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Abstract—Mobile communication standards were developed for 
enhancing transmission and network performance by using more 
radio resources and improving spectrum and energy efficiency. 
How to effectively address diverse user requirements and 
guarantee everyone's Quality of Experience (QoE) remains an 
open problem. The Sixth Generation (6G) mobile systems will 
solve this problem by utilizing heterogenous network resources 
and pervasive intelligence to support everyone-centric customized 
services anywhere and anytime. In this article, we first coin the 
concept of Service Requirement Zone (SRZ) on the user side to 
characterize and visualize the integrated service requirements and 
preferences of specific tasks of individual users. On the system 
side, we further introduce the concept of User Satisfaction Ratio 
(USR) to evaluate the system’s overall service ability of satisfying 
a variety of tasks with different SRZs. Then, we propose a network 
Artificial Intelligence (AI) architecture with integrated network 
resources and pervasive AI capabilities for supporting customized 
services with guaranteed QoEs. Finally, extensive simulations 
show that the proposed network AI architecture can consistently 
offer a higher USR performance than the cloud AI and edge AI 
architectures with respect to different task scheduling algorithms, 
random service requirements, and dynamic network conditions. 
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I. INTRODUCTION 
Recently, the global development and application of Internet 

of Things (IoTs) have accelerated the digitalization of the 
physical world and human society. To exploit the commercial 
values of massive IoT data, we use Artificial Intelligence (AI) 
algorithms to integrate user requirements, domain knowledge, 
operation procedures, and business models in different 
application scenarios. To improve user satisfaction in public 
services, data from user devices and public facilities can be 
utilized by self-learning algorithms to meet each user’s personal 
requirements and preferences [1]. For manufacturing 
applications, data from industrial automated control devices in 
assembly lines can be analyzed by AI algorithms to improve 
efficiency, productive force, and safety, and to reduce cost, 
energy consumption, and carbon emissions. Eventually, a 
digital world will emerge, where all kinds of distributed IoT 
devices/things will contribute to and benefit from an intelligent, 
adaptive, and collaborative network architecture [2].  
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The Sixth Generation (6G) mobile communication systems 
will be different from the Fifth Generation (5G) systems in 
three important aspects. First, in terms of goals, 5G aims at 
radical improvements of network Key Performance Indicators 
(KPIs), such as peak data rate, spectrum efficiency, energy 
efficiency, service coverage, device density, and air-interface 
delay, by at least ten times comparing to the Fourth Generation 
(4G) systems. 5G continues to provide predefined “standard” 
services, such as enhanced Mobile BroadBand (eMBB), Ultra 
Reliable Low Latency Communications (URLLC), and 
massive Machine Type Communications (mMTC), for 
different groups of users, just like 4G did for urban, sub-urban, 
and rural users. This traditional “user-centric” service model 
could only provide good average performance for a group of 
typical users in similar locations or application scenarios. 
However, the goal of 6G is to provide “everyone-centric 
customized” services according to the integrated, dynamic, and 
multi-dimensional service requirements of different user tasks 
[3]. In order to guarantee everyone’s Quality of Experience 
(QoE) in customized services, adaptive End-to-End (E2E) 
system formulation and service provisioning algorithms are 
needed for different application scenarios and network 
conditions [16]. Building upon the digital world, advanced IoT 
and AI technologies will accelerate the evolution towards this 
ambitious goal of 6G, thus achieving the finest service 
granularity at the task level for guaranteeing every user’s 
personalized QoE. 

 
Second, in terms of approaches, 5G has improved a set of 

network KPIs by committing more resources, such as frequency 
spectrum, transmission power, antenna arrays, denser cells, 
cloud computing, and complex algorithms. This “technology-
driven” approach cannot suit new and evolving applications, as 
KPIs are hard to satisfy without understanding dynamic user 
requirements and traffic flows. As delay-sensitive broadband 
applications such as autonomous driving and interactive Virtual 
Reality/Augmented Reality (VR/AR) games grow explosively, 
5G is unable to deliver massive data on time over a limited 
network bandwidth and, consequently, cloud computing cannot 
guarantee satisfactory QoEs. In contrast, 6G will adopt a 
sustainable “service-oriented” approach, which integrates and 
exploits ubiquitous system resources of Sensing, Storage, 
Communication, Computing, Control, and AI (S2C3A) from 
cloud, to network, and to edge for supporting different types of 
AI methods and customized services with multi-dimensional 
personal requirements [4-10]. This capability will continue all 
the way to user devices/things and can agilely address sudden 
changes due to the unexpected reasons such as user behaviors, 
application scenarios, and network conditions. Heterogenous 
network resources and pervasive AI algorithms will be shared 
and orchestrated to customize E2E service provisioning, 
optimize network operation, and achieve customer well-being 
at different locations and time scales [11] [12].  

