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Abstract—Connectivity is one of the most fundamental prop-
erties of wireless multi-hop networks. This paper studies the con-
nectivity of large wireless networks with secrecy constraint, i.e. a
pair of nodes can communicate securely against eavesdropping.
Specifically, we consider a network with a mixture of legitimate
nodes and eavesdroppers that are distributed according to two
independent Poisson point processes on a

√
n ×

√
n square.

Assuming that legitimate nodes can generate artificial noise,
which is shown in the literature to be an effective way of
suppressing eavesdropping, we provide sufficient conditions on
the transmission power and the noise generation power required
for a network with known intensity of eavesdroppers to be
asymptotically almost surely connected with secrecy constraint
as n → ∞, considering the cases of both non-colluding and
colluding eavesdroppers.

Index Terms—Connectivity; Information-theoretic secure net-
work; CSMA

I. INTRODUCTION

Wireless multi-hop networks are being increasingly used
in military and civilian applications. Connectivity is a pre-
requisite in wireless multi-hop networks for providing many
network functions, such as routing, localization and topology
control. A networks is said to be connected if there is a (multi-
hop) path between any pair of nodes. The scaling behavior
of the connectivity is of particular interest when the network
becomes sufficiently large.

The broadcast nature of wireless communications makes it
susceptible to malicious eavesdropping. Accordingly, commu-
nication secrecy has recently drawn intensive attention [1]–
[8]. Traditionally, security is viewed as an independent feature
addressed using techniques above the physical layer. Almost
all widely used cryptographic protocols are designed and
implemented assuming that the physical link has already been
established and is not involved in securing the communication
[1]. Cryptographic methods can be broadly classified into
public-key and private-key protocols [3]. The former approach
assumes that the eavesdroppers have a limited computational
power, and the latter approach assumes that a random key
is shared among legitimate users. However, due to the rapid
growth of computational power, the costs in distributing key
among legitimate users and the advancement of decoding
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technology, cryptography becomes increasingly more chal-
lenging as the network size grows significantly. To avoid
the aforementioned limitations in cryptographic methods, this
work investigates the use of physical layer techniques to secure
the communication and adopts an information-theoretic secu-
rity [1] framework where eavesdroppers are assumed to have
infinite computational power and the idealistic assumption of
pre-distributed keys is relaxed.

The notion of information-theoretic secrecy was first in-
troduced by Shannon to study secure communication over
point-to-point noiseless channels [9] and was later extended
by Wyner [10] to noisy channels. To model large-scale net-
works operating in the presence of eavesdroppers, Haenggi
[11] and Pinto et al. [5] introduced the so called secrecy
graph which represents a large-scale random wireless network
where legitimate nodes and eavesdroppers are distributed in
<2 following two independent Poisson point processes. The
secrecy graph includes only edges that can be securely estab-
lished. Particularly, a directed and secure connection from a
legitimate node to another legitimate node in the secrecy graph
is established in the following way. Assume that all legitimate
nodes transmit with the same power P and let xk, k ∈ Γ be
the location of node k, where Γ represents the set of indices
of all legitimate nodes in the network. A node j can receive
the transmitted signal from a node i securely (i.e. node j is
securely connected to node i) iff (if and only if) the secrecy
rate is above a prescribed threshold %, i.e.,

Rs (xi → xj) > %; (1)

and Rs (xi → xj) is the Maximum Secrecy Rate (MSR) of
the transmission, given by

Rs (xi → xj)

=

[
log2

(
1 +

P` (xi, xj)

N0

)
−log2

(
1 +

P` (xi, e
∗)

N0

)]+

(2)

where [x]
+

= max {x, 0}, e∗ = arg max
ek∈E

P` (xi, ek) and E

represents the set of indices of all eavesdroppers respectively,
N0 is the background noise power and the function ` (xi, xj)
is the power attenuation from xi to xj . By setting % = 0, the
existence of secure links are considered. A secrecy graph is
said to be connected if there exists a path from any legitimate
node to any other legitimate node where all (directed) links
along the path can be securely established. It is shown in [11]

Globecom 2014 - Ad Hoc and Sensor Networking Symposium

978-1-4799-3512-3/14/$31.00 ©2014 IEEE 317



2

that even a small density of eavesdroppers has a drastic impact
on the connectivity of the secrecy graph.

