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Abstract—In this paper, we propose a distributed network
coding (DNC) scheme based on the Raptor codes for wireless
sensor networks (WSNs), where a group of sensor nodes, acting
as source nodes, communicate with a single sink through some
other sensor nodes, serving as relay nodes, in a multi-hop fashion.
At the sink, a graph-based Raptor code is formed on the fly.
After receiving a sufficient number of encoded packets, the sink
begins to decode. The main contributions of this paper are the
derivation of a bit error rate (BER) lower bound for the LT-based
DNC scheme over Rayleigh fading channels under maximum-
likelihood (ML) decoding, and the derivations of upper and lower
BER bounds for the proposed Raptor-based DNC scheme on the
basis of the derived BER bound of LT codes.

Index Terms—Distributed network coding, wireless sensor
networks, Raptor codes, Quasi-static Rayleigh fading channel,
upper and lower bounds.

I. INTRODUCTION

W IRELESS systems, such as last mile, sensor or com-
munity networks, are likely to be a major form of

future communications. Next generation wireless communi-
cation networks will go beyond point-to-point or point-to-
multipoint paradigms of existing cellular networks. They will
be based on complex interactions, where individual com-
munication nodes cooperate with one another in order to
improve the performance of their own communication and
that of the entire network. Cooperative communications [1],
[2], based on the use of relay nodes, have emerged as a
promising approach to increase spectral and power efficiency,
communication coverage and reliability.

As a special channel coding strategy developed for co-
operative communication networks, distributed coding tech-
niques attracted significant research interest recently. The
distributed code construction concept has been applied to
conventional channel coding to form, for example, distributed
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turbo codes [3], distributed space-time codes [4] and dis-
tributed low-density parity-check (LDPC) codes [5]. These
developments show that the distributed coding schemes can
improve the transmission reliability over point-to-point wire-
less communication channels.

The distributed coding schemes discussed above are mainly
developed for small-scale unicast relay networks, in which
messages are sent from a single source to a single sink
through single/multiple relay nodes. In large-scale wireless
sensor networks (WSNs), a huge number of sensor nodes are
deployed to gather information from the surrounding envi-
ronment. The information gathered from these sensor nodes,
which are referred to as source nodes, are often delivered to
a common sink through other sensor nodes, serving as relay
nodes. As the source and relay nodes are in different spatial
locations, their signals can be combined at the destination to
achieve spatial diversity. Clearly, if a sink receives replicas
of the transmitted data via multiple relay nodes, its data will
have higher spacial diversity and hence better performance [6].
The standardization activities in IEEE 802.11 WiFi [7], 802.15
Zigbee [8], 802.16j/m WiMAX [9] attest to the vital role
that multiple relays will be playing in future broadband
communication networks.

Compared with a traditional sensor network in which a pre-
defined route is first established and the relay nodes along the
route simply store and forward the received data, it has been
shown that cooperative communication offers a significant
advantage in improving communication reliability, increasing
spectral efficiency and reducing energy consumption [1], [2].
A widely used cooperative communication technique is net-
work coding [10].

When network coding is employed, the relay nodes encode
the packets received from multiple source nodes. Coding
operations enable the relay nodes to compress the data, and
whenever possible, to reduce the number of transmissions and
bandwidth consumption. Prior work shows that network cod-
ing achieves the multi-cast network capacity by transmitting
linear combinations of received data [10], [11], [12].

Due to the broadcast nature of wireless channels, network
coding appears to be a natural fit for cooperative commu-
nication networks where multiple source nodes communicate
with a common sink through multiple relay nodes. There are a
large number of published papers in this area, e.g., [13], [14],
[15], [16], [17], [18], [19]. An important realization of network
coding in wireless sensor networks is a scheme referred to as
adaptive network coded cooperation (ANCC), which exploits a
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combined network-channel coding gain [18]. In that approach,
the authors proposed a distributed coding scheme in which
a real-time network topology is matched with the graphs of
LDPC and other graph codes. In this way, the network code
design problem is simplified to the design of a graph code.
This scheme is further considered in [20], where extrinsic
information transfer (EXIT) charts are employed to design
irregular low-density generator matrix (LDGM) codes [21] for
a WSN over Rayleigh fading channels.

In the aforementioned works, source nodes are assumed
to be able to communicate directly with their common sink.
However, in some WSN applications, where direct links are
not always available, communications of data occur in a multi-
hop way. Furthermore, reliable transmission mechanisms, such
as Automatic Repeat reQuest (ARQ), are often neglected in
the literature. As a result, network coding is only performed
at the physical layer.

Fountain codes [22], which are also referred to as rateless
codes, are a class of reliable transmission codes by using con-
tinuous transmission schemes. A class of practical Fountain
codes is Luby-transform (LT) codes [23]. LT codes are capable
of recovering the original information from any set of output
symbols whose size is close to the optimal value [24]. To
apply the rateless codes to the design of reliable transmission
strategies, an LT-based distributed network coding (DNC)
scheme for WSNs is proposed in [25]. In that work, the
authors considered multiple source nodes communicating with
a common sink via multi-hop paths and derived upper bounds
for the LT-based schemes over Rayleigh fading channels.