 
Third, in terms of impacts, 5G is playing the key role in the 

digital transformation, while 6G is envisioned to lead the 
intelligent transformation of services, applications, businesses, 

and societies for the future. This vision will be realized not only 
by improving network KPIs in different application scenarios, 
but more importantly, by utilizing heterogenous network 
resources and ubiquitous AI algorithms from the cloud to the 
edge. 6G will create novel cross-domain innovation ecosystems 
by enabling effective integration, analysis, and collaboration of 
disparate data from different business domains, industrial 
sectors, application scenarios, geographic locations, and digital 
societies. During the process of intelligent transformation, these 
ecosystems will jointly consider diverse requirements from 
multiple perspectives, develop holistic solutions with various 
objectives, and produce huge amounts of benefits for social 
progress and economic growth. Novel digital infrastructures, 
application cases, collaboration paradigms, and business 
models will be invented and deployed as the cornerstones for 
establishing our intelligent society [13] [14].  

 
This article proposes a network AI architecture to facilitate 

the developments and applications of pervasive AI methods and 
intelligent customized services in future 6G mobile networks. 
Our main contributions are summarized as follows. 
 
(i) To visualize the complex and dynamic requirements 

from each user task, we coin the concept of Service 
Requirement Zone (SRZ) that characterizes its multi-
dimensional service requirements by using a set of E2E 
performance bounds, which jointly determine the user’s 
overall QoE. 

(ii) To measure a 6G system’s service ability of guaranteeing 
everyone’s QoE, we introduce the concept of User 
Satisfaction Ratio (USR) that calculates the percentage of 
satisfied tasks among all served tasks over a period of 
time by comparing their individual SRZs one-by-one 
against achieved performance results. 

(iii) To pursue high QoE and USR in 6G systems, we propose 
the network AI architecture with multi-tier, multi-
function Nodes (mNodes) as its basic elements that 
integrate local system resources of S2C3A to provide a 
native AI service platform for serving diverse tasks with 
customized SRZs. 

(iv) To evaluate the performance of the proposed network AI 
architecture, we conduct extensive computer simulations, 
and the results show that it can achieve the highest USR 
under dynamic service requirements and network 
conditions, in comparison with the existing cloud AI and 
edge AI architectures. 

The rest of this article is organized as follows. Section II 
introduces the concept of SRZ for every task from each user. 
Next, Section III defines the performance metric of USR for 
evaluating the overall service ability of a system. The network 
AI architecture is then proposed and discussed in Section IV. 
Section V shows and analyzes the extensive simulation results 
for three AI architectures under dynamic service requirements 
and network conditions. Several key research challenges are 
then identified and elaborated as the future work in Section VI. 
Finally, Section VII concludes this article. 
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Fig. 1 Service Requirement Zone. 

 

II. SERVICE REQUIREMENT ZONE 
Radar charts with multiple KPIs have been widely used to 

indicate the technology advancements and capability 
enhancements from an aggregated system’s perspective [4] 
[14]. Unlike this traditional approach, we apply radar charts to 
visualize the SRZ of every task for characterizing the user’s 
integrated, multi-dimensional service requirements and 
preferences. Some network KPIs are not directly relevant to a 
user’s own service experience, e.g., device density, peak data 
rate, and network capacity. However, many service KPIs are 
critical for his/her QoE because they jointly determine the 
personalized SRZ.  

As an example, Fig. 1 shows eight service KPIs that define 
the eight-dimensional SRZ on an octagonal radar chart, i.e., the 
brown zone. Note that, for a particular task, the user 
requirements on storage, data rate, security, reliability, and 
knowledge are actually the performance lower bounds, while 
the requirements on cost, delay, and energy consumption are 
the upper bounds. Since the system can certainly achieve much 
better performance than these KPI bounds of a single user task, 
the radar chart is colored in from the origin (i.e., the minimal 
values for the three upper bounds) to the dashed lines outside 
the chart, which represent the maximal system performance 
values for the five lower bounds. The dimension and shape of 
each SRZ could be determined by different types of users and 
application requirements, such as by professional users in 
premium services and by application developers for general 
users in standard services. In general, a larger SRZ with wider 
area indicates lower service requirements, and vice versa.  