Since [11], the connectivity of the secrecy graph has
received extensive attention in the literature. In [5], using
stochastic geometry tools, Pinto et al. studied secrecy connec-
tivity by providing statistical characterizations of node degree
and isolation probability of a typical node in a secrecy graph
defined on an infinite plane. In another work [4], Pinto et al.
studied connectivity of the secrecy graph from the percolation
perspective. They proved the existence of an unbounded con-
nected component as the density of legitimate nodes increases.
Furthermore, the paper [4] studied the secrecy connectivity of
a typical legitimate node of a secrecy graph in a finite region,
i.e., the probability that a typical legitimate node is fully out-
and fully in-connected. A legitimate node is said to be fully
out-connected if there exists a directed and secure path from
the node to every other legitimate node in the network. A node
is said to be fully in-connected if there exists a directed and
secure path from every other legitimate node in the network
to the node. In [12], Zhou et al. studied secrecy connectivity
from the perspective of existence of secure connections from
a typical legitimate transmitter to the legitimate receivers, and
showed that the secrecy connectivity can be improved by using
two antenna array techniques, namely directional antenna or
eigen-beamforming.

Existing research on secrecy connectivity has mainly fo-
cused on either local connectivity of the network, which is
characterized by the node degree of a typical node, or perco-
lation in an infinite secrecy network. Further note that, when
defining secure connections in the aforementioned secrecy
graph using (1) and (2), the mutual interference among legit-
imate nodes and between legitimate nodes and eavesdroppers
has not been taken into consideration.

In this paper, we analyze the secrecy connectivity of large-
scale wireless networks considering the impact of mutual in-
terference. Specifically we consider a network with legitimate
nodes randomly distributed on a

√
n×
√
n square following a

Poisson point process with unit intensity. Furthermore, eaves-
droppers are distributed following another Poisson process,
independently of legitimate nodes. Each legitimate node is
capable of performing carrier sense operation. Considering
that it is difficult to obtain some priori information such as
location information of eavesdroppers, especially in large-scale
wireless networks, different from some previous work in the
field, we assume such information is unknown to legitimate
nodes. Following the lead of [13] and [7], we assume that
a legitimate node can generate artificial noise to suppress
eavesdropping and has the capability of canceling interference
caused by its own signal. The importance of these capabilities
to ensure connectivity of secrecy graph becomes clear in our
later analysis.

Our main contributions are summarized as follows.
1) We study secrecy connectivity in two scenarios: collud-

ing case where eavesdroppers can only decode legitimate
node’s transmission individually, and non-colluding case
where eavesdroppers can collaborate to exchange and
combine the received information by all the eavesdrop-
pers to decode legitimate node’s transmission.

2) In both scenarios, we show that the maximum secrecy
rate of a legitimate transmission is lower bounded by
a positive constant as n → ∞, by exploiting artificial
noise generation and self-interference cancellation capa-
bilities to suppress eavesdropping.

3) Based on the above results, we provide sufficient condi-
tions on the transmission power and the noise generation
power required for a network with known intensity of
eavesdroppers to be asymptotically almost surely (a.a.s.)
connected as n → ∞ , in both colluding and non-
colluding scenarios.

The remainder of this paper is organized as follows: in Section
II, we review related work in the field; Section III gives a
formal definition of the network model considered in this
paper; Section IV first presents a discussion on the impact
of intensity of eavesdroppers on secrecy connectivity, then
presents sufficient conditions for the network to be a.a.s.
connected as n → ∞ in non-colluding scenario; Section
V presents sufficient conditions for the network to be a.a.s.
connected as n → ∞ in colluding scenarios; finally Section
VI concludes the paper.

II. RELATED WORK

The literature is rich in studying connectivity of wireless
multi-hop networks using the well-known random geometric
graph and the unit disk model, which is usually obtained by
randomly and uniformly distributing n nodes in a given area
and connecting any two nodes iff their Euclidean distance is
smaller than or equal to a certain threshold r (n), known as the
transmission range. Significant outcomes have been achieved
[14], [15]. Particularly, Penrose [15] and Gupta and Kumar
[14] proved that under the unit disk model and on a disk of unit
area, the above network with a transmission range of r (n) =√

logn+c(n)
πn is a.a.s. connected as n→∞ iff c (n)→∞. An

event ξn depending on n is said to occur a.a.s. if its probability
tends to one as n → ∞. There is also work studying the
asymptotic connectivity of random networks under the log-
normal shadowing connection model [16], the more general
random connection model [17], [18] and the SINR connection
model [19]–[21].

