afterwards. This is because the network is saturated when
more requests are admitted. The operational costs delivered

(a) The number of admitted re-
quests

(b) The operational cost

Fig. 9: Performance of online algorithms OL OBO and OL BK,
by varying the number of requests from 50 to 200.

by different algorithms are shown in Fig. 9(b). What follows
is to investigate the impact of the network size on the
performance of the proposed online algorithm, by varying
it from 50 to 800 while fixing the ratio of the number of
cloudlets to the network size at 0.1. From Fig. 10(a), we
can see that the number of requests admitted increases
with the increase of the network size from 50 to 400, and
stabilizes afterwards. The reason is that a large-size network
has more cloudlets with more computing resource to admit
more requests. However, the probability of routing user
data traffic along longer routing paths increases too, which
results in more user request rejections due to longer delays.

(a) The number of admitted re-
quests

(b) The operational cost

Fig. 10: Performance of online algorithms Online and
Online B, by varying the network size from 50 to 800.

7 CONCLUSIONS

In this paper, we studied a novel task offloading problem
in a mobile edge-cloud network, where each offloading task
requests a specified network function service with a maxi-
mum tolerable delay, and different requests have different
network function services from cloudlets in the network.
We focused on maximizing the number of admissions of
offloading tasks while minimizing the admission cost of
admitted requests within a given time horizon. To this end,
we devised an efficient online algorithm for the problem by
opportunistically exploring existing VNF instances sharing
among different requests or new VNF instance creations. We
also developed an effective prediction mechanism to predict
idle VNF instance releases and new VNF instance creations
at different cloudlets for further cost savings. In addition,
we also considered a special case of the problem without
end-to-end delay requirements of requests, for which we
devised an online algorithm with a provable competitive
ratio. We finally evaluated the performance of the proposed
algorithms through experimental simulations. Experimental
results indicate that the proposed algorithms are promising.

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2877623, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX 2018 14

ACKNOWLEDGEMENT

We would like to thank the four anonymous referees and
the associate editor for their expertise comments and con-
structive suggestions, which have helped us improve the
quality and presentation of the paper greatly. The work of
Zichuan Xu is supported by the National Natural Science
Foundation of China (Grant No. 61802048), the fundamental
research funds for the central universities in China (Grant
No. DUT17RC(3)061), and the Xinghai Scholar Program in
Dalian University of Technology, China.

REFERENCES

[1] M. Chen and Y. Hao. Task offloading for mobile edge computing
in software defined ultra-dense network. IEEE Journal on Selected
Areas in Communications, vol.36, no.3, pp.587–597, 2018.

[2] X. Chen, L. Jiao, W. Li, and X. Fu. Efficient multi-user compu-
tation offloading for mobile-edge cloud computing. IEEE/ACM
Transactions on Networking, Vol. 24, No. 5, pp.2795–2808, 2016.

[3] Q. Fan and N. Ansari. Workload allocation in hierarchical cloudlet
networks. IEEE Communications Letters, vol. 22, no. 4, pp. 820-823,
2018.

[4] Q. Fan and N. Ansari. Application aware workload allocation for
edge computing-based IoT. IEEE Internet of Things Journal, vol. 5,
no. 3, pp. 2146-2153, 2018.

[5] M. X. Goemans and D. P. Williamson. The primal-dual method for
approximation algorithms and its application to network design
problems. Book chapter of Approximation algorithms for NP-hard
problems, PWS publishing, pp. 144 – 191, 1997.

[6] L. Guo, J. Pang, and A. Walid. Dynamic service function chaining
in SDN-enabled networks with middleboxes. Prof. ICNP, IEEE,
2016.

[7] http://www.cc.gatech.edu/projects/gtitm/.
[8] Hewlett-packard company - enterprise computer server systems

and network solutions. https://www.hpe.com/au/en/servers.
html/, 2017, accessed: 2017-04-25.

[9] M. Jia, J. Cao, and W. Liang, Optimal cloudlet placement and user
to cloudlet allocation in wireless metropolitan area networks. IEEE
Transactions on Cloud Computing, vol 5, no 3, pp.725–737, IEEE,
2017.

[10] M. Jia, W. Liang, and Z. Xu. QoS-aware task offloading in
distributed cloudlets with virtual network function services. Proc
of MSWiM, ACM, 2017.

[11] M. Jia, W. Liang, Z. Xu, and M. Huang. Cloudlet load balancing
in wireless metropolitan area networks. Proc of INFOCOM, IEEE,
2016.

[12] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan.
The internet topology zoo. Journal on Selected Areas in Communica-
tions, vol. 29, no. 9, pp. 1765–1775, IEEE, 2011.

[13] J. Kuo, S. Shen, H. Kang, D. Yang, M. Tsai, and W. Chen. Ser-
vice chain embedding with maximum flow in software defined
network and application to the next-generation cellular network
architecture. Proc. of INFOCOM, IEEE, 2017

[14] Y. Li, Y. Chen, T. Lan, and G. Venkataramani. MobiQoR: Push-
ing the envelope of mobile edge computing via quality-of-result
optimization. Proc of ICDCS, IEEE, 2017.

