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Abstract—In this paper, we conduct performance analysis for
uplink (UL) massive multiple input and multiple output (mMI-
MO) networks using stochastic geometry. With the consideration
of practical system assumptions, such as sophisticated path loss
model incorporating both line-of-sight (LoS) and non-line-of-
sight (NLoS) transmissions and a finite user equipment (UE)
density, we derive the coverage probability and the area spectral
efficiency (ASE) performance. In particular, we adopt a practical
user association strategy (UAS) based on the smallest pathloss
since we differentiate LoS and NLoS transmissions, and we
consider the correlation among the positions of UEs and base
stations (BSs) in realistic networks. From our simulation and
analytical results, we find that the performance impacts of the
probabilistic LoS/NLoS transmissions and a finite UE density
on UL mMIMO networks are significant. More specifically,
the coverage probability performance suffers from a moderate
decrease or even a severe degradation when the UE density
becomes large in sparse mMIMO networks. Moreover, our results
indicate that there exists an optimal BS density to maximize the
sum spectral efficiency per BS. However, the ASE performance
keeps growing with network densification.

I. INTRODUCTION

Massive multiple input and multiple output (mMIMO) is
considered as one of the most important candidate technolo-
gies to meet the ever-increasing capacity demand in the years
to come [1]. By exploiting its many antennas and thus degrees
of freedom in the spatial domain, mMIMO can increase the
per-cell and the area spectral efficiency (ASE) through spatial
multiplexing. The larger the number of antennas, the larger the
number of degrees of freedom, and thus the more multiplexing
opportunities. However, when a time division duplex (TDD)
system is considered, the performance of mMIMO may be
limited by inaccurate channel state information (CSI). Pilot
contamination is one of the major bottlenecks, and occurs
when the same set of uplink (UL) pilot sequences is reused
across neighbouring cells [2].

Up to now, most theoretical studies on mMIMO have
focused on TDD systems. However, the majority of them have
only considered a simple modeling with a limited number of
factors. In [2], the authors derived the signal to interference
ratio (SIR) distribution of both uplink and downlink using
a simple network topology, and showed that increasing the
number of antennas at the BS leads to a better performance.
In [3], the authors derived the UL signal to interference plus

noise ratio (SINR) and sum rate of the system based on
deterministic BS locations. In [4], the authors analyzed the
UL SINR and rate performance using stochastic geometry,
and showed a scaling law between the number of antennas
per BS and the number of scheduled UEs. Note that all of the
above studies considered the pilot contamination. It is also
important to note that all of the above studies considered a
simple single-slope path loss model, without differentiating
line of sight (LoS) and non-LoS (NLoS) transmissions, and a
infinite (or sufficiently large) user equipment (UE) density,
thus ignoring the performance impact of important system
aspects on mMIMO networks.

In this paper, we conduct performance analysis of the UL
TDD mMIMO networks with maximum ratio combining (M-
RC) receivers using stochastic geometry. We consider several
practical assumptions, i.e., pilot-aided channel estimation, a
multi-slope path loss model with probabilistic LoS and NLoS
transmissions, and a finite UE density. Compared with the
existing work, we also adopt a more practical UE association
strategy (UAS) based on the largest receive signal strength.
Since we differentiate between LoS and NLoS transmissions,
the base station (BS) at the closest geographical distance from
a UE may not be the BS at the closet radio distance. This
makes our analytical results more accurate.

From our simulation and analytical results, we find that the
performance impacts of the probabilistic LoS/NLoS transmis-
sions and a finite UE density are significant. More specifically,
the coverage probability performance suffers from a moderate
decrease or even a severe degradation when the UE density
becomes large in sparse mMIMO networks. Moreover, our
results indicate that there exists an optimal BS density to
maximize the sum spectral efficiency per BS. However, the
ASE performance keeps growing with network densification.

II. SYSTEM MODEL

In this section, we present the network scenario, wireless
system model, pilot-aided mMIMO channel estimation and
performance metrics.

A. Network Scenario

In this paper, we consider an UL cellular network with UEs
deployed on a plane according to a homogeneous Poisson



point process (HPPP) Φ with a density of ρUEs/km2. BSs
are also Poisson distributed in the considered network with
a density of λBSs/km2. Note that we only consider active
UEs in the network because non-active UEs do not trigger
any data transmission, and that UEs and BSs are deployed
independently. Note that a typical UE density in populated
5G scenarios is around ρ = 300 UEs/km2 [5].