Referring to Fig. 1, User-A on the left-hand side is playing an 
interactive VR/AR game with a group of virtual friends in the 
Metaverse. The SRZ of this task requests a low E2E service 
delay, a standard energy consumption, instant storage and 
caching of a large amount of user data, a high transmission data 
rate, normal security and privacy protection, an ultra-reliable 
and stable experience during the service process, rich domain-

specific knowledge and capability for 3D graphic rendering, as 
well as a reasonable cost. On the right-hand side, User-B is 
using a mobile banking service for money transfer. The 
corresponding SRZ consists of a medium service delay, a low 
energy consumption, small data storage and caching, a normal 
transmission data rate, strong security and privacy protection, a 
standard service reliability, no additional domain-specific 
knowledge, and a low cost. To satisfy diverse SRZs, adaptive 
E2E service provisioning algorithms are crucial in supporting 
integrated, multi-dimensional service requirements from 
different tasks.  

In order to guarantee each user’s QoE, future 6G systems 
should integrate and orchestrate heterogenous network 
resources across multiple domains for providing everyone-
centric customized services anywhere and anytime, thus 
shifting network slicing technology to the finest granularity at 
the task level. Such task-specific SRZs might look like a huge 
burden for the corresponding users. However, in practice, each 
type of tasks has the similar SRZ, i.e., the de facto service model 
for a group of users. The typical SRZs for interactive VR/AR 
online games and mobile banking services are given in Fig. 1. 
Despite dynamic user behaviors and service environments, 
these SRZs are quite stable because most users usually do not 
compromise their service requirements and QoEs, unless 
service continuity and high quality cannot be satisfied at the 
same time. In this case, some users may accept an expanded 
SRZ with lower requirements and degraded quality for 
maintaining service continuity, say in a high-speed train. 6G 
systems with pervasive intelligence should be able to efficiently 
identify, allocate, and manage heterogenous network resources 
for a variety of tasks in different user environments, application 
scenarios, and network conditions. 

 

III. USER SATISFACTION RATIO 
The dynamic SRZs of various tasks are used as the QoE targets 

for customized service provisioning and performance optimization 
in 6G. Referring to the SRZs in Fig. 1, if the achieved system
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(a) Deployments of Cloud, Edge, and Network AI 
Architectures.  

(b) System Model. 

Fig.2 Three AI Architectures and the System Model

performance results in multiple dimensions are all located 
within the brown zone, the corresponding user will feel 
satisfied. Then, the counters for served tasks  and satisfied 
tasks  are both increased by one. Otherwise, this service has 
failed and only  is increased by one. For a given period of 
time, the USR is calculated as the ratio between the number of 
satisfied tasks  and the total number of served tasks , i.e.,  = . (1) 

Individually, every user could have these two counters and 
calculate the USR to indicate his/her personal QoE with the 
network operator or service provider. Collectively, the USR can 
be applied to evaluate a 6G system’s overall service ability in 
satisfying individual SRZs of a variety of tasks, not regarding 
any specific user locations, application scenarios, network 
conditions, or operation environments. In the rest of this article, 
the USR is used as an effective, fair, and general performance 
metric of the whole system.  

 
Consider different systems with a similar amount of network 

resources. The higher the USR is, the more intelligent a system 
is in utilizing limited network resources for efficiently serving 
diverse tasks with individual SRZs. 5G today is mainly focused 
on improving separate and objective KPIs at the supply side, 
such as signal strength, service coverage, device density, and 
spectrum and energy efficiency. However, 6G seeks to satisfy 
every user’s personal and subjective requirements denoted by 
SRZs at the demand side. Heterogenous 6G network resources 
in multiple domains should be effectively integrated and 
exploited to jointly enhance everyone’s QoE and the system’s 
USR.  

 
The calculation of USR is based on the binary, hard decision 

according to every task’s SRZ, i.e., whether or not the system 
can satisfy the task-specific KPIs simultaneously. Besides this 
binary classification method, the definitions of SRZ and USR 
can be extended to multiple scales from the user side and the 
system side, respectively. First, we can assign different 
coefficients to prioritize the KPIs that are more important to 
particular tasks or users. Hence, the weighed SRZ is obtained 
by considering different degrees of importance for selected 
KPIs. Second, we can introduce a multi-step, soft-decision 
method to produce an acceptable performance zone on top of a 
task’s SRZ by loosening its requirements on some KPIs. For 
example, everyone likes watching high-definition videos at 
home, but most of us would accept low-quality (low data rate) 
videos in a high-speed train. Hence, the stepped USR is derived 
by considering different levels of satisfaction on selected KPIs.  
 

