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Abstract—Wireless multi-hop networks are being increasingly
used in military and civilian applications. Connectivity is a
prerequisite in wireless multi-hop networks for providing many
network functions. In a wireless network with many concurrent
transmissions, signals transmitted at the same time will mutually
interfere with each other. In this paper we consider the impact of
interference on the connectivity of CSMA networks. Specifically,
consider a network with n nodes uniformly and i.i.d. on a square[
−

√
n
2
,
√

n
2

]2
where a node can only transmit if the sensed power

from any other active transmitter is below a threshold, i.e.
subject to the carrier-sensing constraint, and the transmission
is successful if and only if the SINR is greater than or equal to
a predefined threshold. We provide a sufficient condition and a
necessary condition, i.e. an upper bound and a lower bound on
the transmission power, required for the above network to be
asymptotically almost surely (a.a.s.) connected as n → ∞. The
two bounds differ by a constant factor only as n→∞. It is shown
that the transmission power only needs to be increased by a
constant factor to combat interference and maintain connectivity
compared with that considering a unit disk model (UDM) without
interference. This result is also in stark contrast with previous
results considering the connectivity of ALOHA networks under
the SINR model.

Index Terms—Connectivity, CSMA, Wireless Network.

I. INTRODUCTION

Wireless multi-hop networks are being increasingly used in
military and civilian applications. Connectivity is a prereq-
uisite in wireless multi-hop networks for providing many
network functions (e.g. routing, localization and topology
control) [1]–[3]. The scaling behavior of the connectivity
property when the network becomes sufficiently large is of
particular interest. A wireless multi-hop network is said to be
connected if and only if (iff) there is at least one (multi-hop)
path between any pair of nodes in the network.
Due to the nature of wireless communications, signals trans-
mitted at the same time will mutually interfere with each other.
The SINR (signal to interference plus noise ratio) model has
been widely used to capture the impact of interference on
network connectivity [2], [4], [5]. Under the SINR model,
the existence of a directional link between a pair of nodes
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is determined by the strength of the received signal from the
desired transmitter, the interference caused by other concurrent
transmissions and the background noise. Assume all nodes use
the same transmit power P and let xk, k ∈ Γ, be the location
of node k, where Γ represents the set of indices of all nodes in
the network. A node j can successfully receive the transmitted
signal from a node i (i.e. node j is directly connected to node
i) if the SINR at xj , denoted by SINR (xi → xj), is above a
prescribed threshold β, i.e.

SINR (xi → xj) =
P` (xi, xj)

N0 + γ
∑
k∈Ti

P` (xk, xj)
≥ β (1)

where Ti ⊆ Γ denotes the subset of nodes transmitting at
the same time as node i and N0 is the background noise
power. The function ` (xi, xj) is the power attenuation from
xi to xj . The coefficient 0 ≤ γ ≤ 1 is the inverse of the
processing gain of the system and it weighs the impact of
interference. In a broadband system using CDMA, γ depends
on the orthogonality between codes used during concurrent
transmissions and γ < 1; in a narrow-band system, γ = 1 [2],
[5]. Similarly, node i can receive from node j (i.e. node i is
directly connected to node j) iff

SINR (xj → xi) =
P` (xj , xi)

N0 + γ
∑
k∈Tj

P` (xk, xi)
≥ β. (2)

Therefore node i and node j are directly connected, i.e. a
bidirectional link exists between node i and node j, iff both
(1) and (2) are satisfied.

Dousse et al. [5] use the SINR model to analyze the impact of
interference on connectivity from the percolation perspective.
They consider a network where all nodes are distributed
in <2 following a homogeneous Poisson point process with
a constant intensity λ and an attenuation function ` with
bounded support. By letting Tj = Γ/ {i, j}, i.e. all other
nodes in the network transmit simultaneously with node i
irrespective of their relative locations to xi and xj , it is shown
that there exists a very small positive constant γ′ such that
if γ > γ′ there is no infinite connected component in the
network, i.e. the network does not percolate. Further, when
γ < γ′, there exists 0 < λ′ < ∞ such that percolation
can occur when λ > λ′. An improved result by the same
authors in [6] shows that under the more general conditions
that λ > λc and the attenuation function has unbounded
support, percolation occurs when γ < γ′. Here λc is the
critical node density above which the network with γ = 0 (i.e.
the unit disk model (UDM) without interference) percolates [7,
p48]. These results suggest that percolation under the SINR
model can happen iff γ is sufficiently small. They assume that
each node transmits randomly and independently, irrespective
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of any nearby transmitter. This corresponds to the ALOHA-
type multiple access scheme [2], which however has become
obsolete [8].
The more advanced multiple access strategies, e.g. CSMA
and CSMA/CD (Carrier Sense Multiple Access with Colli-
sion Detection) [9] have become prevailing with widespread
adoption. The general idea of CSMA schemes is that nearby
nodes will not be scheduled to transmit simultaneously, i.e.,
a minimum separation distance is imposed among concurrent
transmitters. Therefore, it is natural to expect that CSMA could
improve the performance of ALOHA schemes by alleviating
interference, particularly under heavy traffic. On the other
hand, this distance constraint leads to a spatial correlation
problem which means that the location of a transmitter is
dependent on the location of other concurrent transmitters.
Therefore, even if all nodes are initially distributed following a
Poisson point process (PPP), the set of concurrent transmitters
cannot be obtained by independent thinning of the PPP.
Thus, the set of concurrent transmitters no longer forms a
PPP but a more complicated point process. Matérn hard-core
point process are widely used to model the set of concurrent
transmitters [10]–[12]. However, distribution of such hard-core
process is difficult to analyze and a closed-form expression
is yet to be obtained [10]–[14]. In this paper, we use an
entirely different approach. Particularly by investigating the
bounds on interference, instead of an accurate characterization
of interference distribution, we are able to avoid the above
mentioned difficulty in finding the accurate distribution of
concurrent transmitters and the associated interference.
In this paper, we analyze the connectivity of wireless CSMA
networks under the SINR model. Specifically, we con-
sider a network with n nodes uniformly i.i.d. on a square[
−
√
n