Despite the importance of considering secrecy constraint
in wireless networks, limited work exists on investigating the
secrecy connectivity problem. The two papers [11] and [4]
discussed in Section I studied the connectivity of secrecy graph
from the percolation perspective, while references [12] and [5]
studied secrecy connectivity from the perspective of a typical
legitimate node, e.g., the node degree and isolation probability
of a typical legitimate node. Goel et al. [22] considered the
impact of uncertainty in the knowledge of eavesdroppers’
location on the secrecy connectivity.

Some other work exists on analyzing the capacity of secrecy
networks [3], [5], [6], [8]. Vasudevan et al. [6] studied the
secrecy capacity of large-scale networks. Specifically, they
introduced helper nodes around transmitters to generate noise
to degrade eavesdroppers’ channels and utilize channel fading
gain of receivers to enhance secure communications. In the
work of Koylouglu et al. [3] and Zhou et al. [8], they assumed
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that there is a guard zone around each legitimate transmitters in
which no eavesdroppers exist and on that basis, they analyzed
the secrecy capacity of large-scale networks. In [7], Zhang
et al. proposed using artificial noise generated by legitimate
nodes to suppress eavesdroppers’ channels. They analyzed
the secrecy capacity considering two scenarios, namely, non-
colluding and colluding eavesdroppers.

III. NETWORK MODEL

In this paper, we consider a network in which both legit-
imate nodes and eavesdroppers are randomly distributed on
the plane following two independent homogeneous Poisson
point process. We are mainly concerned with the secrecy
connectivity of the network Gn formed by the legitimate nodes
in a
√
n×
√
n box Bn ⊂ <2.

Legitimate nodes are distributed following a Poisson point
process with unit intensity, denoted by Π. Furthermore, follow-
ing the lead of [13] and [7], we assume that legitimate nodes
have self-interference cancelation capability. More precisely,
each legitimate node is equipped with three antennas. When
a legitimate node acts as a receiver, one antenna is used for
reception while the other two antennas are used to generate ar-
tificial noise to suppress eavesdropping. The distances between
the receiving antenna and the two transmitting antennas should
be different by at least half a wavelength. The interference
caused by the two transmitting antennas at the receiving
antenna can then be eliminated using the self-interference
cancelation technique proposed in [13].

Eavesdroppers are also distributed following a Poisson point
process with λe, denoted by Πe. We assume that eavesdrop-
pers always keep silent since they will be easily detected
if active. Furthermore, differently from some previous work
which considers that the location of eavesdroppers is known
to the legitimate nodes, we assume that location information
of eavesdroppers is unknown to legitimate nodes.

We consider that a uniform signal transmission power P
and a uniform noise generation power Pr are used at every
legitimate node. Let Γ be the set of indices of all legitimate
nodes in the network. We use xi to denote the location of
node i. The SINR at node j is given by [7], [23]

SINR (xi → xj) =
P` (xi, xj)

N0 +
∑
k∈Ti

P` (xk, xj) +
∑
k∈Uj

Pr` (xk, xj)

(3)
where Ti ⊆ Γ denotes the set of simultaneous transmitters as
node i, not including node i itself, Ui ⊆ Γ denotes the set of
simultaneous receivers, whose antennas are generating aitifical
noise, as node j, including node j itself, and N0 denotes the
power of the background noise. The function ` (xi, xj) is the
power attenuation from xi to xj . As commonly done in the
field, we consider that the attenuation function ` only depends
on the Euclidean distance and is a power-law function, i.e.,

` (xi, xj) = min
{

1, ‖xi − xj‖−α
}
, (4)

where α > 2 is the path-loss exponent. Furthermore, to re-
flect the self-interference cancellation capability of legitimate
nodes, we let ` (xi, xj) = 0 whenever ‖xi − xj‖ = 0.