IV. THREE AI ARCHITECTURES AND THE SYSTEM MODEL 

1. The Cloud AI and Edge AI Architectures 
In the era of 5G, the cloud AI architecture has been widely 

adopted to provide centralized computing services, such as 
big data analysis and AI training and inference. The 
conventional “cloud-pipe-terminal” structure decouples the 
data sensing functions at user terminals, the communication 
functions in mobile networks (a.k.a. the pipe), and the 
computing functions or the AI-enabled analytical services on 
the cloud [12]. This is simply a combination of the existing 
infrastructures of Data Technology (DT), Communication 
Technology (CT), and Information Technology (IT). It is 
very challenging to coordinate these separate functions in 
multiple facilities for effectively providing an agile, smooth, 
and stable service with guaranteed QoE.  
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In order to solve the problem of low speed, long delay, poor 
privacy, and high carbon emissions in centralized AI 
applications on the cloud, the edge AI architecture extends 
the computing capability from the cloud to the locations 
physically closer to end users. Although the costs for 
deploying edge clouds (also called cloudlets) widely in the 
neighborhood are very high, this “cloud-edge-terminal” 
structure is getting popular in various application scenarios 
with high added values. This is because it is much more 
effective in supporting computing-intensive, delay-
constrained, security-assured, and privacy-sensitive 
applications, such as interactive VR/AR games, autonomous 
driving, and intelligent manufacturing.  

As shown in Fig. 2 (a), central, local, and edge clouds are 
connected by high-speed, expensive bearer networks, which 
are just the traffic pipes with huge bandwidth. They are 
considered as affiliated computing resources for enhancing 
the AI service capabilities in different application scenarios 
and network locations. Strictly speaking, local and edge 
clouds are deployed as affiliated Over-The-Top (OTT) 
services to support computing-intensive applications. They 
are usually co-located with the existing network elements, 
but not embedded in mobile networks. Thus, cross-domain 
resource coordination and service orchestration between 
these local/edge clouds and end users require round-trip data 
transmissions through the mobile network. The actual 
service procedure is very complicated, time-consuming, and 
expensive, and may generate a series of management and 
technical problems such as redundant deployment costs, 
circuitous data paths, and frequent desynchronized 
cooperation. It is very difficult for the cloud AI and edge AI 
architectures to guarantee E2E QoE for sophisticated cross-
domain services in dynamic application scenarios and 
mobile environments. 

2. The Network AI Architecture with Multi-tier mNodes 
To address those challenging problems, two-level digital 

twins and edge-cloud cybertwins are proposed in the cyber 
space [8] and the service network [9], respectively. In this 
article, we propose the network AI architecture with multi-
tier mNodes to integrate and coordinate cross-domain S2C3A 
resources for processing local/regional user data, executing 
distributed AI algorithms, and providing customized services 
for everyone as closely as possible. This architecture shifts 
the classic design paradigm that assumes mobile networks 
only as the pipe for data transmissions. Based on the 
hierarchy of mNodes, heterogeneous network resources and 
separate functions are effectively integrated to support cross-
domain, wide-area, and delay-sensitive applications, e.g., 
autonomous driving. Compared with the edge AI, the 
proposed network AI architecture can achieve a better 
balance between E2E service performance, management 
overhead, and deployment and maintenance costs. 
 

As the key 6G network element, an mNode will not only 
coordinate local resources as a Service Provider does for E2E 
service auction [16], but also integrate the basic S2C3A 
resources and multiple functions to support QoE-guaranteed, 
everyone-centric customized services. Different from 
traditional rigid hardware deployments with dedicated duties 

and separate functions in either Radio Access Network 
(RAN) or Core Network (CN), the mNodes will adopt 
advanced Network Function Virtualization (NFV) 
technologies and play different roles as needed inside 6G 
mobile networks, such as the e/g Node Base-station (xNB), 
the P/S-Gateway (xGW), the Access and Mobility 
Management Function (AMF), and edge/fog service nodes. 
Besides general-purpose computing units, it is envisaged that 
more and more AI processors will be widely integrated and 
shared by the mNodes to provide the 6G native AI service 
platform. Based on this, most tasks with smaller SRZs, i.e., 
stringent KPIs on data rate, delay, security, privacy, and 
energy consumption, will be automatically assigned to the 
nearby mNodes, thus satisfying everyone’s QoE with 
personal service requirements in dynamic user environments, 
application scenarios, and network conditions. 