We assume that the typical UE U1 is deployed at the origin
and its serving BS is denoted by B1. Each BS and each UE
are equipped with M and one antennas, respectively.

In practice, a BS will enter into idle mode, if there is no
UE connected to it, which reduces the interference to UEs in
neighbouring BSs as well as the energy consumption of the
network. Since UEs are randomly and uniformly distributed
in the network, the active BSs also follow another HPPP
distribution Φ̃ [6], the density of which is λ̃. Note that λ̃≤ λ
and λ̃≤ ρ , since one UE is served by at most one BS. Also
note that a larger ρ results in a larger λ̃.

From [6], λ̃ can be calculated as

λ̃ = λ

1− 1(
1 + ρ

qλ

)q
 , (1)

where an empirical value of 3.5 was suggested for q.
Moreover, we consider a pilot-aided channel estimation

scheme, which leads to imperfect CSI caused by pilot contam-
ination. In an UL training stage, a scheduled UE transmits a
randomly assigned pilot sequence tk from the set of available
pilot sequences T . UEs in each BS reuse the same set of
pilot sequences. For each scheduled UE, the BS first detects
its corresponding pilot sequence, which is transmitted from
such scheduled UE and interfered by all the other UEs in
neighbouring cells reusing the same pilot sequence. The BS
then estimates the UE’s channel by, e.g., a minimum mean
square error (MMSE) estimator.

According to [7], the UE number per BS can be denoted by
a random variable (RV) K, and the probability mass function
(PMF) of K can be derived as

fK(k) = Pr[K = k]

=
Γ(k + q)

Γ(k + 1)Γ(q)
(

ρ

ρ+ qλ
)k(

qλ

ρ+ qλ
)q, (2)

where Γ(q) is the gamma function. From (2), we can see that
K follows a Negative Binomial distribution [8], i.e., K ∼
NB(q, ρ

ρ+qλ ). As discussed in above, we consider that a BS
with K = 0 is not active, which would be ignored in our
analysis due to its muted transmission.

B. Wireless System Model

The two-dimensional (2D) distance between an arbitrary UE
and an arbitrary BS is denoted by r . With regard to path loss
modeling, we adopt a general and practical piece-wise path
loss model with respect to r proposed in [9], where each
piece of the path loss function is modeled as either a LoS

transmission or a NLoS one. Such path loss function is given
by

ζjlk (r) =


ζ1(jlk) (r) , when 0 ≤ r ≤ d1

ζ2(jlk) (r) , when d1 < r ≤ d2

...
...

ζN(jlk) (r) , when r > dN−1

, (3)

where ζn(jlk)is the n-th piece of the path loss function between
the j-th BS and the k-th UE scheduled by the l-th BS.
Moreover, each piece of path loss function is modeled by

ζn (r)=

{
ζL
n (r) = AL

nr
−αL

n ,

ζNL
n (r) = ANL

n r−α
NL
n ,

LoS: PrLn (r)

NLoS: PrNL
n (r)

, (4)

where
• ζL

n (r) and ζNL
n (r) , n ∈ {1, 2, . . . , N} are the n-th piece

path loss functions for the LoS and the NLoS cases,
respectively,

• AL
n and ANL

n are the path losses at a reference 2D distance
r = 1 for the LoS and the NLoS cases, respectively, αL

n

and αNL
n are the path loss exponents for the LoS and the

NLoS cases, respectively.
• PrLn (r) and PrNL

n (r) are the n-th piece wise probability
function that a transmission between an arbitrary UE
and an arbitrary BS is a LoS path and a NLoS path,
respectively. Note that

∑N
n=1

(
PrLn (r) + PrNL

n (r)
)

= 1.

Based on these path loss and probabilistic LoS/NLoS mod-
els, a practical UE association strategy (UAS) is considered
in this paper. A UE is associated with the BS that provides
the maximum average received signal strength (i.e. the largest
ζ(r)). Moreover, we assume that one M-antenna BS can at
most simultaneously schedule KT UEs in a time-frequency
resource block.