2 ,
√
n

2

]2
and each node is capable of performing carrier-

sensing operation. A pair of nodes are directly connected iff
both (1) and (2) are satisfied. Further, the attenuation function
assumes a power-law form, the same model considered in [5],
[6]. The contributions of this paper are:

1) We show that the interference experienced by any re-
ceiver in the network is upper bounded. Based on this
result, we further show that for an arbitrarily chosen
SINR threshold, there exists a transmission range R0

such that a pair of nodes are directly connected if
their Euclidean distance is smaller than or equal to R0.
On that basis, we derive a sufficient condition, i.e. an
upper bound on the transmission power, for the CSMA
network to be a.a.s. connected under the SINR model
as n→∞. An event ξn depending on n is said to occur
a.a.s. if its probability tends to 1 as n→∞.

2) We provide a necessary condition, i.e. a lower bound on
the transmission power, for the CSMA network to be
a.a.s. connected. The lower bound is a tight bound and
differs from the upper bound by a constant factor only.

3) We show that the transmission power only needs to be
increased by a constant factor to combat interference and
maintain connectivity compared with that considering a
UDM without interference. This result is in stark con-
trast with previous results considering the connectivity

of ALOHA networks [5], [6] under the SINR model
which shows that connectivity is much harder to achieve
in the presence of interference and is impossible in a
narrow band system where γ = 1.

The remainder of this paper is organized as follows: Section
II reviews related work; Section III defines network and
connection models. In Section IV we first derive an upper
bound on the interference in CSMA networks. Based on
the upper bound, a sufficient condition for connectivity is
obtained; Section V investigates a necessary condition for a
connected CSMA network; finally Section VI concludes the
paper and discusses future work.

II. RELATED WORK

The literature is rich in studying connectivity using the well-
known random geometric graph and the UDM, which is
usually obtained by randomly and uniformly distributing n
nodes in a given area and connecting any two nodes iff
their Euclidean distance is smaller than or equal to a certain
threshold r (n), known as the transmission range. This model
corresponds to a special case of the SINR model in (1), i.e.
when γ = 0 (perfect orthogonality, no interference). Signif-
icant outcomes have been achieved for both asymptotically
infinite n [1], [15] and for finite n [16]–[18]. Particularly,
Penrose [15] and Gupta and Kumar [1] prove that under the
UDM and in a disk of unit area, the above network with a
transmission range of r (n) =

√
logn+c(n)

πn is a.a.s. connected
as n→∞ iff c (n)→∞. Most of the results for finite n are
empirical results.

The work [3], [19]–[21] investigate the necessary condition
for the above network to be a.a.s. connected under the more
realistic log-normal connection model, where two nodes are
directly connected if the received power at one node from the
other node, whose attenuation follows the log-normal model
[9], is greater than a given threshold. These results however
rely on the assumption that the node isolation events are
independent, which is yet to be proved.

Despite the significant impact of interference caused by con-
current transmissions on connectivity, limited work exists on
analyzing connectivity under the SINR model. In [22], [23],
the authors study connectivity from the perspective of channel
assignment. Specifically, channel/time slots are assigned to
each link for all active links to be simultaneously transmitting
while satisfying the SINR requirement. The two papers [5],
[6] discussed in Section I study the impact of interference
on the connectivity of ALOHA networks from the percolation
perspective.

Mao et al. [24], [25] study the connectivity problem under a
generic random connection model, viz. two nodes separated by
a Euclidean distance x are directly connected with probability
g (x), where g : [0,∞) → [0, 1] satisfies the properties of
integral boundedness, rotational invariance and non-increasing
monotonicity [7], independent of the event that another pair
of nodes are directly connected. The authors establish the
requirements for an a.a.s. connected network.
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A major difficulty in moving to the SINR model is that
under the unit disk model or the random connection model,
connections are assumed to be independent, i.e. the event that a
pair of nodes are directly connected and the event that another
distinct pair of nodes are directly connected are independent.
This independence assumption on connections is critical in
the analysis of connectivity under these two models. In the
SINR model however, due to the presence of interference,
the existence of a direct connection between a pair of nodes
depends on both the location and the activities of other nodes
in the network.

Some other work exists on modeling the point process formed
by concurrent transmitters. The Matérn hard-core point process
are widely used to model the set of concurrent transmitters in
a CSMA network [10]–[13]. However, such hard-core process
are difficult to analyze. Consequently, some work [12], [26],
[27] uses PPP to approximate the distribution of concurrent
transmitters. A recent work [14] compared the mean inter-
ference in hard-core process and in the corresponding PPP
approximation.

III. NETWORK MODELS

We consider a network with n nodes uniformly and i.i.d. on a

square
[
−
√
n

2 ,
√
n

2

]2
, i.e. the so-called extended network model

[2], where the network size scales with the network area while
the node density is fixed. All nodes use the same transmission
power P and there is always a packet at a node waiting to
be transmitted. The later assumption allows us to focus on the
network property without being disturbed by other factors, e.g.
traffic distribution.