Similarly the SINR at an eavesdropper located at et, t ∈ E ,
where E represents the set of indices of all eavesdroppers, is
given by

SINR (xi → et) =
P` (xi, et)

N0 +
∑
k∈Ti

P` (xk, et) +
∑
k∈Uj

Pr` (xk, et)

(5)
Node j can securely receive signals transmitted from node i

(i.e., node j is directly and securely connected to node i) if the
secrecy rate is above a prescribed threshold %, i.e. inequality
(1) is met.

When the eavesdroppers do not collude, the Maxi-
mum Secrecy Rate (MSR) of the transmission, denoted by
Rs (xi → xj), is given by

Rs (xi → xj) = [log2 (1 + SINR (xi → xj))

− log2 (1 + SINR (xi → e∗))]
+ (6)

where [x]
+

= max {x, 0}; e∗ = arg max
ek∈E

SINR (xi → ek).

When the eavesdroppers collude, the MSR of the transmis-
sion, denoted by Rsc (xi → xj), is given by

Rsc (xi → xj) =

[
log2 (1 + SINR (xi → xj))

− log2

(
1 +

∑
t∈E

SINR (xi → et)

)]+

.(7)

To avoid excessive interference, we consider that each
legitimate node is capable of carrier-sensing operation. There-
fore a CSMA network is considered. We further assume that
legitimate nodes are capable of distinguishing signals from the
artificially generated noise.

In CSMA networks, two nodes located at xi and xj respec-
tively can transmit simultaneously iff they can not detect each
other’s transmission, i.e. both P` (xi, xj) and P` (xj , xi) in
(3) and (5) are below a pre-designated detection threshold
Pth. It then follows from Equation (4) that the carrier-sensing
range Rc, which determines the minimum Euclidean distance
between two concurrent transmitters, is given by

Rc = (P/Pth)
1/α (8)

IV. NON-COLLUDING EAVESDROPPERS

In this section, eavesdroppers are assumed to be operating
individually, i.e., they do not collaborate by sharing their
observations.

A. The impact of λe on network connectivity

Now we discuss the impact of λe, i.e., the intensity of
eavesdroppers, on network connectivity in the non-colluding
scenario. Particularly, we will show that in a network where
eavesdroppers are not able to collaborate, the probability that
the network is securely connected is smaller than or equal to
a positive value that is independent of λe.

First, observe that a necessary condition for a network to
be connected is that the network has no isolated node. A
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legitimate node is isolated iff there is no other legitimate node
that is securely connected to it. Let us temporarily consider
a case where % = 0 and Pr = 0, i.e., legitimate nodes do
not generate artificial noises. It can be shown that if a node
is isolated when % = 0, then it is also isolated when % > 0.
Consider a randomly selected eavesdropper et ∈ E and its
closest legitimate node i. We can write

Pr {Gn is securely connected}
≤ Pr {There is no isolated node in Gn}
= 1− Pr {There exist isolated nodes in Gn}
≤ 1− Pr {The legitimate node i is isolated} . (9)

If there is no node that can receive from node i securely,
then it is isolated. Let Imin be the minimum interference
that could possibly be experienced by a potential receiver
of node i in the network. Let d be the Euclidean distance
between node i and its receiver. By equation (5), it follows
that only when Pd−α

N0+Imin
> P‖xi−et‖−α

N0+Iet
, where Iet denotes the

interference at eavesdropper et, the transmission from node i
to its receiver could possibly be successful. In other words, if
there is no other legitimate node within a Euclidean distance

of ‖xi − et‖
(
N0+Imin
N0+Iet

)− 1
α

to node i, then node i is isolated.
Because Π is a Poisson point process with unit intensity, we
have

Pr {The legitimate node i is isolated}

≥ exp

(
−π
(
N0 + Imin

N0 + Iet

)− 2
α

‖xi − et‖2
)

=

∫ ∞
0

exp

(
−π
(
N0 + Imin

N0 + Iet

)− 2
α

x

)
× π exp (−πx) dx

=
1(

N0+Iet
N0+Imin

) 2
α

+ 1

. (10)

By (10) and (9), conclusion follows that
Pr {The network is connected} ≤ 1− 1(

N0+Iet
N0+Imin

) 2
α+1

.