In this paper, we derive a lower bound for the LT-based
DNC scheme over Rayleigh fading channels. We also propose
a DNC scheme for WSNs based on Raptor codes [24], in
which a conventional outer code is concatenated with an inner
LT code to reduce the error floor. The main challenge of
introducing Raptor codes into WSNs is to operate precoding
in a decentralized manner [26]. In [27], a random-walk based
decentralized fountain codes algorithm is proposed. In that
approach, the precoding nodes are selected among the relay
nodes with a special calculated probability and each selected
precoding node performs precoding according to a special
defined degree distribution. In [28], a distributed rateless
code for WSNs is proposed. In that approach, the precoding
nodes are selected among the source nodes. It is realized by
following steps: First, each source node broadcasts its symbol
to the source nodes as well as to the relay nodes. Then, each
source node generates a random number uniformly distributed
between 0 and 1. By comparing the generated value with a pre-
defined value, the source nodes are divided into two groups,
one group acts as source nodes only, the other one acts as
both source nodes and precoding nodes. Finally, the precoding
nodes perform precoding according to a pre-defined degree
distribution.

In this paper, a WSN with multiple source nodes, multiple
relay nodes and a single sink is considered. All the source
nodes send data packets to the relay nodes by using a random
access MAC (Media Access Control) protocol. All the relay
nodes which participate in the process of transmission formed
two relay groups, namely, a precoding relay group and an LT-
coding relay group. The groups are formed in a decentralized

way. There is no need of a central coordinator or elaborate
inter-node collaboration to select precoding relay nodes or LT-
coding relay nodes. But a central coordinator is needed to
control the operations of the precoding relay nodes. Each relay
node in the LT-coding relay group selects packets randomly
from its buffer and then performs a linear network coding and
a graph code is formed on the fly at the sink.

We derive analytical upper and lower bounds for the bit
error rate (BER) of the proposed Raptor-based DNC scheme
over Rayleigh fading channels under maximum-likelihood
(ML) decoding [29], [30]. These derived bounds are shown to
be asymptotically tight with the increasing of the expanding
coefficient. As the derived analytical bounds are tight for large
SNRs, our ML analysis is of interest and may be used to
optimize degree distributions for the proposed scheme [31, Ch.
8, p. 283]. The analytical bounds can also be used to compare
the performance of Raptor codes with different parameters.

The remainder of the paper is organized as follows. In
Section II, a brief review of the LT codes and Raptor codes is
given. Section III introduces the system model. In Section IV,
the lower bound of the LT-based DNC scheme over Rayleigh
fading channels is developed under the assumption of ML
decoding. Based on the developed BER bounds of LT-based
DNC scheme, we derive the upper and lower BER bounds of
the Raptor-based DNC scheme over Rayleigh fading channels
under ML decoding. The numerical and simulation results are
given in Section V. Conclusions are drawn in Section VI.

II. PRELIMINARY

A. LT Codes

LT codes are the first invented universal fountain codes.
Universal fountain codes refer to a class of codes whose
original symbols can be recovered from any set of output
symbols, whose size is close to optimal, with high probability.
Let G be the generator matrix of LT codes. The degree
distribution of G can be described by μ(x) =

∑k
d=1 μdx

d,
where μd denotes the probability that d of the k input symbols
are chosen. The encoding process is carried out by two phases:

• Choose a degree d from the distribution μ(x) with
probability μd.

• Choose d input symbols uniformly from the k input
symbols, and operate XOR on the d input symbols to
form an output symbol.

The process of construction and transmission of output
symbol is repeated until a sufficient number of output symbols
are obtained at the receiver. Assume that the total number of
the output symbols is Q = ηk, where η is called the expanding
coefficient.

B. Raptor Codes

Raptor codes are the first class of fountain codes with linear
time encoding and decoding. The key idea of Raptor coding
is concatenating a traditional error correcting code with an LT
code to relax the condition that all input symbols need to be
recovered in LT codes. The encoding process is carried out
by two phases:

• Encode k input symbols with an (n, k) error correcting
block code to form n intermediate symbols.
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• Encode the n intermediate symbols with an LT code.
Each output symbol is generated by randomly choosing
a degree d from the degree distribution μ(x), choosing d
distinct input symbols uniformly at random, and operat-
ing XOR on them.

Thus, a Raptor code can be specified by parameters
(k, C, μ(x)), where C is the (n, k) error correcting block code,
called the pre-code, and μ(x) is the generator polynomial of
the degree distribution of the LT code.

Corresponding to the encoding process, the decoding pro-
cess also can be represented by two phases:

• Recover required fraction of intermediate symbols from
the received symbols at the sink.

• Recover all input symbols from the fixed fraction of
intermediate symbols, which is recovered at the first
phase.

Raptor codes have a significant theoretical and practical
improvement over LT codes. Raptor codes require O(1) time
to generate an encoding symbol.