In Fig. 2 (a), the proposed network AI architecture consists 
of three key units and constructs a comprehensive, 
distributed, and scalable AI as a Service (AIaaS) platform in 
6G. First, the network infrastructure is composed of 
dispersive mNodes in multi-tier mobile networks. Second, 
each Network AI Logic and Control (NALC) unit is task-
oriented and manages the multi-tier mNodes in a specific 
local/regional area through effective signaling schemes. In 
6G mobile networks, a NALC coordinates the integrated 
S2C3A resources and functions for serving every task in 
realtime and near-realtime applications, i.e., E2E delay 
ranges from milliseconds to tens of milliseconds. The 
customized service procedure and personal QoE of every 
task are constantly monitored and optimized by a 
corresponding NALC. Third, a Network AI Management 
and Orchestration (NAMO) unit manages the AIaaS 
platform with multiple NALCs to support wide-area 
applications by cross-domain resource coordination, service 
orchestration, and E2E QoE guaranteeing protocols. In 6G 
systems, NALC and NAMO should work close together to 
effectively balance the service requirements on short E2E 
delay and wide service coverage in different application 
scenarios. For the cases that other IT vendors are willing to 
contribute additional cloud and edge computing resources, 
NAMO will coordinate multi-vendor resources to support 
complex applications across different AI architectures. 
Therefore, the proposed network AI architecture can either 
serve various tasks independently, or complement with the 
cloud AI and edge AI architectures to satisfy sophisticated 
user requirements with challenging SRZ targets. 

3. System Model 
To study a typical 6G system with dispersive computing 

resources and pervasive intelligence, Fig. 2 (b) shows a 
general system model for different AI architectures. Let us 
consider a series of tasks, each having a customized SRZ, 
arriving at the system with rate λ tasks per second. These 
tasks are generated randomly either by end users enjoying 
mobile internet services or by various devices and things 
embedded in industrial IoT applications. As discussed, 
simply deploying more computing resources as the affiliated 
AI capabilities in access networks and bearer networks, 
while keeping different service functions separated (as in 
previous generations of mobile networks), would generate  
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Table 1.  Simulation Parameters. 

 Parameter   Value 

User Task: 
Demand Side 

Task Density/Arrival Rate  [1000, 3000] (tasks per second) 
Delay Bound  E[ ]=1600 (seconds), Var( )=50 

Energy Bound  E[ ]=1.85(kW·h), Var( )=0.05 

Task Size Z E[Z] [4.8 × 10 , 7.2 × 10 ](bytes) 
Var(Z)=1 × 10  

Computing Requirement U E[U] [0.4 × 10 , 1.0 × 10 ] (teraFLOPS) 
Var(U)=1.0 

6G System: 
Supply Side 

                      Cloud AI Edge AI Network AI 

Computing Overhead 0 28800 (teraFLOPS) 
36400 (teraFLOPS) 

Effective Computing Power 140000 
(teraFLOPS) 

111200 (teraFLOPS) 
103600 (teraFLOPS) 

Cloud 
Computing 
Power  

140000 (teraFLOPS) 
100000 (teraFLOPS) 

70000 (teraFLOPS) 
Data Rate  2500 (Mbps) 

3 -tier mNode 

Number  0 0 10 
Computing 
Power  - - 1120 (teraFLOPS) 

Data rate  E[ ] [1600, 2500] (Mbps), Var( )=100 

2 -tier mNode 

Number  0 0 100 
Computing 
Power  - - 112 (teraFLOPS) 

Data Rate  E[ ] [400, 625] (Mbps), Var( )=25 

1 -tier mNode 

Number  0 1000 1000 
Computing 
Power  - 11.2(teraFLOPS) 

11.2 
(teraFLOPS) 

Data Rate  E[ ] [56, 87.5] (Mbps), Var( )=7 
Algorithms: 
Supply Side 

Fair Equal Scheduling (FES) 100% 50% : 50% 25:25:25:25 % 
The Closer The Better (TCTB) 100% 80% : 20% 80: 10: 5: 5 % 

significant management and technical problems. Therefore, 
without loss of generality, we consider a three-tier network AI 
architecture with three types of mNodes, which are represented 
by blue rectangular boxes. The number of mNodes, the 
computing power (FLOPS: floating-point operations per 
second), and the network data rate (bytes per second) in the ith-
tier are denoted by , , and , respectively. Above them sits 
a cloud, which has the highest data rate  and the strongest 
computing power . This system model can be easily 
simplified to represent the cloud AI and edge AI architectures 
by setting = 0 for i ≥ 1 and i ≥ 2, respectively.  
 