For convenience, we denote a UE in each BS by the index
of its used pilot sequence, i.e., the k-th UE is the UE that
uses the k-th pilot sequence tk, where k is randomly chosen
from 1 to the maximum pilot sequence index KT. Note that
the k-th UE could be an empty UE, since not all of the pilot
sequences are used at all time by each BS. If there are more
than KT UEs connected to a BS, only up to KT of them are
randomly chosen to be scheduled, which means that this BS
is fully loaded and KT pilot sequences are used. Without loss
of generality and as mentioned earlier, we consider the first
UE in B1 as the typical UE, denoted by U1, which is using
the first pilot sequence.

Based on the above discussion, we focus on the active BSs
and scheduled UEs and further study the distribution of the
scheduled UE number per active BS, which can be denoted
by a positive RV K̃. Considering (2) and the fact that the
difference between K and K̃ lies in K̃ 6= 0 and K̃ ≤ KT, we
can conclude that K̃ follows a truncated Negative Binomial
distribution with a PMF given by

fK̃(k̃)=Pr[K̃= k̃]=

{ fK(k)
1−fK(0) , 1 ≤ k ≤ KT − 1∑∞

k=KT
fK(k)

1−fK(k) k = KT

,

(5)



where 1−fK(k) represents the probability that a BS is active
and

∑∞
k=KT

fK(k) represents the probability that a BS is fully
loaded with KT scheduled UEs.

C. Pilot-Aided mMIMO Channel Estimation

In this paper, the channel is assumed to be invariant in
a time-frequency resource block, and change independently
from block to block. The channel is then modeled as

hjlk = (ζjlk)
1
2Φ

1
2

jlkwjlk, (6)

where hjlk is the channel vector between the j-th BS and
the k-th UE scheduled by the l-th BS, wjlk is the multi-path
fading vector modeled according to Rayleigh fading, and Φjlk
is the co-variance matrix of the channel.

Moreover, the UL transmit power is assumed to follow
a distance-dependent fractional power compensation scheme,
and is modeled as

P tx
lk = P tx

UE(ζllk(r))−ε, (7)

where P tx
lk is the transmit power from the k-th UE scheduled

by the l-th BS, P tx
UE is the baseline transmit power of the UE,

and ε ∈ [0, 1] is the fraction of the path loss compensation.
In the UL training stage, pilot contamination is considered,

and thus the channel y11 observed at BS B1 for the typical
UE U1 is given by

y11 =
√
P tx

11h111 +
∑
l 6=1

√
P tx

1l h1l1 + n1, (8)

where the l-th neighbouring BS also schedules an interfering
UE using the first pilot sequence, and n1 denotes a zero-mean
additive white Gaussian noise (AWGN) vector at the typical
UE U1, where the variance of each element is σ2. Note that
the first pilot sequence may not be used by all BSs.

From the observation of the pilot signals transmitted from
UEs, BSs can estimate their channels by correlating the
corresponding pilot sequences with the observation by using
an MMSE estimator. Since the channel h111 is modeled as
i.i.d. Rayleigh fading, the estimated channel h̄111 can be
calculated as

h̄111 =

√
P tx

11ζ111∑
l 6=1 Pl1ζ1l1 + σ2

y11. (9)

The estimate error can then be computed by ĥ111 = h111−
h̄111.

D. Performance Metrics

In the UL data transmission stage, we assume that the BSs
apply the maximum ratio combining (MRC) receiver based
on the estimated channel obtained in the UL training stage.
Note that there can be LoS or NLoS transmission between the
typical UE and the typical BS. We take the LoS case as an

example to show our analysis. The UL SINR of the typical
UE with a LoS transmission is given by

SINR =

P tx
11

∣∣gH
11h̄111

∣∣2
P tx

11

∣∣∣gH
11ĥ111

∣∣∣2 +
∑

(l,k)6=(1,1) P
tx
lk |gH

11h1lk|
2

+ |gH
11|

2
σ2

,

(10)

where g11 is the combining vector employed at B1 for the
typical UE U1 with LoS transmission, and the result is derived
by assuming that the uplink data symbols for the k-th UE in
the l-th BS slk satisfies E

[
|slk|2

]
= 1. Note that the NLoS

transmission between the typical UE and the typical BS has a
similar expression, which is omitted here for brevity. We take
the LoS transmission as an example to show our analysis.
Using the SINR expression in (10), the coverage probability
pcov(λ, ρ, γ) can be defined as pcov = Pr(SINR > γ), where
γ is a SINR threshold. The sum spectral efficiency in BS B1

in bps/Hz/BS can be computed as

R1 =

KT∑
k̃=1

k̃ fK̃(k̃)