[15] Y. Mao, C. You, J. Zhang, K, Huang and K. Letaief. A survey
on mobile edge computing: the communication perspective. IEEE
Commun. Surv. Tutor., vol.19, pp.2322–2358, 2017.

[16] L. Qu, C. Assi, and K. Shaban. Delay-aware scheduling and
resource optimization with network function virtualization. IEEE
Transactions on Communications, vol.64, pp.3746–3758, 2016.

[17] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The
case for vm-based cloudlets in mobile computing. IEEE Pervasive
Computing, vol. 8, no. 4, pp.14–23, 2009.

[18] Y. Song, S. S. Yau, R. Yu, X. Zhang, and G. Xue. An approach to
QoS-based task distribution in edge computing networks for IoT
applications. Proc. of EDGE, IEEE, 2017.

[19] Q. Xia, W. Liang, and W. Xu. Throughput maximization for online
request admissions in mobile cloudlets. Proc of 38th Conference on
Local Computer Networks (LCN), IEEE, 2013.

[20] Q. Xia, W. Liang, Z. Xu, and B. Zhou. Online algorithms for
location-aware task offloading in two-tiered mobile cloud envi-
ronments. Proc of 7th International Conference on Utility and Cloud
Computing (UCC), IEEE/ACM, 2014.

[21] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo. Capacitated cloudlet
placements in wireless metropolitan area networks. Proc. of 40th
Conference on Local Computer Networks (LCN), IEEE, 2015.

[22] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo. Efficient algorithms
for capacitated cloudlet placements. IEEE Transactions on Parallel
and Distributed Systems, vol. 27, no. 10, pp. 2866–2880, 2016.

[23] B. Yang, W. K. Cai, Z. Xu, K. V. Katsaros, and G. Pavlou. Cost-
efficient NFV-enabled mobile edge-cloud for low latency mobile
applications. IEEE Transactions on Network and Service Management,
Vol. 15, No. 1, IEEE, 2018.

[24] T. Zhang. Data offloading in mobile edge computing: a coalition
and pricing based approach. IEEE Access, vol.6, pp. 2760–2767,
2018.

Zichuan Xu (M’17) received his PhD degree
from the Australian National University in 2016,
ME degree and BSc degree from Dalian Univer-
sity of Technology in China in 2011 and 2008,
all in Computer Science. He was a Research
Associate at Department of Electronic and Elec-
trical Engineering, University College London,
UK. He currently is an Associate Professor in
School of Software at Dalian University of Tech-
nology, China. His research interests include
cloud computing, software-defined networking,

network function virtualization, wireless sensor networks, algorithmic
game theory, and optimization problems.

Weifa Liang (M’99–SM’01) received the PhD
degree from the Australian National University
in 1998, the ME degree from the University of
Science and Technology of China in 1989, and
the BSc degree from Wuhan University, China
in 1984, all in Computer Science. He is currently
a Professor in the Research School of Computer
Science at the Australian National University. His
research interests include design and analysis
of energy efficient routing protocols for wireless
ad hoc and sensor networks, Mobile Edge Com-

puting (MEC), Network Function Virtualization (NFV), Software-Defined
Networking (SDN), design and analysis of parallel and distributed algo-
rithms, approximation algorithms, combinatorial optimization, and graph
theory. He is a senior member of the IEEE and a member of the ACM.

Mike Jia received the BSc degree in Mathemat-
ics and Computer Science from Imperial Col-
lege London in UK in 2013, and an Honours
degree with the first class Honours in Computer
Science at the Australian National University in
2015. He is currently pursuing his Ph.D study
in the Research School of Computer Science at
the Australian National University. His research
interests include mobile cloud computing and
software defined networks.

Meitian Huang received the BSc degree with
the first class Honours in Computer Science at
the Australian National University in 2015. He
currently is studying for his PhD degree in the
Research School of Computer Science at the
Australian National University. His research in-
terests include software-defined networking, vir-
tualized network function services, algorithm de-
sign and analysis, and cloud computing.

Guoqiang Mao received Ph.D. in telecommuni-
cations engineering in 2002 from Edith Cowan
University. He currently is a Professor of Wire-
less Networking, Director of Center for Real-time
Information Networks at the University of Tech-
nology, Sydney. He has published more than 100
papers in international conferences and jour-
nals, with more than 2,000 citations. His re-
search interests include intelligent transport sys-
tems, applied graph theory and its applications
in networking, wireless multihop networks, wire-

less localization techniques and network performance analysis. He is a
Fellow of IEEE, an Editor of IEEE Transactions on Vehicular Technology
and a cochair of IEEE Intelligent Transport Systems Society Technical
Committee on Communication Networks.