For an arbitrary task T, the corresponding service 
provisioning procedure is determined by the specific task 
scheduling algorithm. Upon the arrival of task T, its SRZ is first 
checked by a nearby 1st-tier mNode at the edge, which analyzes 
the possibility of satisfying that SRZ with the network resources 
available in the vicinity. If local resources are sufficient, task T 
will be immediately served by this mNode. If not, a more 

powerful 2nd-tier mNode will be initiated to lead the effort of 
identifying feasible network resources in a bigger neighborhood. 
If regional resources are still not sufficient, an even stronger 3rd-
tier mNode will be called upon to perform multi-domain 
resource coordination over a much wider area. In some cases, 
task T is so complex that a large amount of network resources 
will be used to collect and process not only local and regional 
data, but also global data. If task T can be split into multiple 
subtasks [15], the same number of mNodes in the horizontal or 
vertical directions can share their resources and capabilities to 
collectively serve task T. Otherwise, task T cannot be split and 
has to be uploaded to the cloud through the multi-tier network, 
thus increasing the end-to-end transmission delay, energy 
consumption, and total cost. Traditional cloud AI architecture 
relies on remote super-powerful computing resources, while 
recent edge AI architecture takes advantage of local light-
weight computing resources. As the next stage, the network AI 
architecture incorporates both cloud and edge AI resources to 
allocate multi-tier, pervasive intelligence in 6G systems. 
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Fig. 3 Service Results of Representative Tasks with Different SRZs.

 

V. SYSTEM PARAMETERS AND SIMULATION RESULTS 
Different from the DeFog benchmarks built on representative 
applications (https://github.com/qub-blesson/DeFog), the 
simulation study of different AI architectures in this article is 
based on real world experiences and best practices in typical CT 
and IT networks. Table 1 lists all the parameters and their 
assumed values about tasks, three AI architectures, and two task 
scheduling algorithms for extensive computer simulations. On 
the demand side, different users continuously generate λ tasks 
per second. Assume a non-splittable task T have a size of  
bytes and a computing requirement of  teraFLOPS. To 
demonstrate the key results within limited space, only delay and 
energy consumption are chosen as the illustrative service KPIs 
for constructing a two-dimensional SRZ for every task. If task 
T is served by an mNode in the hth tier, the E2E service delay 
DT consists of (i) the h-hop transmission delay which is 
determined by task size and random data rate at each hop, and 
(ii) the computation delay at the serving mNode, which is 
affected by task computing requirement, shared computing 
power at the mNode, dynamic queueing delay due to multiple 
competing tasks, and limited I/O speed for data storage. These 
negative effects at the mNode prolong the computation delay of 
every task. After considering their combined impact, the 
effective computing power  seen by the tasks is 
proportionally reduced. Therefore, the overall service delay DT 
can be expressed as = + , (2) 

Similarly, the total energy consumption  consists of the h-
hop transmission energy consumption and computation energy 
consumptions of the task, i.e.,  = + , (3) 

where  denotes the average transmission power over the ith 
hop, which is set to be 0.1 Watts for typical network elements. 
The coefficient  represents the effective switched capacitance, 
which is related to the chip architecture at the serving mNode. 
According to the previous study [17], it is an extremely small 
constant and can be set as  = 1 × 10 . The condition for 
user satisfaction is therefore    and   , where  
and  are the upper bounds of service delay and energy 
consumption, as specified by the SRZ of task T. Without loss of 
generality, the values of Z, U, , and  are randomly 
generated according to different Gaussian distributions.  
 

For a sequence of tasks, Fig. 3 shows their customized SRZs 
as rectangular zones bounded by the actual values of  and , 
represented by two dashed lines. The service results of the delay 
and energy consumption performance are denoted by three 
markers for different AI architectures. Taking Task 1 as an 
example, both the network AI and edge AI architectures can 
achieve satisfied QoEs since their markers are located inside the 
SRZ. On the contrary, the cloud AI architecture fails to provide 
acceptable delay performance. 