A. Attenuation and interference

We consider that the attenuation function ` in (1) and (2) only
depends on Euclidean distance and is a power-law function
[5], [6] ` (s) = s−α where s represents the Euclidean distance
between a pair of nodes and α is the path-loss exponent,
which typically varies from 2 to 6 [9, p139]. In this paper
we assume α > 2. Note that when α ≤ 2, the interference
experienced by a receiver in the CSMA network investigated
can not be bounded by a constant. The above assumptions on `
are widely used [2], [5], [12] and supported by measurement
studies [9]. As commonly done in the connectivity analysis
[1], [5]–[7], [15], the impact of small-scale fading is ignored
and only bidirectional communication links are considered.
Further, since in dense sensor networks and cellular networks
the background noise is typically negligibly small [2], [12], we
ignore the background noise N0 in (1) and (2). In addition,
we consider that all nodes use the same channel, i.e. γ = 1,
which corresponds to a narrow-band system [2], [5].

B. Carrier-sensing

In CSMA networks, two nodes located at xi and xj can re-
spectively transmit simultaneously iff they can not detect each
other’s transmission, i.e. both P` (xi, xj) and P` (xj , xi)

in (1) and (2) are below a certain detection threshold Pth.
From the power-law path loss, the carrier-sensing range Rc,
which determines the minimum Euclidean distance between
two concurrent transmitters, is given by

Rc = (P/Pth)
1/α (3)

One may alternatively consider a scenario where a node
transmits when the aggregated interference is below Pth, which
forms a trivial extension of the scenario considered in this
paper.

IV. A SUFFICIENT CONDITION FOR ASYMPTOTICALLY
ALMOST SURELY CONNECTIVITY

A major challenge in connectivity analysis under the SINR
model is that the existence of a direct connection between a
pair of nodes depends on both the locations and activities of
other nodes in the network, i.e. connections are correlated.
In this paper, we resort to a coupling approach to handle the
connection correlations. The main idea of coupling technique
is to build the connection between a more complicated model
and a simpler model with established results such that if a
property, e.g. connectivity, is true in the simpler model, it will
also be true in the more complicated model. Therefore the
property of the more complicated model can be studied by
studying the simpler counterpart.
Specifically, we first establish an upper bound on the interfer-
ence experienced by any receiver in CSMA networks. On that
basis, we show that for an arbitrarily chosen SINR threshold,
there exists a transmission range R0 such that a pair of nodes
are directly connected if their Euclidean distance is smaller
than or equal to R0. Then we can use existing results on
connectivity under the UDM to analyze connectivity under
the SINR model.

A. An upper bound on interference and the associated trans-
mission range

The following theorem provides an upper bound on the inter-
ference.

Theorem 1. Consider a CSMA network with nodes distributed
arbitrarily on a finite area in <2. Denote by r0 the Euclidean
distance between a receiver and its nearest transmitter in the
network, which is also the intended transmitter for the receiver.
When r0 < Rc, the maximum interference experienced by
the receiver is smaller than or equal to N (r0) = N1 (r0) +
N2, where

N1 (r0) =
4P
(

5
√

3
4 Rc − r0

)1−α (√
3

4 (3α− 1)Rc − r0

)
R2
c (α− 1) (α− 2)

+
3P

(Rc − r0)
α +

3P(√
3Rc − r0

)α +
3P
(

3
2Rc − r0

)1−α
(α− 1)Rc

(4)

N2 =
3P

Rαc
+

3P ( 3
2 )1−α

(α− 1)Rαc
+

3P(√
3Rc

)α
+

3P
(

5
4

)1−α
(3α− 1)

(α− 1) (α− 2)
(√

3Rc
)α (5)
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Proof: See Appendix I.
Remark 2. The upper bound in Theorem 1 is valid for any
node distribution. For a sparse network or a network where
nodes are placed in a coordinated or planned manner, replacing
Rc with the minimum distance among concurrent transmitters,
Theorem 1 can be extended to be applicable.
Remark 3. The assumption that r0 < Rc is valid in most
wireless systems which not only require the SINR to be above
a threshold and also require the received signal to be of suf-
ficiently good quality. However Theorem 1 does not critically
depend on the assumption. For r0 ≥ Rc, so long as there exists
a positive integer c such that r0 < cRc the upper bound can be
revised to accommodate the situation by changing the range
of the summation in (20) (in Appendix I) from [3,∞] and
[2,∞] to [c+ 2,∞] and [c+ 1,∞] respectively and revising
the results accordingly.

The following result can be obtained as a ready consequence
of Theorem 1.

Corollary 4. Under the same settings as in Theorem 1, assume
that the SINR threshold in (1) and (2) is β. There exists a
transmission range R0 < Rc such that a pair of nodes are
directly connected if their Euclidean distance is smaller than
or equal to R0, given implicitly by

PR−α0 /N (R0) = β (6)

Proof: Theorem 1 establishes that the interference ex-
perienced by a receiver z at r0 from its transmitter w,
denoted by I (r0) is upper bounded by N (r0). Note that,
for r0 < Rc, N (r0) is increasing with r0 and Pr−α0 is
decreasing with r0. Therefore, using (6) the SINR of a receiver
at r0 ≤ R0 from its transmitter, denoted by SINR (r0), satisfies
SINR (r0) =

Pr−α0

I(r0) ≥
Pr−α0

N(r0) ≥ β.
By symmetry, when the transmission occurs in the opposite
direction, i.e. from z to w, the interference generated by the
set of nodes that are transmitting at the same time as z is also
upper bounded by N (r0). Therefore the SINR at w is also
greater than or equal to β.
Finally the existence of a (unique) solution to (6) can be
proved by noting that Pr−α0

N(r0) → ∞ as r0 → 0, Pr−α0

N(r0) → 0

as r0 → R−c and that Pr−α0

N(r0) is monotonically decreasing with
r0.
Corollary 4 relates R0 to P and allows the computation of R0

given P and the converse. A more convenient way to study
the relation between P and R0 is by noting that P = PthR