III. SYSTEM MODEL

We consider a WSN in which the sensor nodes are scattered
in a sensor field as shown in Fig. 1. Each of these scattered
sensor nodes has the capability to collect data and route data
back to the sink. We assume that there is a single sink in
the sensor network. We further assume that KL out of the
sensor nodes have data to transmit. These KL sensor nodes
are referred to as source nodes. The rest sensor nodes have no
data to transmit and act as relay nodes.

We consider a random access MAC protocol, e.g., Car-
rier Sense Multiple Access-Collision Avoidance (CSMA-CA),
which is widely used in WSNs, such as ZigBee networks.
Further, we only consider 3-hop transmissions. We assume
that all the sensor nodes in the network know primarily the
degree distributions of the designed distributed Raptor codes.

The relay nodes can be classified into two groups: a
precoding relay group R1, and an LT-coding relay group R2.
Depending on the header information of received packets, a
relay node determines which group it belongs to. We assume
that we have a pre-knowledge of the total number of sensor
nodes which may act as relay nodes in the precoding relay
group and denote this number by KP . The pre-knowledge
can be obtained through a pre-test of the sensor network or
simply by estimating the number of the relay nodes which
are within the transmission range of the source nodes. More
detailed description of the classification of the two groups
will be given later in this section. Fig. 1 shows the model
of the investigated system. Let Si, R1

j′ , R
2
j and D represent

the ith source node, the j′th relay node in relay group
R1, the jth relay node in relay group R2 and the sink,
respectively, where i ∈ {1, 2, . . . ,KL}, j′ ∈ {1, 2, . . . ,KP }
and j ∈ {1, 2, . . . , N}.

We assume that the channels between the source and relay
nodes in the precoding relay group, between the relay nodes
in the two relay groups, and between the relay nodes in the
LT-coding relay group and the sink are quasi-static Rayleigh
fading channels. We denote by �

os
i,j′ the fading coefficient for

the link between the ith source node Si and the j′th relay

Fig. 1. A network graph used to describe the system model.

node R1
j′ in relay group R1. Let �toj′,j and �

Dt
j be the channel

fading coefficients for the links between R1
j′ and the jth relay

node R2
j in relay group R2, and between R2

j and the sink
D, respectively. The fading coefficients �

os
i,j′ , �

to
j′,j and �

Dt
j

remain constant over the length of one data packet, but change
independently from packet to packet. These fading coefficients
have unit mean square values [32], i.e., E{| �osi,j′ |2} = 1,
E{| �toj′,j |2} = 1 and E{| �Dt

j |2} = 1. Here E{·} denotes
the expectation.

In our analysis we assume that all the communication chan-
nels, from the source nodes to the relay nodes in precoding
relay group R1, from the relay nodes in R1 to the relay nodes
in LT-coding relay group R2, and from the relay nodes in
R2 to the sink, are spatially independent and we allow the
relay nodes to operate with different transmit powers. For
simplicity, we adopt the binary phase shift keying (BPSK) [33]
modulation and assume perfect channel state information
(CSI) at the receivers.

We assume that each symbol in the information sequence
of each source node is generated according to a statistically
independent and identically distributed (i.i.d) probability dis-
tribution function. Binary symbols are considered in this paper.
The data delivery from the source nodes to the sink is carried
out in four phases.

• Broadcast phase: The information sequence of each
source node is segmented into a number of equal length
data segments at first. Then a header and a cycle re-
dundance check (CRC) code are added to each data
segment to form a data packet. The header consists of
the identity of the node, the number of hops of the
transmitted packets, etc. The number of hops for the
packets transmitted from source nodes is set to 1.

• Precoding phase: When a relay node receives a packet,
it decodes the packet and checks the correctness of
the decoded packet by using CRC. If the packet is
correct, the relay node then checks the number of hops
of the received packet. If the number is equal to 1, the
node determines that it belongs to the precoding relay
group. We assume that there exists a central coordinator
controlling the operations of the relay nodes in R1. At
first, each relay node in R1 is allocated a number p
with probability Ωp according to a pre-defined degree
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distribution1 Ω(x) =
∑n

p=1 Ωpx
p. Denote by mi ∈

GF(2)ε×1, i ∈ {1, 2, · · · ,KL}, the data packet of the ith
source node. The received data packet from Si at R1

j′ ,
(R1

j′ ∈ R1), can be written as yosi,j′ = �
os
i,j′xi + no

i,j′ .
Here xi = (−1)mi ∈ {±1}ε is the transmitted data
packet from Si, no

i,j′ is the additive white Gaussian noise
vector of size ε × 1 at R1

j′ , where ε denotes the length
of the data packet. If the decoded packet is correct,
the node then puts the correctly decoded data segments
together with its connection information into its buffer.
After collecting enough number of data segments, i.e.,
the number of data segments in a relay node’s buffer
is larger than its allocated number p, the relay node
selects a number p of data segments from its buffer to
perform network coding by using linear combinations in
the field of GF(2) [29]. Since p � KL, it is with very
high probability that there are p correctly decoded data
segments in the buffer. Thus, we can always assume that
this network coding process is achievable. The network-
coded data are then augmented with a header and a CRC
code to form a network-coded data packet. The header
contains the connection information and the number of
hops of the packet. The connection information includes
the identities of the source nodes which are used to
form the network coded packet and the identity of the
relay node from which the coded packet is broadcast.
The number of hops for the packets transmitted from
the relay nodes in precoding group R1 is set to 2. The
network-coded data packet is then broadcast at each relay
node in R1 to the network with a probability PP , where
PP = K

KP
. Here K = KL

r denote the total number of the
selected relay nodes in R1 and r is the desired code rate
of the pre-code.