 
On the supply side, the cloud AI, edge AI, and network AI 

architectures are evaluated with the same total computing 
power of 140K teraFLOPS. For a fair comparison, they are 
composed of a cloud and a three-tier network for serving tasks 
with different SRZs. For the cloud AI architecture, all tasks are 
transmitted over the network and served in the cloud. There is 
no additional computing overhead for task scheduling and 
resource management outside the cloud, so the effective 
computing power is = = 140K teraFLOPS.  
 

The edge AI architecture allocates a small amount of 
computing power among 1000 1st-tier mNodes at the edge and 
the rest of computing power in the cloud. Assuming a 20% 
computing overhead for task scheduling and resource 
management at the edge, the resulting effective computing 
power is equal to = × + = 111.2K teraFLOPS. In 
Table 1, two task scheduling algorithms are considered in 
performance evaluation. The Fair Equal Scheduling (FES) 
algorithm assigns all the tasks in a random manner, with half 
going to the edge and half to the cloud for services. The-Closer-
The-Better (TCTB) algorithm follows the Pareto principle, or 
the 80/20 rule, so that 80% and 20% of all the tasks go to the 
edge and the cloud, respectively. The use of FES and TCTB 
algorithms will demonstrate the fundamental differences 
among the three AI architectures and provide standard 
benchmarks for developing more sophisticated algorithms for 
complex application scenarios and dynamic network conditions. 

 
The network AI architecture is comprised of more mNodes with 
different capabilities in three network tiers, thus the additional 
computing overhead due to system and algorithm complexities 
is higher and assumed to be 36.4K teraFLOPS. The total 
effective computing power is then derived as = × +× + × + = 103.6K  teraFLOPS . Usually, an 
upper-tier mNode covers a larger geographical or logical area 
in the network and therefore is more capable of serving more 
tasks. Specifically, as network tier increases, we assume that the
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(a) Impact of Task Density when Task Computing 
Requirement U~N (70,1). 

(b) Impact of Task Computing Requirement when Task 
Density λ=1000. 

Fig. 4 USR versus Task Density and Computing Requirement. 

 

  

(a) Impact of Task Size when Network Data Rate R1~N (70, 
7). 

(b) Impact of Network Data Rate when Task Size Z~N 
(6 × 10 , 10 ). 

Fig. 5 USR versus Task Size and Network Data Rate.

number of mNodes decreases exponentially while the 
computing power of each mNode increases exponentially. 
The FES algorithm randomly assigns each task to a network 
tier or the cloud, thus a portion of 25% tasks is served in each 
network tier and the cloud. The TCTB algorithm gives much 
higher priorities to lower network tiers, so the proportions of 
task assignments to the 1st-tier, 2nd-tier, 3rd-tier, and cloud are 
reasonably set as 80%, 10%, 5%, and 5%, respectively.  
 

As defined, the overall USR can be calculated by 
comparing the number of satisfied tasks against the total 
number of served tasks. When the Gaussian distributions of 
task size and network data rates are fixed, i.e., Z~N 
(6 × 10 , 10 ), R1~N (70, 7), R2~N (500, 25), and R3~N 

(2000, 100), Fig. 4 illustrates the USR performance of the 
three AI architectures under dynamic task densities and 
computing requirements. In Fig. 4 (a), the task density has a 
linear impact on the decline of the USR curves under 
different AI architectures. For TCTB, when λ is equal to 
1500, 2000, and 2500 tasks per second, respectively, the 
network AI architecture can achieve 3.8%, 5.3%, and 7.4% 
higher USR than the edge AI architecture, while 315.0%, 
393.8%, and 461.5% higher USR than the cloud AI 
architecture, respectively.  

 
In Fig. 4 (b), the USR curve of the cloud AI architecture 

has two knee points at about U=48 teraFLOPS and U=66 
teraFLOPS. The transition region between them has a steep 
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slope, which implies that the energy consumptions for 
executing all the tasks in the cloud increase very rapidly 
when the average computing requirement increases. Under 
both TCTB and FES algorithms, the green and blue curves 
of the edge AI and network AI architectures are much less 
sensitive to this change, which is due to the efficient services 
by mNodes in the neighborhood. The turning points for 
TCTB and FES curves are around U=68 teraFLOPS and 
U=71 teraFLOPS respectively, where the gradients climb 
roughly from 0 to 0.36. 