α
c

and considering R0 as a function of Rc. Using (4), (5) and
letting Rc

R0
= x, (6) can be rewritten as

1

β
=

4
(

5
√

3
4 x− 1

)1−α (√
3

4 (3α− 1)x− 1
)

x2 (α− 1) (α− 2)

3

(x− 1)
α

+
3(√

3x− 1
)α +

3
(

3
2x− 1

)1−α
(α− 1)x

+
3( 3

2 )1−α

xα (α− 1)

+
3

xα
+

3(√
3x
)α +

3
(

5
4

)1−α
(3α− 1)

(α− 1) (α− 2)
(√

3x
)α (7)

Figure 1. Variation of the ratio Rc
R0

with the SINR requirement β when the
path loss exponent α equals to 2.5, 3, 4, respectively.

Figure 1 shows the ratio Rc
R0

as a function of β. Different
curves represent different choices of the path loss exponent α.
For instance, when β = 10 and α = 4, we have Rc

R0
= 3.6.

B. A sufficient condition for connectivity

Based on the transmission range R0 derived in Corollary 4,
we obtain another main result:

Theorem 5. Consider a CSMA network with a total of n

nodes i.i.d. on a square
[
−
√
n

2 ,
√
n

2

]2
following a uniform

distribution. A pair of nodes are directly connected iff both
(1) and (2) (γ = 1 and N0 = 0 in (1) and (2) ) are satisfied.
As n → ∞, the above network is a.a.s. connected if the
transmission power

P = Pthb
α
1 (log n+ c (n))

α
2 , (8)

where b1 = b′/
√
π, c (n) = o (log n) and c (n)→∞ as n→

∞ and∞ > b′ > 1 is the solution to (7) (By f (x) = o (g (x)),

we mean that lim
x→∞

f (x)

g (x)
= 0.).

Proof: The results in [1], [15] show that, for a network
with a total of n nodes uniformly i.i.d. on a

√
n×
√
n square

and a pair of nodes are directly connected iff their Euclidean
distance is smaller than or equal to a given threshold r (n)
(i.e., UDM), the network is a.a.s. connected as n → ∞ iff
r (n) =

√
logn+c(n)

π where c (n)→∞ as n→∞. Using this
result, (7) (letting b′ = Rc

R0
), Corollary 4 and Theorem 1, the

result in the theorem follows.
The implication of Theorem 5 is that in CSMA networks, since
the interference is bounded above by a constant almost surely
as shown in Theorem 1, to meet an arbitrarily high (albeit
constant with the increase in n) β, the power only needs to
be increased by a constant factor compared with that in the
unit disk model to maintain the same set of connections. This
result is in contrast to the ALOHA networks considered in [5],
[6] in which percolation only occurs for a sufficiently small
γ.

V. A NECESSARY CONDITION FOR ASYMPTOTICALLY
ALMOST SURELY CONNECTIVITY

Section IV derives a sufficient condition for a connected
CSMA network as n → ∞ in the presence of interference.
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A logical question arises: what is the necessary condition for
the same CSMA network to be connected as n→∞.
In a CSMA network, any set of nodes can transmit si-
multaneously as long as the carrier-sensing constraints are
satisfied. Further, in a large-scale network, scheduling is
often performed in a distributed manner. In the absence of
accurate global knowledge on which particular set of nodes
are simultaneously transmitting at a particular time instant, it
is natural that a node sets its transmission power to be above
the minimum transmission power required for a network to
be connected under any scheduling algorithm (It is trivial
to show that, see also the proof of Lemma 6, when the
transmission power increases, connectivity will also improve).
Denote that minimum power by P ′Ω where Ω represents
the set of all scheduling algorithms satisfying the carrier-
sensing constraints. In this section, we investigate P ′Ω, i.e.
a necessary condition required for connectivity as n → ∞.
This is done by analyzing the transmission power required
for the above network to have no isolated node which is
a necessary condition for having a connected network. The
following lemma is required for the analysis of P ′Ω:

Lemma 6. Denote by PΩ (respectively, Pω) the minimum
transmission power required for the network to have no
isolated node under any scheduling (respectively, under a
particular scheduling ω). We have P ′Ω ≥ PΩ = maxω∈Ω Pω .

Proof: We prove the lemma by showing that the minimum
transmission power required for the network to have no
isolated node under any scheduling has to be greater than or
equal to the minimum transmission power required for the
same network to have no isolated node under a particular
scheduling.
Define a set of nodes that can simultaneously transmit while
satisfying the carrier-sensing constraints as an independent set.
Obviously the independent set depends on the transmission
power of nodes. As the transmission power decreases, other
things being equal, Rc will decrease and the number of nodes
that can simultaneously transmit will increase or remain the
same.
Denote by φ′ a set of nodes that are scheduled to transmit
simultaneously in the CSMA network. It follows that φ′ must
be an independent set. Given φ′, a node v ∈ φ′ is isolated
if there is no node in the network that can successfully
receive from it when the nodes in φ′ are simultaneously
transmitting. Further, as explained in the last paragraph, the
independent set depends on the transmission power. When
the transmission power is decreased from P1 to P2, where
P2 ≤ P1, if φ′ is an independent set at power level P1, it
will also be an independent set at power level P2. Based on
the above observation and using (1) and (2), a decrease in
the transmission power will cause a decrease in the SINR, it
readily follows that if a node v ∈ φ′ is isolated at power level
P1 when the set of active transmitters is φ′, it will also be
isolated at power level P2 when the set of active transmitters
is φ′. For any transmission power less than PΩ = maxω∈Ω Pω ,
there exists a scheduling that will result the network to have an
isolated node at that power level. Therefore, PΩ has to satisfy

Figure 2. An illustration of the hexagonal partition of the network area. The
shaded hexagons represent simultaneously active hexagons, where k = 3.