• LT-coding phase: If a relay node receives a packet with
the number of hops of 2, then it determines that it belongs
to the LT-coding relay group2. In the LT-coding phase,
each relay node in R2 randomly selects a number of
q with probability μq according to a pre-stored degree
distribution3 μ(x) =

∑
q μqx

q . Each relay node in
R2 receives packets from the relay nodes in R1. The
received data packet from R1

j′ at R2
j can be represented

as yto
j′,j = �

to
j′,jxoj′ + nt

j′,j . Here xoj′ = (−1)sj′ ∈ {±1}ε
is the modulated data packet transmitted from R1

j′ , where
sj′ ∈ GF (2)ε×1 is the network-coded data packet at R1

j′ .
And nt

j′,j is the additive white Gaussian noise vector of
size ε × 1 at R2

j . Each relay node in R2 first decodes
the received data packets from the relay nodes in R1

and checks the correctness using CRC code, then puts

1In the precoding phase, LDPC codes are used. Each relay node, which
belongs to the precoding relay group, performs its next operation under the
control of the central coordinator. Ω(x) is the generator polynomial of the
degree distribution of the LDPC codes [24], [34]. The information of the
degree distribution Ω(x) is previously stored in the central coordinator.

2Note that the relay node belonging to the LT-coding relay group may also
belong to the precoding relay group. But in different phases, it performs its
operation according to different degree distributions.

3In the LT-coding phase, LT codes are used. Each relay node, which belongs
to the LT-coding relay group, performs its next operation according to the
degree distribution of the LT codes. μ(x) is the generator polynomial of the
degree distribution of the LT codes [23], [24]. The information of the degree
distribution μ(x) is previously stored in the sensor nodes.

Fig. 2. A Tanner graph of Raptor code derived from the system model.

the correctly decoded data segments together with their
connection information into its buffer. After collecting
enough number of data segments, i.e., the number of
data segments in the relay node’s buffer is larger than its
previously selected number q, each relay node in R2 ran-
domly selects a number q of data segments from its buffer
to perform network coding by using linear combinations
in the field of GF(2). Since q � K , we can always
assume that this network coding process is possible to
achieve. The formed network coded data segment is then
appended with a CRC code and a header. The header
contains the connection information and the number of
hops of the packet. The connection information includes
the identities of the source nodes and the relay nodes
in R1 which are used to form the network coded data
segment, it also includes the identity of the relay node in
R2 from which the packet is transmitted. The number of
hops for the packets transmitted from any nodes in R2 is
set to 3. The network-coded packet is then broadcast to
the sink.

• Data recovery phase: The sink collects enough packets
transmitted from the relay nodes in the LT-coding group,
then begins to decode. The sink node knows whether
the packets are from LT coding group by checking the
number of hops of the received packets. If the number of
hops equal to 3, then it is from the LT-coding group. The
received data packet from the jth relay node in R2 at the
sink D can be expressed as yDt

j = �
Dt
j xt

j + nD
j , where

xt
j ∈ {±1}ε is the modulated data packet transmitted

from R2
j , and nD

j is the additive white Gaussian noise
vector of size ε× 1. After receiving Q data packets from
the relay nodes in relay group R2, where Q ≥ K , the
sink begins to decode by using the ML algorithm, based
on the soft information of the received data packets.

Since a small header, which contains the connection infor-
mation of the sensor nodes, is added in each packet when each
relay node forwards data, the sink knows how the checks are
formed and can accordingly replicate the code on graph. The
length of each header is much shorter than that of the data
packet, therefore, the throughput loss due to the header can
be neglected.

At the sink, we can map the network topology described
above to a Tanner graph associated with the Raptor codes,
as shown in Fig. 2. The formed code graph consists of KL

input data packets, corresponding to the KL source nodes, K
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precoding data packets, corresponding to the K relay nodes
which are selected to transmit network-coded packets in R1,
and Q output data packets. Here Q represents the total number
of transmissions from all the relay nodes in R2 at a time
instant.

If the data packets cannot be recovered completely at the
sink, the sink simply sends a data request to the (Q + 1)th4

relay node in relay group R2 to ask for another network-coded
data packet, and then carries out decoding. This process runs
on until all the information are recovered. Since the relay
nodes are asked for data transmission one by one, redundant
transmissions are avoided.

IV. UPPER AND LOWER BOUNDS ON THE BIT ERROR

PROBABILITY OF RAPTOR CODES

In this section, we first derive the lower BER bound of
the LT-based DNC scheme with ML decoding over Rayleigh
fading channels, which will be used for the derivation of the
lower BER bound of the Raptor-based DNC scheme. Then we
develop both upper and lower BER bounds on the bit error
probability of the proposed finite-length Raptor-based DNC
scheme under ML decoding over Rayleigh fading channels.