∫ ∞
γ0

log2(1 + γ)fΓ(λ, ρ, γ)dγ, (11)

where fΓ(λ, ρ, γ) is the probability density function (PDF) of
the uplink SINR at the typical BS B1, which can be written
as

fΓ(λ, ρ, γ) =
∂(1− pcov(λ, ρ, γ))

∂γ
. (12)

Following the definition in [10], we compute the area spec-
tral efficiency (ASE) in bps/Hz/km2 by multiplying the sum
spectral efficiency per BS with the active BS density as

AASE(λ, ρ, γ0) = λ̃R1. (13)

III. ANALYSIS BASED ON THE PROPOSED SYSTEM MODEL

The main goal of this section is to present our theoretical
results on network performance.

A. Coverage Probability Analysis

To conduct a relatively tractable study of the coverage
probability performance, we make the following assumption.

Assumption1. The scheduled UEs using the same pilot
sequence e.g. the k-th pilot sequence are modeled as a HPPP

Φk with a density λk = λ̃(
∑KT

k̃=1
k̃fK̃(k̃)

KT
), and the scheduled

UEs using a different pilot sequence are assumed to be
independently distributed.

Proof: See Appendix A
Previously, we have defined coverage probability

pcov(λ, ρ, γ) as the probability that the SINR is larger
than a threshold γ. Based on the presented system models
and Assumption 1, we can analyze pcov(λ, ρ, γ) using the
following theorem.

Theorem 1. pcov(λ, ρ, γ) can be computed as

pcov(λ, ρ, γ) =

N∑
n=1

(TL
n + TNL

n ), (14)



where

TL
n =

∫ dn

dn−1

M∑
m=1

(
N

m

)
(−1)m+1e(−mγ{SINRL

n}
−1)fLn (r)dr, (15)

TNL
n =

∫ dn

dn−1

M∑
m=1

(
N

m

)
(−1)m+1e(−mηγ{SINRNL

n }−1)fNLn (r)dr,

(16)
where η = N(N !)

− 1
N and dn is defined in (3). r is the distance

between the typical UE U1 and the typical BS B1. Moreover,
fLn (r) and fNLn (r) are computed by

fL
n (r) = PrL(r)2πrλ exp(−

∫ r

0

PrL(u)2πuλdu)

× exp(−
∫ r1

0

PrNL(u)2πuλ)du, (dn−1 < r < dn),

(17)

and

fNL
n (r) = PrNL(r)2πrλ exp(−

∫ r

0

PrNL(u)2πuλdu)

× exp(−
∫ r2

0

PrL(u)2πuλ)du, (dn−1 < r < dn),

(18)

where r1 and r2 are given implicitly by the follow-
ing equations: r1 = arg

r1

{
ζNL(r1) = ζL

n (r)
}

and r2 =

arg
r2

{
ζL(r2) = ζNL

n (r)
}
.

Proof: See Appendix B
As a special case to show our analytical results in the

following sections, we consider a practical two-piece path
loss function and a two-piece linear LoS probability function,
defined by the 3GPP [11]. Specifically, we have N = 2,
ζL
1 (r) = ζL

2 (r) = ALr−α
L

, ζNL
1 (r) = ζNL

2 (r) = ANLr−α
NL

,
PrL1 (w) = 1− r

d1
, and PrL2 (w) = 1, where d1 = 300 m [11].

For clarity, this case is referred to as the 3GPP Case hereafter.
According to 1, pcov(λ, ρ, γ) can be computed by

pcov(λ, ρ, γ) =

2∑
n=1

(TL
n + TNL

n ). (19)

IV. RESULTS AND DISCUSSION

In this section, we present numerical results to validate the
accuracy of our analysis and further study the capacity perfor-
mance of UL mMIMO networks. In this section. According to
Tables A.1-3~A.1-7 of [11], we adopt the following parameters
for the 3GPP Case: αL = 2.09, αNL = 3.75, AL = 10−10.38,
ANL = 10−14.54, Ptx

UE = −76 dBm and a noise figure of 9
dB at each dB.

A. Coverage Probability Performance

In this subsection, we first validate the analytical results of
the coverage probability, considering a network deployment
with a BS density λ=10 BSs/km2, and presenting results for
several combinations of UE densities ρ, number of antennas

per BS M , maximum number of scheduled UE per BS KT,
and fraction of the path loss compensation in the UL power
control ε.