PΩ = maxω∈Ω Pω .
Remark 7. As an easy consequence of Lemma 6, the prob-
ability that a CSMA network has no isolated node is a non-
increasing function of the transmission power.

Now the task becomes constructing a particular scheduling
which gives as large Pω as possible, i.e. a tight lower bound
on P ′Ω. Next we construct such scheduling ω heuristically.

A. Construction of scheduling algorithm ω

Obviously, ω needs to satisfy the constraint on the minimum
separation distance between concurrent transmitters imposed
by the carrier-sensing requirement. Meanwhile, ω needs to
schedule as many concurrent transmissions as possible to
maximize interference, hence Pω .

We start with a lemma that is required for the construction of
ω.

Lemma 8. Partition the square
[
−
√
n

2 ,
√
n

2

]2
into non-

overlapping hexagons of equal side length sn such that the
origin o coincides with the centre of a hexagon and two
diagonal vertices of this hexagon, whose Euclidean distance
is 2sn, are located on y axis, as shown in Figure 2. We call a
hexagon an interior hexagon if it is entirely contained in the

square
[
−
√
n

2 ,
√
n

2

]2
. When sn =

√
(2 log n) /5, a.a.s. each

interior hexagon is occupied by at least one node as n→∞.

Proof: Because nodes are uniformly i.i.d., the probability
that an arbitrary interior hexagon is empty is

(
1− 3

√
3s2n

2n

)n
.

Let ξi be the event that an interior hexagon i is empty, where
i ∈ Ξ and Ξ denotes the set of indices of all interior hexagons.
There are at most 2n

3
√

3s2n
interior hexagons.
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Denote by An the event that there is at least one empty

interior hexagon in
[
−
√
n

2 ,
√
n

2

]2
. It follows that Pr (An) =

Pr
(
∪i∈Ξξi

)
. Using union bound, we have Pr

(
∪i∈Ξξi

)
≤∑

i∈Ξ Pr (ξi) ≤
2n

(
1− 3

√
3s2n

2n

)n
3
√

3s2n
. Using the fact that 1 − x ≤

exp (−x) and sn =
√

2 logn
5 , we have lim

n→∞
Pr (An) ≤

lim
n→∞

2ne−
3
√

3s2n
2

3
√

3s2n
= lim

n→∞
5n

3
√

3n
3
√

3
5 logn

= 0 which completes

the proof.
Hereinafter, we declare a hexagon to be active if there is a
node transmitting in it. We consider a scheduling ω that uses
the hexagons as the basic unit for scheduling. Due to the min-
imum separation distance constraint, any two simultaneously
active hexagons should be separated by a minimum Euclidean
distance (depending on the carrier-sensing range given in (3)).
Let k be an integer and represent the minimum number of
inactive hexagons between two closest simultaneously active
hexagons (see Figure 2). Any two nodes inside the two active
hexagons are separated by a Euclidean distance of at least√

3ksn. With a bit twist of terminology, we further define
a maximal independent set for scheduling to be the set of
hexagons that a) includes as many hexagons as possible; and b)
closest hexagons in the set are separated by exactly k adjacent
hexagons. Figure 2 illustrates such a maximal independent set
with k = 3.
We define ω such that only hexagons belonging to the same
maximal independent set can be active at the same time.
No nodes in the same hexagon can be scheduled to transmit
simultaneously. (Note that if a hexagon intersecting the border

of
[
−
√
n

2 ,
√
n

2

]2
has node(s) in it, it is also included into the

maximal independent set and its node(s) are treated in the same
way as other nodes in interior hexagons.) As a consequence
of the CSMA constraint and the definition of k,

√
3ksn ≥ Rc ≥

√
3 (k − 1) sn (9)

B. Probability of having no isolated node

In this subsection, we derive a lower bound on Pω for ω
defined in the previous subsection. This is done by analyzing
the event that the network has no isolated node under ω. The
following theorem summarizes another major outcome of the
paper:

Theorem 9. Under the same setting in Theorem 5 and the
scheduling algorithm ω, a necessary condition on Pω for the
CSMA network to have no isolated node a.a.s. as n→∞ is

Pω ≥ Pthb
α
2 (log n)

α
2 (10)

where b2 =
√

6/5 (b− 1) and b is the smallest integer

satisfying the inequality:
2(
√

3(b+1)+1)
1−α

(
√

3(α−1)(b+1)+1)
(b+1)2(α−1)(α−2)

≤
1
β

(
2π
5

)α
2 .

Proof: The main strategy used is to couple the network
under the SINR model with the associated network under
UDM. Then, an upper bound on the probability of having no

isolated node in the network under the SINR model is obtained
by using existing results for UDM.

Denote the Euclidean distance between the centers of two
closest hexagons in a maximal independent set by L =√

3 (k + 1) sn. See Figure 2 for an illustration. Divide the
hexagons belonging to the same maximal independent set as
a hexagon hi into tiers of increasing Euclidean distance from
the centre of hi using a similar strategy as that in the proof of
Theorem 1. The mth tier of hi has at most 6m hexagons.
Further, we declare that the mth tier of hi is complete in
a given area if all the 6m hexagons are entirely enclosed

in this given area. Denote by CA a square
[
−
√
cn
2 ,

√
cn
2

]2
(0 < c < 1 and the exact value of c will be decided later
in this paragraph). The hexagon containing the origin o has

a number of t =

⌊
c
√
n

2 −
√

3sn
2

L

⌋
complete tiers in CA. As c

increases, t increases as well. For the hexagons located in CA
but near the border of CA, the number of complete tiers in

the square
[
−
√
n

2 ,
√
n

2

]2
decreases with an increase in c. We

choose the value of c such that each hexagon inside CA has at

least t complete tiers in the square
[
−
√
n

2 ,
√
n

2

]2
, and the value

of t is maximized. Let C ′A be the union of hexagons entirely
contained in CA. With a little bit abuse of terminology, we
use CA (C ′A) to denote both the area itself and the size of the
area. We can obtain lim

n→∞
C′A
CA

= 1.