The above discussion shows that in the case of non-
colluding eavesdroppers, given that an eavesdropper exists in
Bn, the legitimate node nearest to this eavesdropper is isolated
with a probability that can not be made arbitrarily small by
reducing λe. On the other hand, if the ratio of N0+Iet

N0+Imin
do not

goes to infinity, the probability that the network is securely
connected will be upper bounded by a small positive constant.
Therefore, to improve secure connectivity of the network, it
is necessary that legitimate nodes generate artificial noise to
suppress eavesdropping.

B. A sufficient condition

Since we have established the necessity of having legitimate
nodes generating artificial noise to improve secrecy connectiv-
ity, in this subsection we establish sufficient conditions on the
transmission power and the noise generating power required
for the network to be securely connected a.a.s..

A major challenge of the secrecy connectivity analysis is
that the existence of a connection between a pair of legitimate

nodes depends on both the locations and activities of other
legitimate nodes and eavesdroppers. To solve the difficulty
caused by this correlation on theoretical analysis, we resort
to the coupling technique [15]. Specifically, we first establish
an upper bound on the interference at any legitimate receiver,
then we derive a lower bound on the secrecy rate between
any two legitimate nodes, and finally we obtain a sufficient
condition for a.a.s. secrecy connectivity by resorting to the
coupling between the secrecy connection model and the unit
disk model.

The following lemma establishes an upper bound on the
interference at any legitimate receiver in the network.

Lemma 1. Denote by r0 the Euclidean distance between a
receiver and its intended transmitter in the network, which is
also the intended transmitter for the receiver. When r0 < Rc,
the maximum interference at the receiver is smaller than or
equal to I (r0), where

I (r0) = 6P (Rc − r0)
−α

+ 6Pr

+
8P
(

3
√

3
4 Rc − r0

)1−α (
3
√

3
4 (α− 1)Rc − r0

)
R2
c (α− 1) (α− 2)

+
8Pr

(
3
√

3−4
4 Rc − r0

)1−α (
1
4

(
3
√

3α− 3
√

3− 4
)
Rc − r0

)
R2
c (α− 1) (α− 2)

(11)

Remark 2. In the proof of Lemma 1, it is assumed that each
legitimate node communicate with other nodes located no
further than a distance of Rc. This assumption is valid in
most wireless systems which not only require the SINR to
be above a threshold but also require the received signal to be
of sufficiently good quality.

Proof: Consider that an arbitrary legitimate node, say
node i, is transmitting to a legitimate node at a Euclidean dis-
tance of r0 away. Note that the distance between any two con-
current transmitters is at least Rc. Draw a circle of radius Rc/2
centered at each transmitter. Then the two circles centered at
two closest transmitters cannot overlap except at a single point.
Pack these equal-radius non-overlapping circles in the densest
way around node i, which is done by placing the circle centers
at the vertices of a hexagonal lattice [24]. Group the vertices of
the hexagonal lattice into tiers of increasing distances from the
origin. The six vertices of the first tier are within a Euclidean
distance Rc to the origin. The 6m vertices of the mth tier
are located at distances within ((m− 1)Rc,mRc] from the
origin. By (4), the interference at the intended receiver due to
the six closest transmitters and associated receivers is smaller
than or equal to 6P (Rc − r0)

−α
+ 6Pr; the interference at

the intended receiver due to the 6m transmitters the mth

tier and their associated receivers is smaller than or equal

to 6mP
(√

3
2 mRc − r0

)−α
+6mPr

(√
3

2 mRc −Rc − r0

)−α
.

Taking into account the interference generated by all of the
concurrent transmitters and receivers, the interference at the
intended receiver can be upper bounded as follows:

I (r0) ≤ 6P (Rc − r0)
−α

+6Pr+

∞∑
m=2

6mP

(√
3

2
mRc−r0

)−α
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+

∞∑
m=2

6mPr

(√
3

2
mRc −Rc − r0

)−α
(12)

Look at the first summation in (12). Let Um,m = 2, . . . ,∞, be
random variables uniformly and i.i.d. in [m− 1/2, m+ 1/2].