Fig. 1. The coverage probability pcov(λ, ρ, γ) vs. the SINR threshold with
λ = 10BSs/km2. The Analytical results drawn based on theorem 1 match
well with simulation.

From Fig. 1, we can see that the analytical results fit well
with the simulation ones for the wide variety of studied cases.
This validates our theoretical modeling.

Fig. 2. Scheduled UE number per BS vs BS density λ with different UE
density ρ

In the following, we study in more detail the coverage
probability, as a function of the BS density. However, before
doing that, in Fig. 2, we plot the average number of scheduled
UEs per BS as a function of the BS density λ for various values
of the UE density ρ with M =64, ε =0.8 and KT =20. From
Fig. 2, we can see that the average number of scheduled UEs
per BS decreases as λ increases for all values of ρ.

With this results in mind, in Fig. 3, we study the coverage
probability as a function of the BS density. The same param-
eters as in Fig. 2 are used. From Fig. 3, we can see that:
• When the BS density is relatively small, e.g., λ ∈ [1, 4]

BSs/km2, the coverage probability performance of all UE
densities are similar. In this BS density range, the cover-
age probability curves first decrease, and then increase.
The intuition behind this trend is that when the BS density
is much smaller compared with the UE density, every



Fig. 3. The coverage probability pcov(λ, ρ, γ) vs. the BS density λ with
M = 64, ε = 0.8 and KT =20 . Different UE denisties are considered in
this network deployment.

newly-added BS is likely to be fully loaded by scheduling
the maximum number of UEs. When we go from 1 BS
to 2.5 BSs per km2, we move from a noise limited to
an interference limited scenario, and thus the received
interference power in both the training and data phase
grows faster than the signal power. As consequence, the
SINR and thus the coverage probability decrease. Once
we have more than 2.5 BSs per km2, the interference
starts growing at a lower pace than before, and the
network benefits from the closer proximity between a UE
and its server, i.e. a stronger carrier signal. As a result,
the coverage probability increases.

• When the BS density increases beyond 4 BSs/km2, and
the UE density is small, a higher BS density always
results in a higher coverage probability because the signal
power grows stronger and stronger, transiting from NLoS
to LoS, but also because i) the interference power de-
creases due to the UL power control and ii) the less pilot
contamination since cells are less loaded as shown in Fig.
3 and thus are more unused pilot sequences. However,
when the UE density is large, e.g. ρ=1000 UEs/km2,
the coverage probability first decreases (when the BS
density is λ=15 BSs/km2), and then increases (when
the BS density is λ=40 BSs/km2). The intuition behind
this interesting behavior is the following. When the BS
density increases above a threshold, the interfering UEs
become closer and closer to the serving BSs, and some
interference signals transition from NLoS to LoS. Due
to this transition, the received interference power in both
the training and data phase grows again faster than the
signal power. As consequence, the SINR and thus the
coverage probability decrease again. Note that this impact
is reduced with a lower UE density. For example, we can
see that when ρ=600 UEs/km2, the mentioned decrease
and increase is milder due to the less interfering paths
transitioning from NLoS to LoS.

• Note that regardless of the UE density, the coverage
probability pcov(λ, ρ, γ) always increases with the BS

density when such density is sufficiently large, e.g.,
λ > 40 BSs/km2. The reason is the BS idle mode
capability. Under this consideration, the signal power
continues increasing with the network densification, while
the interference power significantly decreases due to the
UL power control. Moreover, pilot contamination is also
significantly lower since very few pilot sequences are
used per BS when the BS density is large.

B. Network Capacity performance

In this subsection, we further investigate the network capac-
ity, and explain how the UE density and BS density impact
the ASE performance.

Fig. 4. The sum spectral efficiency per BS R1 vs. BS density λ with γ0 = 0
and different UE density ρ

In Fig. 4, we plot the sum spectral efficiency per BS
R1 with γ0 = 0 as a function of the BS density λ for
various values of the UE density ρ. From Fig. 4, we observe
that similar as for the coverage probability, the sum spectral
efficiency per BS first decreases when we move from a noise
limited to an interference limited scenario. Then, it increases
when the network becomes denser, and thus the signal power
gets stronger due to the closer proximity of UEs and BSs,
the interference power get weaker due to the UL power
control. Finally, the sum spectral efficiency per BS decreases
again when the number of UEs per BS starts to significantly
decreases, as shown in Fig. 3.