Consider an arbitrarily node i transmitting inside a hexagon hi
in C ′A. If there is no node that can receive from it, then node
i is isolated. Let Imin be the minimum interference that could
possibly be experienced by a potential receiver of node i under
ω. Note that the Euclidean distance between the transmitter
inside a hexagon in the mth tier of hi and the centre of hexagon
hi is less than mL+sn (see Figure 2). Using Lemma 12 gives

Imin ≥
∑t

m=1
6m (mL+ sn)

−α
P

= 6Ps−αn
∑t

m=1
m
(√

3m (k + 1) + 1
)−α

= 6Ps−αn

∫ t

1

bxc
(√

3 bxc (k + 1) + 1
)−α

dx(11)

≥ 6Ps−αn

∫ t

1

x
(√

3x (k + 1) + 1
)−α

dx (12)

where bxc denotes the largest integer smaller than or equal to
x. (12) is obtained due to the fact that x

(√
3x (k + 1) + 1

)−α
is a decreasing function when x > 1√

3(k+1)(α−1)
and

√
3 (k + 1) (α− 1) > 1 for α > 2 and k ≥ 1. Therefore

x
(√

3x (k + 1) + 1
)−α

is a decreasing function when x > 1.

Further, noting that lim
n→∞

t = lim
n→∞

⌊ √
cn
2 −

√
3sn
2

L

⌋
= ∞, it

follows that

lim
n→∞

6

∫ t

1

x
(√

3x (k + 1) + 1
)−α

dx

=
2
(√

3 (k + 1) + 1
)1−α (√

3 (α− 1) (k + 1) + 1
)

(k + 1)
2

(α− 1) (α− 2)

,f (k)
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The above equation implies that for an arbitrarily small
positive constant ε, there exists a positive integer nε such that
when n ≥ nε

RHS of (12) ≥ Ps−αn (f (k)− ε) , Jn (13)

Let d be the Euclidean distance between node i and its
receiver. By (1), (2), it follows that only when Pd−α

Jn
≥ β,

the transmission from node i to its receiver could possibly
be successful. In other words, if there is no node within a
Euclidean distance of R = (βJn/P )

− 1
α to node i, then it is

isolated.

Denote by M and MSINR the (random) number of isolated

nodes in the CSMA network in the square
[
−
√
n

2 ,
√
n

2

]2
and in

C ′A ⊂
[
−
√
n

2 ,
√
n

2

]2
respectively. Denote by MUDM the (ran-

dom) number of isolated nodes in an area C ′A ⊂
[
−
√
n

2 ,
√
n

2

]2
in a network with a total of n nodes uniformly i.i.d. on the

square
[
−
√
n

2 ,
√
n

2

]2
under UDM with the transmission range

R. Based on the discussion in the last paragraph and using the
coupling technique [7], it can be shown that Pr (M ≥ 1) ≥
Pr
(
MSINR ≥ 1

)
≥ Pr

(
MUDM ≥ 1

)
. Consequently,

Pr (M = 0) ≤ Pr
(
MUDM = 0

)
(14)

It remains to find the value of Pr
(
MUDM = 0

)
. We first con-

sider a network with a total of n nodes distributed on a square[
−
√
n

2 ,
√
n

2

]2
under UDM with a transmission range r (n). It

is well-known that when the average node degree in the above
network equals to log n+ζ (n) and lim

n→∞
ζ (n) = ζ where ζ is

a constant (ζ =∞ is allowed), the probability that there is no
isolated node in the above network asymptotically converges
to e−e

−ζ
as n → ∞ [7], [28], [29]. Further, it was shown in

[30] that boundary effect has an asymptotically vanishingly
impact on the number of isolated nodes. Let Z be a ran-
dom integer representing the number of nodes located inside

CA ⊂
[
−
√
n

2 ,
√
n

2

]2
. E (Z) = cn and Var (Z) = cn (1− c).

Let Mr(n) be the number of isolated nodes within an area CA
in the above network with a transmission range r (n). Based
on the above results, conditioned on that Z = cn we have
(here we have omitted some trivial discussions involving the
situation that cn is not an integer)

lim
n→∞

Pr
(
Mr(n) = 0

∣∣∣Z = cn
)

= e−ce
−ζ

(15)

Using Chebyshev’s inequality, for 0 < δ < 1
2 , we obtain that

lim
n→∞

Pr
(
|Z − cn| ≥ (cn)

1
2 +δ
)
≤ lim
n→∞

Var (Z)(
(cn)

1
2 +δ
)2 = 0

(16)

Let f (n) = (cn)
1
2 +δ . Using the following two equations:

log (n+ f (n)) + ζ (n) = log n + log
(

1 + f(n)
n

)
+

ζ (n) and limn→∞ log
(

1 + f(n)
n

)
+ ζ (n) =

limn→∞ ζ (n) = ζ and (15), it can be shown that
limn→∞ Pr

(
Mr(n) = 0

∣∣Z = cn+ f (n)
)

= e−ce
−ζ

.