The data packets from all the source nodes are arranged
into a matrix Λ = [m1,m2, · · · ,mKL ] ∈ GF(2)ε×KL . All
the data packets formed at all the relay nodes in R1 dur-
ing the precoding phase are grouped into a matrix Λs =
[s1, s2, · · · , sK ] ∈ GF(2)ε×K , where sj′ ∈ GF(2)ε×1, j′ ∈
{1, 2, · · · ,K}, is the network-coded data packet of the j′th
selected relay node in R1. The output data packets of the relay
nodes in R1 and R2 are formed as described in Section III,
according to the pre-determined degree distributions Ω(x) and
μ(x), respectively.

The network-coded data packets formed at R2 in the LT-
coding phase are then transmitted over quasi-static Rayleigh
fading channels to the sink D. Let Q denote the number of
data packets collected at the sink. Then Q can be expressed
as Q = ηK = η

rKL, where the expanding coefficient η is a
real number equal to or greater than one.

The output from the Q relay nodes in R2 can be represented
by V = ΛsG = ΛGLG, where V ∈ GF(2)ε×Q. GL is a
randomly generated KL × K binary matrix formed at R1,
which is associated with the graph code used in the precoding
phase of the Raptor code. G is a randomly generated K ×Q
binary matrix formed at R2, which is associated with the LT
code. The jth column of V is the transmitted data packet
from the jth relay node in R2. Since the binary information
sequences of the source nodes are assumed to be i.i.d, we only
consider an arbitrary row of Λ in the analysis and denoted by
m. Let v be the corresponding row of V when m is chosen
as the input, i.e., v = mGLG.

The parity check matrix of the generator matrix GL is
denoted by H. The (i, j′)th element of GL(i, j

′) is equal to one
if the ith source node’s data is used to generate the output data

4After receiving the request from the sink, each relay node in the LT-coding
relay group transmits a new formed data packet to the sink with the probability
of 1

N
, where N is the number of relay nodes in the LT-coding relay group.

We assume that this number can be estimated. As a result, every time the sink
sends a transmit request to the relay nodes, only one relay node responds to
the request. The responding relay node is regarded as the (Q + 1)th node.

at the j′th selected relay node in R1, otherwise it is zero. In a
similar way, G(j′, j) = 1, if the data of the j′th selected relay
node in R1 is used to generate the output data of the jth relay
node in R2, otherwise it is zero. Since the both applied codes
are linear, their performance is independent of the transmitted
information sequence. Thus, we can assume that the all zero
sequence is transmitted, i.e., m = 0. The error information
sequence is denoted by e.

A. Lower Bound on the Bit Error Probability of LT Codes

Remark: The lower bound on the bit error probability for LT
codes over fast Rayleigh fading channels with perfect CSI5 is
given by the probability that only one symbol in the decoded
sequence is not recovered correctly [24].

The information sequence error probability can be com-
puted as

Pe = Pr

⎛
⎝ ⋃

e:w(e) �=0

m̂ = e

⎞
⎠ , (1)

where m̂ is the estimated information sequence, w(·) denotes
the Hamming weight.

The lower bound on the bit error probability for LT codes
over fast Rayleigh fading channels with perfect CSI is given by
the probability that only one symbol in the decoded sequence
is not recovered correctly [24]. The weight-1 information
sequence error probability can be computed as

Pr

⎛
⎝ ⋃

e:w(e)=1

m̂ = e

⎞
⎠

=
∑

e:w(e)=1

Pr(m̂ = e)

= Pr(w(e) = 1 and the error e is undetectable)

+Pr(w(e) = 1 and the error e is detectable). (2)

The probability in (2) for the event that the error e is
undetectable when w(e) = 1, can be calculated by the joint
probability Pr(eG = 0, w(e) = 1). It is due to the fact that G
may contain a row with all zero elements as the matrix G is
randomly generated. It can be expressed as

Pr(eG = 0, w(e) = 1)

=

⎛
⎝∑

w(c)

μw(c)Pr(e ⊗ c = 0, w(e) = 1|w(c))
⎞
⎠

Q

, (3)

where ⊗ represents vector multiplication over GF(2), c is a
column vector of the matrix G, μw(c) is the probability that c
has weight w(c).

The probability Pr(e ⊗ c = 0, w(e) = 1|w(c)) in (3) is
equal to the probability of the event that the element at a
special position of c, which is corresponding to the position

5At the sink, the received data packets form a data matrix V′ =
[yDt

1 , . . . , yDt
j , . . . , yDt

Q ]. The decoding process at the sink is in a line-by-
line order. And due to the fact that the fading coefficients remain constant
over the length of one data packet but change independently among different
packets, the decoding process at the sink can be seen as over a fast Rayleigh
fading channel but with perfect CSI.
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where the nonzero element occurs in the error sequence e, is
zero. Therefore

Pr (e ⊗ c = 0, w(e) = 1|w(c)) =
(
K−1
w(c)

)
(

K
w(c)

) = ς
w(c)
1 . (4)

We now focus on the second term Pr(w(e) =
1 and the error e is detectable) in (2). Note that the probability
of the event that the error e is detectable when w(e) = 1, is
equal to the joint probability Pr(v → v′) given w(e) = 1.
Here v = mG is the transmitted codeword and v′ = m′G is
the decoded codeword, with v �= v′.