According to (13), ASE is computed by multiplying R1

and λ̃. In Fig. 5, we plot the ASE vs. BS density with γ0 = 0
and various UE density and predicate the ASE performance
with large BS density. From Fig. 5, we can conclude that a
larger BS density always results in a higher ASE. When the
BS density is small, the ASE performance quickly increases
almost linearly with the BS density λ due to the dramatic
increase of the number of scheduled UE per BS despite of
the initial decrease of the coverage probability. When λ is
large enough for different ρ, e.g. λ > 15 BSs/km2 with ρ =
100 UEs/km2, the ASE growth rate slows down. Such slow
down behavior indicates that since the UE density is finite, at
some point, densifying further those not introduce more spatial
reuse but increases the inter-cell interference. However, it is



Fig. 5. The ASE ASE(λ, ρ, γ0) with λ = 10BSs/km2 and γ0 = 0 dB vs
BS density λ with different UE densities

important to note that it is unrealistic to have that large BS
density like 100 BSs/km2 in mMIMO networks.

Moreover, for a given λ, e.g. λ =30 BSs/km2, we can see
that the ASE is also a concave function of the UE density ρ,
and its maximum value lies in ρ∈ [300, 1000] UEs/km2, which
is logically correct from the conclusion of performance decline
in coverage probability and sum rate per BS observed at such
BS density.

V. CONCLUSIONS

In this paper, we have conducted a performance analysis
of UL mMIMO network with LoS and NLoS transmission
and finite UE density. Approximate analytical results were
derived for the coverage probability and ASE. Based on our
results, the performance impact of LoS/NLoS and finite UE
density is shown to be significant. Specifically, we found that
(i) the coverage probability may suffer from a slow growth
or decrease as BS density increases; (ii) there should be an
optimal BS density to maximum the sum rate per BS for a
given UE density; (iii) however, the ASE performance keeps
increasing with the BS density. For future work, we will fur-
ther study the optimal ASE performance with considerations of
different factors and performance impacts of other factors such
as maximum scheduled UE number per BS and ZF receiver.

APPENDIX A: PROOF OF ASSUMPTION III-A

To prove Assumption 1, we need to compute the probability
of the k-th UE is scheduled in the l-th BS:

1(kl) =
kave
KTotal

, (20)

where kave is the average scheduled UE number per BS
computed by: kave =

∑KTotal

k=1 kfK̂(k).

Thus, we can approximate the desired BS density λOn∗ as
follows

λOn∗ =
E(
∑
l∈ΦB

kl)

λ
λOn =

Kave

KTotal
λOn. (21)

APPENDIX B: PROOF OF THEOREM 1
Due to page limitation, we defer the detailed proof to our

journal version and provide brief explanation here.
In theorem 1, TL

n and TNL
n are the components of coverage

probability responsible for the cases when typical BS and
typical UE are connected with the n-th LoS path and with
the n-th NLoS path respectively. We approximate SINRL

n by
taking the expectation on each term using the properties of
stochastic geometry and some basic algebraic operations:

SINRL
n ≈

(M + 1)(ζL01)2(1−ε)

ζL01
(1−ε)

(
Λ+σ2

Pt

)
+
(
ζL01

(1−ε)+Λ
)(
∆1−ε
PL +

∑K−1
k=1 kΛfK̃(k̃)+σ2

Pt

) , (22)

where ∆1−ε
PL =

∑K−1
k=1 k

∫∞
0
ALr

(αLε−1)fLn (r)drfK̃(k̃) and
Λ =

∫∞
r
APLx

αPLE
((
ζPLllk

)−ε) 2πxλkPrPL(x)dx.
Since SINR expression is considered as a function of the

distance between typical UE and typical BS r, the CCDF of
SINR is P (SINRL(r) > T ) where T is the SINR threshold.
Following [4], we use a gamma distribution to approximate
the distribution of SINR as follows:
P (SINRL(r) > T ) = P (1 > T

SINRL(r) ) ≈ P (g > T
SINRL(r) )

≈
∑N
m=1

(
n
N

)
(−1)n+1e−nN(N !)−

1
N TSINRL(r) = TL

n

.

(23)
Since the derivation of TNL

n is very similar with that of TL
n , it

is omitted for brevity. Our proof is completed with applying
TNL
n and TL

n in (14).
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