Figure 3. A plot of the two constant factors b1 and b2 in the upper bound
(8) and in the lower bound (18) when α = 4.

Hence, for any integer m satisfying −f (n) ≤ m ≤ f (n),
limn→∞ Pr

(
Mr(n) = 0

∣∣Z = cn+m
)

= e−ce
−ζ

. This
equation, together with (16), allows us to conclude that when

r (n) =
√

logn+ζ(n)
π

lim
n→∞

Pr
(
Mr(n) = 0

)
= e−ce

−ζ
(17)

As a result of (14), a necessary condition for
lim
n→∞

Pr (M = 0) = 1 is that lim
n→∞

Pr
(
MUDM = 0

)
= 1.

Using the fact that lim
n→∞

C′A
CA

= 1 and (17), it follows that a
necessary condition for the network under the SINR model

to a.a.s. have no isolated node is that R ≥
√

logn+ζ(n)
π

and ζ (n) → ∞ as n → ∞. As denoted R = (βJn/P )
− 1
α ,

together with the value of Jn in (13) and the value of sn in

Lemma 8 , we obtain that f (k) ≤ 1
β

(
2π
5

logn
logn+ζ(n)

)α
2

+ ε.
Letting n→∞ and then ε→ 0 in the above inequality yields
f (k) ≤ 1

β

(
2π
5

)α
2 . Based on the above equation, together

with (3) and (9), Theorem 9 results.

The following corollary is obtained as a ready consequence of
Theorem 9 and Lemma (6).

Corollary 10. A necessary condition required for CSMA
networks to be a.a.s. connected as n → ∞ under any
scheduling algorithm, i.e. a lower bound on P ′Ω, is given by

P ′Ω ≥ Pthb
α
2 (log n)

α
2 (18)

Comparing the lower bound on P ′Ω in (18) with the upper
bound in (8) and noting that c (n) = o (log n), it can be shown
that, given an arbitrary β, the two bounds differ by a constant
factor only as n → ∞. Figure 3 shows the a plot of the two
constant factors, viz. b1 and b2, in (8) and in (18) respectively
as a function of β when α = 4. The curve representing b2 is
a step function due to the granularity caused by the integer k
in the scheduling algorithm ω.

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied the connectivity of wireless CSMA
networks considering the impact of interference. We showed
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that, different from an ALOHA network, the aggregate inter-
ference experienced by any receiver in CSMA networks is
upper bounded even when the coefficient γ in (1) and (2)
equals to 1.

An upper bound and a lower bound were obtained on the
critical transmission power required for having an a.a.s.
connected CSMA network. The two bounds are tight and
differ by a constant factor only. The results suggested that
any pair of nodes can be connected for an arbitrarily high
SINR requirement so long as the carrier-sensing capability
is available. Compared with that considering UDM without
interference, the transmission power only needs to be increased
by a constant factor to combat interference and maintain
connectivity. This is a optimistic result compared with previous
results on the connectivity of ALOHA networks under the
SINR model.

The gap between the two bounds can be further narrowed
by considering more complicated geometric shapes than
hexagons. However such improvement is possibly of minor
importance. The implication of the results in this paper is that
there exists a spatial and temporal scheduling algorithm in a
large scale CSMA network that allows as many as possible
concurrent transmissions, and meanwhile, allows any pair of
nodes in the network to be connected under an arbitrarily
high SINR requirement. We also introduce a hexagon-based
scheduling algorithm that allows the CSMA network to be
connected. However, it remains a major challenge to find the
optimum scheduling algorithm that gives the minimum delay
and the maximum capacity under a specific traffic distribution.

APPENDIX I PROOF OF THEOREM 1

A network on a finite area, denoted by A ⊂ <2, can always be
obtained from a network on an infinite area <2 with the same
node density and distribution by removing these nodes outside
A. Such removal process will also remove all transmitters
outside A. Therefore the interference at a receiver in A is less
than or equal to the interference experienced by its counterpart
in a network in <2. It then suffices to show that the interference
in a network in <2 is bounded.

Consider that an arbitrary receiver z is located at a Euclidean
distance r0 from its closest transmitter w, which is also the
intended transmitter for z. We construct a coordinate system
such that the origin of the coordinate system is at w and z is
on the +y axis, as shown in Fig. 4.

In a CSMA network, the distance between any two concurrent
transmitters is at least Rc. Draw a circle of radius Rc/2
centered at each transmitter. Then the two circles centered
at two closest transmitters cannot overlap except at a single
point. Therefore the problem of determining the maximum
interference can be transformed into one that determining the
maximum number of equal-radius non-overlapping circles that
can be packed into <2. The densest circle packing, i.e. fitting
the maximum number of non-overlapping circles into <2, is
obtained by placing the circle centers at the vertices of a
hexagonal lattice [31, p. 8], as shown in Fig. 4.

Figure 4. An illustration of the densest equal-circle packing.

Group the vertices of the hexagonal lattice into tiers of
increasing distances from the origin. The six vertices of the
first tier are within a Euclidean distance Rc to the origin. The
6m vertices in the mth tier are located at distances within
((m− 1)Rc,mRc] from the origin.