For the Rayleigh fading channel, Pr(v → v′) =
E�{Pr(v → v′|�)}, where E� is the expectation over the
fading coefficient vector � = [�1, �2, · · · , �Q]. Here �j ,
j ∈ {1, 2, · · · , Q}, is the channel coefficient for the wireless
channel from the jth relay node in R2 to the sink. �j remains
constant within one transmitted data packet, but changes
packet by packet.

The conditional probability Pr(v → v′|�) is the probability
that the decoded codeword is equal to v′ given the channel
fading coefficient �:

Pr(v → v′|�) = Q

⎛
⎝√

1

2N0

∑
j∈φ

�2j 2Ej
sd2j

⎞
⎠ , (5)

where d2j
Δ
= |y′j − yj|2/2Ej

s is the normalized squared
Euclidean distance between two modulation symbols y′j and
yj . Ej

s is the transmitted symbol energy for the jth relay node
in R2 and φ is the set of all j for which y′j �= yj given
w(e) = 1. Here y = [y1, · · · , yQ] is the modulated symbol
sequence corresponding to the codeword v. y′ is the modulated
symbol sequence corresponding to v′.

With the alternative expression of the Q-function [35]

Q(y) =
1

π

∫ π/2

0

exp

(
− y2

2 sin2(θ)

)
dθ, (6)

the error probability for the fast Rayleigh fading channel can
be expressed as

Pr(v → v′)
= E�{Pr(v → v′|�)}

= E�

{
1

π

∫ π/2

0

exp

(
−

1
2N0

∑
j∈φ �

2
j2E

j
sd

2
j

2 sin2(θ)

)
dθ

}

=
1

π

∫ π/2

0

E�

⎧⎨
⎩
∏
j∈φ

exp

(
−

1
2N0

�
2
j2E

j
sd

2
j

2 sin2(θ)

)⎫⎬
⎭ dθ

=
1

π

∫ π/2

0

∏
j∈φ

E�j

{
exp

(
− �

2
jE

j
sd

2
j

2N0 sin
2(θ)

)}
dθ. (7)

The fading coefficient �j follows the Rayleigh distribution,
and the probability density function (PDF) for Rayleigh distri-

bution is Pr(�j) =
�j

σ2 exp
(
− �

2
j

2σ2

)
, where σ is the parameter

for Rayleigh distribution, and σ2 = 1
2 . Thus, the expectation

function E�j

{
exp

(
− �

2
jE

j
sd

2
j

2N0 sin2(θ)

)}
in (7) can be calculated

by

E�j

{
exp

(
− �

2
jE

j
sd

2
j

2N0 sin
2(θ)

)}

=

∫ +∞

0

exp

(
− �

2
jE

j
sd

2
j

2N0 sin
2(θ)

)
�j

σ2
exp

(
− �

2
j

2σ2

)
d�j

=
1

1 +
Ej

sd2
j

2N0 sin2(θ)

. (8)

Therefore, we have

Pr(v → v′) =
1

π

∫ π/2

0

∏
j∈φ

1

1 +
Ej

sd2
j

2N0 sin2(θ)

dθ. (9)

Note that Ej
s reflects the fact that different relay nodes

may have different power. Assuming that the BPSK mod-
ulation is used, then, for y′j �= yj , we have that d2j =
2 [33]. Thus, the right side of the equation in (9) becomes
1
π

∫ π/2

0

∏
j∈φ

1

1+
E

j
s

N0 sin2(θ)

dθ.

Denote by γ
w(c)
1 the probability that the erroneous codeword

v′ has a symbol value equal to 1 given that e has weight
w(e) = 1 and c has weight w(c). Then we have

γ
w(c)
1 = 1− Pr(e ⊗ c = 0, w(e) = 1|w(c))

= 1−
(
K−1
w(c)

)
(

K
w(c)

) . (10)

The probability that the erroneous codeword v′ has a symbol
value equal to 1 given that e has weight w(e) = 1 is denoted
by β1, which is given by

β1 =
∑
w(c)

μw(c)γ
w(c)
1

=
∑
w(c)

(
1−

(
K−1
w(c)

)
(

K
w(c)

)
)

=
∑
w(c)

μw(c)(1− ς
w(c)
1 ). (11)

The joint probability Pr(v → v′) given that w(e) = 1, can
be represented by the joint probability Pr(eG �= 0, w(e) = 1).
Thus, the probability of the event that the error e is detectable
when w(e) = 1, can be written as

Pr(eG �= 0, w(e) = 1)

=

Q∑
k=1

1

π

(
Q

k

)
βk
1 (1 − β1)

Q−k

·
∫ π/2

0

⎛
⎝ 1

1 +
Ek

s

N0 sin2(θ)

⎞
⎠

k

dθ. (12)

We now note that both (3) and (12) depend on e only
through w(e) = 1. Also, there are 2K − 1 nonzero error
sequences e, of which