It follows from the convexity of 6mP
(√

3
2 mRc − r0

)−α
and

Jensen’s inequality (used in the second step) that

∞∑
m=2

6mP

(√
3

2
mRc − r0

)−α

=

∞∑
m=2

6E [Um]P

(√
3

2
E [Um]Rc − r0

)−α

≤
∞∑
m=2

E

6mP

(√
3

2
mRc − r0

)−α
=

8P
(

3
√

3
4 Rc − r0

)1−α (
3
√

3
4 (α− 1)Rc − r0

)
R2
c (α− 1) (α− 2)

.(13)

Likewise, we also have
∞∑
m=2

6mPr

(√
3

2
mRc −Rc − r0

)−α

≤
8Pr

(
3
√

3−4
4 Rc − r0

)1−α(
1
4

(
3
√

3α− 3
√

3− 4
)
Rc − r0

)
R2
c (α− 1) (α− 2)

.(14)

Combining (13), (13) and (14), the Lemma is proved.
Using Lemma 1, the following result can be obtained.

Lemma 3. For any legitimate transmitter-receiver pair that is
separated by an Euclidean distance of r0 and r0 < Rc, the
secrecy rate between them is lower bounded by

Rs(r0)=

[
log2

(
1+

Pr−α0

N0 + I (r0)

)
−log2

(
1+

P

Pr
(1 + r0)

α

)]+

(15)
where I (r0) is given by (11).

Proof: First we derive an upper bound on the maximum
rate that an eavesdropper can obtain. Consider an arbitrary
eavesdropper et who is overhearing the transmission from
legitimate node i to legitimate node j. Let r0 = ‖xi − xj‖,
r1 = ‖xi − et‖ and r2 = ‖xj − et‖. Using equation (5), we
have

SINR (xi → et)

=
P ‖xi − et‖−α

N0 +
∑
k∈Ti

P ‖xk − et‖−α +
∑
k∈Uj

Pr ‖xk − et‖−α

≤ Pr−α1

Prr
−α
2

(16)

≤ Pr−α1

Pr (r0 + r1)
−α =

P

Pr

(
1 +

r0

r1

)α
. (17)

The SINR (xi → et) depends critically on r1. Consider the
following two cases, namely when r1 ≥ 1 and r1 < 1. When
r1 ≥ 1, it is straightforward that RHS of (17) is less than or
equal to P

Pr
(1 + r0)

α. When r1 < 1, it follows from (16) and

(4) that Pr−α1

Prr
−α
2

= P
Prr

−α
2

≤ P
Pr

(r1 + r0)
α
< P

Pr
(1 + r0)

α.
Therefore, the maximum SINR that any eavesdropper can have
by overhearing a transmission between two legitimate nodes
spaced by an Euclidean distance r0 is upper bounded by

P

Pr
(1 + r0)

α , SINRue . (18)

Combining (6) with Lemma 1, the proof is completed.

Remark 4. The lower bound in (15) does not depend on the
intensity of eavesdroppers. Due to (4), even if an eavesdropper
is very close to a legitimate transmitter, the received signal is
still less than or equal to P . Hence, non-colluding eavesdrop-
pers can not achieve arbitrarily high rate simply by increasing
their intensity.

The following lemma is a ready consequence of Lemma 3.

Lemma 5. Assume that the threshold of secrecy rate is %. Let
the noise generation power Pr = PRαc . There exists a secrecy
transmission range Rs such that a pair of legitimate nodes are
securely connected if their Euclidean distance is smaller than
or equal to Rs, given implicitly by

log2

(
1 +

PR−αs
N0 + I (Rs)

)
− log2

(
1 +R−αc (1 +Rs)

α)
= %.

(19)

Proof: Lemma 3 establishes that the secrecy rate from
a legitimate transmitter to its receiver at a distance r0 is
lower bounded by Rs (r0). Note that, for r0 < Rc, Rs (r0)
is decreasing with r0. Hence, using (15) the secrecy rate of
a legitimate receiver at r0 ≤ Rs from its transmitter meets
Rs (r0) ≥ Rs (Rs) ≥ %. By symmetry, when the transmission
occurs in the opposite direction, the secrecy rate is also lower
bounded byRs (Rs). Therefore, the secrecy rate is also greater
than or equal to %.

The existence of a unique solution to (19) can be proved
by noting that Rs (r0) → ∞ as r0 → 0, Rs (r0) →
log 1

1+(1+ 1
Rc

)
α < 0 as r0 → R−c and that Rs (r0) is

monotonically decreasing with r0.
We define βe = 2% such that node j is directly connected

to node i if 1+SINR(xi→xj)
1+SINR(xi→e∗) ≥ βe. Based on (19), Figure 1

shows the ratio of Rc
Rs

as a function of βe, and Figure 2 shows
the ratio of Rc

Rs
as a function of %, for different choices of α.