Let I1 be the interference caused by transmitters, hereinafter
referred to as interferers in this section, above the x-axis
at node z. Using the triangle inequalities gives ‖xi − z‖ ≥
‖xi‖ − r0 where xi is the location of an interferer above the
x-axis. Among the 6m interferers in the mth group, half of
them are located above the x-axis. Among these interferers
in the mth group above the x-axis, three of them are at a
Euclidean distance of exactly mRc from the origin and the
rest 3(m − 1) interferers are at Euclidean distances within
[
√

3
2 mRc, mRc]. Hence, we have

I1 ≤
∞∑
m=1

(
3 (m− 1)P(√
3

2 mRc − r0

)α +
3P

(mRc − r0)
α

)
(19)

Look at the first summation in (19). Let Um,m = 3, . . . ,∞, be
random variables uniformly and i.i.d. in [m− 1/2, m+ 1/2].
It follows from the convexity of 3(m−1)P(√

3
2 mRc−r0

)α and Jensen’s

inequality (used in the second step) that∑∞

m=3

3 (m− 1)P(√
3

2 mRc − r0

)α
=

∑∞

m=3

3 (E (Um)− 1)P(√
3

2 E (Um)Rc − r0

)α (20)

≤
∑∞

m=3
E

(
3 (Um − 1)P(√
3

2 UmRc − r0

)α
)

=
∑∞

m=3

∫ m+1/2

m−1/2

3 (x− 1)P(√
3

2 xRc − r0

)α dx
= 3P

∫ ∞
5/2

(x− 1)
(√3

2
xRc − r0

)−α
dx
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=
4P
(

5
√

3
4 Rc − r0

)1−α (√
3

4 (3α− 1)Rc − r0

)
R2
c (α− 1) (α− 2)

(21)

Likewise, we also have
∑∞
m=2

3P
(mRc−r0)α ≤

3P( 3
2Rc−r0)

1−α

(α−1)Rc
.

As a result of the last equation and (19), (21), (4), it follows
that I1 ≤ N1 (r0).

Now we consider the total interference caused by interferers
below the x-axis at node z, denoted by I2. Let xi be the
location of an interferer below the x-axis, it follows from the
triangle inequality that ‖xi − z‖ ≥ ‖xi‖. Therefore

I2 ≤
∞∑
m=1

(
3P

(mRc)
α +

3 (m− 1)P(√
3

2 mRc
)α
)

≤ 3P

Rαc
+

3P ( 3
2 )1−α

(α− 1)Rαc
+

3P(√
3Rc

)α
≤ +

3P
(

5
4

)1−α
(3α− 1)

(α− 1) (α− 2)
(√

3Rc
)α (22)

Combining I1 ≤ N1 (r0) and (22), Theorem 1 is proved.

APPENDIX II LEMMA 12

Lemma 12 is needed in the proof of Theorem 9. Theorem 11
is used to prove Lemma 12.

Theorem 11. (Theorem 1 in [32]) Let v1,v2, . . . ,vj be
j arbitrary points in <2. Let w1, w2, . . . wj be j positive
numbers regarded as weights attached to these points, and
define a position vector c by

∑j
i=1 wivi = Wc where W =∑j

i=1 wi. Then for an arbitrary point z, the following holds:∑j
i=1 wi ‖vi − z‖2 =

∑j
i=1 wi ‖vi − c‖2 +W ‖z − c‖2

Lemma 12. Consider a triangular lattice with unit side length
and having a vertex located at the origin o. Define the 1st tier
of points to be the six points placed at the vertices of the
triangular lattice at a distance of 1 to the origin o. Let the
mth tier of points be the 6m points placed at the vertices of the
triangular lattice located at distances within (m− 1, m] from
the origin o, as shown in Figure 5. The total number of points
from the 1st tier to the mth tier then equals to j = 3m (1 +m).
Let v1,v2, . . .vj be the location vectors of these j points
and the points are ordered according to their distances to the
origin o in a non-decreasing order. For an arbitrary point z
located inside the hexagon formed by the 1st tier of six points,
the following holds:

∑j
i=1 ‖vi − z‖−α is minimized when z

is located at the origin o.

Proof: Now we use Theorem 11 to prove Lemma 12.
Letting all attached weights wi equal to 1 and using Theorem
11, for an arbitrary point z located inside the hexagon formed
by the 1st tier of six points, we have∑6

i=1 ‖vi − z‖2 =
∑6
i=1 ‖vi − c‖2 + 6 ‖z − c‖2 (23)

where c is given by
∑6
i=1 vi = 6c. It is clear that c is the

centroid of the six points. Since the hexagon has a unit side
length, ‖vi − c‖ equals to 1. Let xi = ‖vi − z‖ and y =

Figure 5. An illustration of a triangular lattice

‖z − c‖. The problem in Lemma 12 can then be converted to
the following constrained minimization problem:

minimize f (x1, . . . , x6) =
∑6
i=1x

−α
i

subject to h (x1, . . . , x6) =
∑6
i=1x

2
i − 6− 6y2 = 0

where the constraint is due to (23). Using the method of La-
grange multipliers, we first construct the Lagrangian in the fol-
lowing: F (x1, . . . x6,Λ) = f (x1, . . . , x6) + Λh (x1, . . . , x6)
where the parameter Λ is known as the Lagrange multiplier.
Then find the gradient and set it to zero: ∇F (x1, . . . x6,Λ) =

−αx−α−1
1 + 2Λx1

...
−αx−α−1

6 + 2Λx6

h (x1, x2, . . . , x6)



T

= 0. Solving the above equation,

it is obtained that Λ = α
2

(
1 + y2

)−α+2
2 and x1 = x2 . . . =

x6 =
(

2Λ
α

) −1
α+2 =

(
1 + y2

) 1
2 . Since xi = ‖vi − z‖ denotes

the Euclidean distance from vi to z, only when z = c, we can
have x1 = x2 = . . . = x6 = 1. It follows that the minimum
of f (x1, x2, . . . , x6) is obtained only when z is located at
the origin o. Further, for the 6m points of the mth tier, using
the same method, it can be shown that

∑6m
i=1 ‖vi − z‖−α is

minimized only when z is located at the origin o. The result
follows.
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