(
K
1

)
have weight 1. Taking these facts

into account, we have that the information bit error probability
of the LT code which can be summarized as:

Lemma: Consider an LT code with parameters μ(x), K ,
Q and expanding coefficient η. Its lower BER bound under
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ML decoding over a fast Rayleigh fading channel is ξL >
max{0, ξLT

L }, where ξLT
L is given by

ξLT
L =

1

K

(
K

1

)[⎛⎝∑
w(c)

μw(c)ς
w(c)
1

⎞
⎠

Q

+

Q∑
k=1

1

π

(
Q

k

)
βk
1 (1 − β1)

Q−k

·
∫ π/2

0

⎛
⎝ 1

1 +
Ek

s

N0 sin2(θ)

⎞
⎠

k

dθ

]
,

where

ς
w(c)
1 =

(
K−1
w(c)

)
(

K
w(c)

) ,
β1 =

∑
w(c)

μw(c)(1− ς
w(c)
1 ),

and w(·) denotes the Hamming weight, c is a column vector
of the matrix G, μw(c) is the probability that c has weight
w(c).

B. Upper Bound on the Bit Error Probability of Raptor Codes

The probability of decoding error for the Raptor codes
is calculated by the probability that the information cannot
be recovered correctly either by the LT decoder or by the
precoding decoder. We assume that after the LT decoder, the
error sequence is e. The probability that the precoding decoder
fails to recover the information can be computed as

Pr(eHT = 0) =
K∑
t=1

Pr(eHT = 0, w(e) = t), (13)

where HT is the transpose matrix of the parity check matrix
H.

The term in the right side of (13) can be expressed as

Pr(eHT = 0, w(e) = t)

=

⎛
⎝∑

w(h)

Ωw(h)Pr((e ⊗ h) = 0, w(e) = t|w(h))
⎞
⎠

K−KL

,(14)

where h is a column vector of the matrix HT , Ωw(h) is the
probability that h has weight w(h).

When t = 1, the probability Pr(e⊗h = 0|w(h), w(e) = t))
in (14) is equal to the probability that all the elements in a
special row of HT are zeros, and the special row corresponds
to the position where the nonzero value occurs in the error
sequence e. When t > 1, let ζ = {i1, i2, · · · , it} be the set of
size |ζ| = w(e) = t ≤ K , whose elements are the positions
where all the nonzero values exist in e. Let h(ζ) be the corre-
sponding subvector of h. Then Pr(e⊗h = 0|w(h), w(e) = t))
is equal to the probability that h(ζ) contains an even number
of ones. Therefore

Pr(e ⊗ h = 0, w(e) = t|w(h))

=

∑
α=even,0≤α≤t

(
t
α

)(
K−t

w(h)−α

)
(

K
w(h)

) = ς
R,w(h)
t . (15)

Note that (13) depends on e only through w(e) = t. Also,
there are 2K − 1 nonzero error sequences e, of which

(
K
t

)
have weight t. Taking these factors into account, we have that
the information bit error probability of the Raptor code can
be upper bounded by Pb < min{1, ξRaptor

U }, where

ξRaptor
U =

K∑
t=1

t

K

(
K

t

)[
ξtU (1− ξU )

K−t

·Pr(eHT = 0, w(e) = t)

]
. (16)

The scaling factor t/K in (16) is the number of erroneous
bits per information sequence in a weight-t information error
sequence. Therefore, we can get the BER upper bound of
Raptor codes which can be described as:

Theorem 1: Consider a Raptor code with parameters Ω(x),
μ(x), KL, K , Q, r and expanding coefficient η. Its upper
BER bound under ML decoding over a fast Rayleigh fading
channel is Pb < min{1, ξRaptor

U }, where ξRaptor
U is given by

ξRaptor
U =

K∑
t=1

t

K

(
K

t

)
ξtU (1 − ξU )

K−t

·
⎛
⎝∑

w(h)

Ωw(h)ς
R,w(h)
t

⎞
⎠

K−KL

,

where

ς
R,w(h)
t =

∑
α=even,0≤α≤t

(
t
α

)(
K−t

w(h)−α

)
(

K
w(h)

) ,

where h is a column vector of the matrix HT , HT is the
transpose matrix of the parity check matrix H, and Ωw(h) is
the probability that h has weight w(h).
ξU is the upper BER bound of the LT codes over the special

fast Rayleigh fading channel under ML decoding [25]. It can
be written as

ξU < min

{
1,

K∑
κ=1

κ

K

(
K

κ

)[⎛⎝∑
w(c)

μw(c)ς
w(c)
κ

⎞
⎠

Q

+

Q∑
k=1

1

π

(
Q

k

)
βk
κ(1 − βκ)

Q−k

·
∫ π/2

0

⎛
⎝ 1

1 +
Ek

s

N0 sin2(θ)

⎞
⎠

k

dθ

]}
,

where

ςw(c)
κ =

∑
α=even,α≤κ

(
κ
α

)(
K−κ

w(c)−α

)
(

K
w(c)

) ,

βκ =
∑
w(c)

μw(c)(1− ςw(c)
κ ).