It can be seen from Figure 2 that the required transmission
power for achieving a moderate level of security, i.e., a small
%, is low, however the transmission power must be increased
significantly to achieve a high level of security.

The following result is obtained, based on the secrecy
transmission range Rs derived in Lemma 5.

Theorem 6. Let Pr = PRαc . The legitimate network Gn is
a.a.s. connected if the transmission power

P = PthR
′α
c ,

where R′c is the solution to Rs (r (n)) = %, r (n) =√
logn+c(n)

π , c (n) = o (log n) and c (n)→∞ as n→∞.

Proof: Under the unit disk model, a pair of nodes are
directly connected iff their Euclidean distance is smaller than
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Figure 1. Variation of the ratio Rc
Rs

with βe = 2% when the path loss exponent
α equals to 2.5, 3 and 4, respectively.

Figure 2. Variation of the ratio Rc
Rs

with the threshold of MSR % when the
path loss exponent α equals to 2.5, 3 and 4, respectively.

or equal to a given threshold r (n). Based on the secrecy
transmission range Rs derived in Lemma 5, coupling the
secrecy connection model with the unit disk model and letting
r (n) = Rs, if a pair of legitimate nodes are connected under
the unit disk model, then they will also be securely connected
under the secrecy connection model.

The results in [18] show that for a network formed by
Poisson nodes with unit intensity located in a

√
n×
√
n square

and using unit disk model, the network is a.a.s. connected as

n→∞ iff r (n) =
√

logn+c(n)
π where c (n)→∞ as n→∞.

Using this result, combining Rs = r (n), Pr = PRαc and (8),
and solving (19) for Rc, the result in the theorem follows.

V. COLLUDING EAVESDROPPERS

In this section, it is assumed that eavesdroppers have the
ability to collude, i.e., they can collaborate to exchange and
combine the received information by all the eavesdroppers to
decode the secret messages. We assume that the maximum
ratio combining [7] is used by eavesdroppers to maximize their
SINR. In this case, MSR of a transmission from xi to xj is
given by (7).

It can be seen from (7) that the intensity of eavesdroppers
has a critical impact on MSR through the summation item in
(7). The following lemma shows that with the constraint on
the intensity of eavesdroppers, i.e., λe = O (n−ρ) and ρ > 0,
the secrecy rate of any legitimate transmission can be lower
bounded. This result will later be used to derive a sufficient
condition on transmission power and noise generating power
for network connectivity in the case of colluding eavesdrop-
pers.

Lemma 7. Suppose the eavesdroppers are Poissonly dis-
tributed with intensity λe = O (n−ρ) and ρ > 0. In the case

of colluding eavesdroppers, for any legitimate transmitter-
receiver pair that is separated by an Euclidean distance of
r0, the secrecy rate between them is greater than or equal to

Rsc (r0) =

[
log2

(
1+

Pr−α0

N0 + I (r0)

)
− log2

(
η̄
P

Pr
(1 + r0)

α
+η̄

P

N0

2

α− 2

( a
π

)−α2)]+

where I (r0) is given by (11) , and η̄ =
⌈

1
ρ

⌉
+ 1, and a is a

constant such that aλe < 1.

Proof: Considering an arbitrary pair of legitimate nodes
xi and xj , we partition the network into disjoint concentric
annulus centered at the transmitter xi. Each concentric annulus
is of the same constant size of a. Let rk be the external
diameter of the kth ring and a = πr2

1 = π
(
r2
k − r2

k−1

)
for

k > 1. Next, we first show that the number of eavesdroppers
inside each annulus is less than or equal to η̄ =

⌈
1
ρ

⌉
+1 a.a.s.

as n → ∞, then we show that the accumulated SINR at all
eavesdroppers in the network is upper bounded.

Denote by ηk the number of eavesdroppers in the kth ring
and 1 ≤ k < n

a . Let η be the expected value of ηk. The value
of a can be easily chosen in a way such that η = aλe < 1
and it follows that

Pr [ηk ≥ η̄] =

∞∑
k=η̄

ηk

k!
e−η ≤ e−η

η̄!