 
In Fig. 5 (a), for fixed task density λ=1000 and task 

computing requirement U~N(70,1), when task size increases, 
the USR curve of the cloud AI architecture degrades 
dramatically because long-distance transmissions of bigger 
tasks become more time-consuming and energy-intensive, 
thus adversely impacting the USR. On the contrary, the USR 
curves of the edge AI and network AI architectures are much 
less sensitive to task size changes, thanks to the computing 
resources deployed at the edge and in the network. Compared 
with FES, TCTB is more effective in satisfying different 
SRZs simultaneously by transmitting most tasks to local and 
regional mNodes. The turning points of TCTB curves are 
around Z=6 ×108 bytes where the gradients are doubled from 
0.17 to 0.38. 

 
Fig. 5 (b) demonstrates the influence of network data rates 

on the USR performance. Specifically, we assume that R1, R2 

and R3 are Gaussian random variables with different mean 
values, but at a fixed ratio of E[R1]:E[R2]:E[R3]=7:50:200. So, 
only E[R1] is shown as the X-axis in the figure. Very 
interestingly, these curves are like the mirror flips of those in 
Fig. 5 (a), because higher network data rates and smaller task 
sizes both imply lower transmission delays. Therefore, 
increasing network data rates and reducing task size have 
almost equivalent impact on the USR performance. When 
network data rate is high, e.g., E[R1] > 85 Mbps, the USR 
curve of the cloud AI architecture gets very close to the 
curves of the edge AI and network AI architectures, just like 
the case when the average task size E[Z] < 4.95×108 bytes in 
Fig. 5 (a). 

VI. RESEARCH CHALLENGES 
We believe the following research challenges and technical 

problems require further discussions and investigations. 
 

(1) Statistical Models of Diverse SRZs: integrated service 
requirements of different types of realistic tasks should 
be studied in complex application scenarios and 
dynamic network conditions. New KPIs on pervasive 
intelligence, QoE, and social benefits will be 
investigated. Priorities should be given to mission-
critical tasks and elderly users.  

(2) Service Capacity of 6G Systems: practical 
mechanisms should be developed to map customized 
SRZs onto heterogenous system resources and AI 
capabilities across multiple tiers and domains. 
Theoretical analysis of system service capacity is 

crucial for improving service efficiency, resource 
utilization, and everyone-centric QoE.  

(3) Cross-domain Service Provisioning: the design of 
mNodes, NALC, and NAMO should be promoted to 
support a series of effective interfaces, protocols, and 
algorithms for cross-domain resource allocation, E2E 
service provisioning, customized task scheduling, 
multi-node collaborations, mobility management, user 
behavior monitoring, and QoE performance 
optimization. 

(4) E2E Security and Privacy Protection: considering 
randomly distributed users with a variety of access 
devices, a zero-trust architecture should be developed 
together with the network AI architecture. Context-
aware security and privacy protection methods should 
support everyone-centric customized services under 
different user locations, mobile terminals, wireless 
environments, application scenarios, and network 
conditions. 

(5) Implementation of Native AI Capability: to enable 
the native AI capability in the network AI architecture, 
a joint design methodology should be studied to support 
effective development and evaluation of collective AI 
methods using distributed, heterogenous network 
resources. Such localized but federated AI algorithms 
could greatly reduce the training time and the size of 
action space. Some implementation issues from 
physical layer to application layers should be studied 
for real-world applications, such as user requirement 
and mobility models, wireless channel characteristics, 
task arrival statistics, network traffic dynamics, system 
and algorithm complexities, training data splitting, 
distributed AI collaborations, AI service coverage and 
handoff, and stable QoE performance. 

VII. CONCLUSIONS 
Unlike existing 4G/5G systems that offer standard mobile 

services for different application scenarios, 6G systems 
should be able to tailor customized services to meet 
everyone’s personal requirements. From a user’s perspective, 
we first coined the concept of SRZ to characterize each task’s 
integrated performance requirements. Next, from a system’s 
perspective, we introduced the concept of USR to evaluate 
the system’s overall service ability of satisfying individual 
SRZs of different tasks. Then, the cloud, edge, and network 
AI architectures were studied and compared under dynamic 
task densities, task sizes, computing requirements, network 
data rates, and two task scheduling algorithms. By deploying 
multi-tier mNodes, the proposed network AI architecture 
with integrated S2C3A resources can effectively support 
customized services for a variety of user tasks with different 
SRZs, thus achieving the highest USR under random service 
requirements and dynamic network conditions. In contrast, 
the centralized cloud AI architecture has difficulties in 
meeting stringent delay and energy consumption bounds, 
thus not suitable for delay-sensitive broadband applications 
such as interactive VR/AR games, autonomous driving, and 
intelligent manufacturing. 
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