∞∑
k=η̄

ηk =
e−ηηη̄

η̄!

∞∑
k=0

ηk

=
e−ηηη̄

η̄!
× 1

1− η
=

e−aλe

1− aλe
× (aλe)

η̄

η̄!
→ 0

as n → ∞. Next we use the union bound on all rings and
obtain

Pr

 n
a⋃
i=1

ηk ≥ η̄


≤ n

a
× e−ηηη̄

η̄!
× 1

1− η
= nηη̄

e−η

a× η̄!× (1− η)

≤ n
(
an−ρ

)η̄ e−η

a× η̄!× (1− η)

= n1−ρd 1
ρe−ρ e−ηaη̄−1

η̄!× (1− η)
→ 0

as n→∞. Hence, the number of eavesdroppers in each ring
is less than or equal to η̄ a.a.s. as n→∞.

Note that the distance from the legitimate transmitter to an
eavesdropper in the kth ring is at least rk−1. Let Ek denote
the set of indices of all eavesdroppers in the kth ring. With
the upper bound on the SINR at any individual eavesdropper,
given by (18), we calculate the accumulated SINR at all
eavesdroppers as∑

t∈E
SINR (xi → et) ≤

∞∑
k=1

∑
t∈Ek

SINR (xi → et)

≤ η̄SINRue +
∞∑
k=2

∑
t∈Ek

P ‖xi − et‖−α

N0 +
∑
h∈Ti

P ‖xh − et‖−α +
∑
h∈Uj

Pr ‖xh − et‖−α
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≤ η̄SINRue +

∞∑
k=2

η̄
P r−αk−1

N0

= η̄

(
P

Pr
(1 + r0)

α
+

∞∑
k=2

Pr−αk−1

N0

)
Since a = πr2

1 = π
(
r2
k − r2

k−1

)
for k > 1, we have rk =√

kr1. We continue to write∑
t∈E

SINR (xi → et)

≤ η̄

(
P

Pr
(1 + r0)

α
+

P

N0

∞∑
k=1

(√
kr1

)−α)

= η̄

(
P

Pr
(1 + r0)

α
+

P

N0
r−α1

∞∑
k=1

k−
α
2

)

≤ η̄

(
P

Pr
(1 + r0)

α
+

P

N0

2r−α1

α− 2

)
= η̄

P

Pr
(1 + r0)

α
+ η̄

P

N0

2

α− 2

( a
π

)−α2
.

Therefore, the secrecy rate between any pair of legitimate
nodes is greater than or equal to

Rsc (r0) = log2

(
1 +

Pr−α0

I (r0)

)
− log2

(
η̄
P

Pr
(1 + r0)

α
+ η̄

P

N0

2

α− 2

( a
π

)−α2)
.

The proof is completed.

Theorem 8. Suppose the eavesdroppers are Poissonly dis-
tributed with intensity λe = O (n−ρ) and ρ > 0. Let
Pr = PRαc . The legitimate network Gn is a.a.s. connected if
the transmission power P = PthR

′α
cc , where R′cc is the solution

to Rsc (r (n)) = %, r (n) =
√

logn+c(n)
π , c (n) = o (log n)

and c (n)→∞ as n→∞.

Proof: Following the same argument used in Lemma 5, in
the case of colluding eavesdroppers, there exists a transmission
range Rsc such that a pair of legitimate nodes are securely
connected if their Euclidean distance is smaller than or equal to
Rsc, given implicitly by Rsc (Rsc) = %. Letting Rsc = r (n)
and solving Rsc (r (n)) = % for Rc, the result in the theorem
follows.

VI. CONCLUSIONS

In this work, we studied the secrecy connectivity of large-
scale wireless multi-hop networks. It was shown that the
intensity of eavesdroppers has a critical impact on the se-
crecy connectivity in the colluding scenario, but comparatively
less impact in the non-colluding scenario. Considering the
scenarios of both non-colluding and colluding eavesdroppers,
we provide sufficient conditions on the transmission power
and the noise generation power required for a network with
known intensity of eavesdroppers to be a.a.s. connected with
secrecy constraint as n → ∞. The results suggest that the
required transmission power for achieving a moderate level
of security is low, while the transmission power must be
increased significantly to achieve a high level of security.
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