C. Lower Bound on the Bit Error Probability of Raptor Codes

The error probability of Raptor codes can be lower bounded
by following the Bonferroni inequality [36]. The probability
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can be computed as

Pb =

K∑
t=1

t

K

(
K

t

)
ξtL(1− ξL)

K−tPr(eHT = 0, w(e) = t)

−1

2

K∑
t=1

t

K

(
K

t

)
ξtU (1− ξU )

K−t

·Pr(eHT = 0, e′HT = 0, w(e) = t), (17)

where e′ is another nonzero error sequence different from the
error sequence e.

Let z ∈ GF (2)K and Iz = {iz1 , iz2, . . . , izτ } be the set of
indices such that z(t) = 1 for t ∈ Iz , otherwise z(t) = 0.
Define three binary vectors z0, z1 and z2 as z0(t) = 1 if and
only if t ∈ Iz0 := Ie ∩ Ie′ , z1(t) = 1 if and only if t ∈
Iz1 := Ie\Ie′ and z2(t) = 1 if and only if t ∈ Iz2 := Ie′\Ie.
Let τ0, τ1 and τ2 be the size of the sets Iz0 , Iz1 and Iz2 ,
respectively. Then, Pr(eHT = 0, e′HT = 0, w(e) = t) in (17)
can be expressed as

Pr(eHT = 0, e′HT = 0, w(e) = t)

=

t∑
τ0=0

∑
τ1=t−τ0

K−τ0∑
τ2=0

(
t
τ0

)
2t

(
K−τ0
t−τ0

)
2K−τ0

(
K−τ0
τ2

)
2K−τ0

(∑
w(h)

Ωw(h)

·Pr(e ⊗ h = 0, e′ ⊗ h = 0, w(e) = t|τ0, τ1, τ2)
)K−KL

.(18)

Corresponding to the three sets Iz0 , Iz1 and Iz2 , each
column of the matrix HT , h, can be divided into three parts,
hτ0 , hτ1 and hτ2 . Let hτ0 be the subvector of h such that all
the elements of this subvector are selected from h according
to the indices in set Iz0 . The length of hτ0 is τ0. The same
operation is applied to the formation of hτ1 and hτ2 , in which
the elements are selected according to the indices in set Iz1
and Iz2 , and have length τ1 and τ2, respectively. Therefore,
the conditional probability of the last product term in (22) can
be computed as

Pr(e ⊗ h = 0, e′ ⊗ h = 0, w(e) = t|τ0, τ1, τ2)
= Pr(eτ0 ⊗ hτ0 = 0)Pr(eτ1 ⊗ hτ1 = 0)

·Pr(e′τ2 ⊗ hτ2 = 0) + Pr(eτ0 ⊗ hτ0 = 1)

·Pr(eτ1 ⊗ hτ1 = 1)Pr(e′τ2 ⊗ hτ2 = 1)

=

min{τ0,w(h)}∑
w(hτ0 )=0

min{τ1,w(h)−w(hτ0 )}∑
w(hτ1 )=0∑

w(hτ2 )=min{τ2,w(h)−w(hτ0 )−w(hτ1 )}(
τ0

w(hτ0 )

)
2τ0

(
τ1

w(hτ1 )

)
2τ1

(
τ2

w(hτ2 )

)
2τ2

·
[
A(w(hτ0), τ0)A(w(hτ1), τ1)A(w(hτ2), τ2)

+A(w(hτ0), τ0)A(w(hτ1), τ1)A(w(hτ2), τ2)

]
, (19)

where eτ0 and eτ1 are subvectors of e with length τ0 and
τ1, respectively. The subvector eτ0 is formed by selecting
elements from e according to the indices in set Iz0 , and
the elements in eτ1 are selected by the same way according

to the indices in set Iz1 . All the elements in eτ0 and eτ1
are in one-to-one correspondence with that of hτ0 and hτ1 ,
respectively. e′τ2 is the subvector of e′ with length τ2, and
the elements of e′τ2 are selected from e′ according to the
indices in set Iz2 . The same as the case of eτ0 and eτ1 , all
the elements in e′τ2 are in one-to-one correspondence with
that of hτ2 . w(hτp) is the Hamming weight of hτp . Denote
by A(w(hτp), τp) the probability that zp ⊗ hτp = 0, and
A(w(hτp), τp) the probability that zp⊗hτp = 1. A(w(hτp), τp)
and A(w(hτp), τp) can be computed respectively as

A(w(hτp), τp)

= Pr

(
zp ⊗ hτp = 0|w(h), w(hτ2), τp

)
=

∑
α=even,0≤α≤min{τp,w(hτp )}

(
τp
α

)( K−τp
w(h)−α

)
(

K
w(h)

) ,

A(w(hτp), τp)

= Pr

(
zp ⊗ hτp = 1|w(h), w(hτ2), τp

)
=

∑
α=odd,α≤min{τp,w(hτp )}

(
τp
α

)( K−τp
w(h)−α

)
(

K
w(h)

) . (20)

We note that (17) depends on e only through w(e) = t.
Also, there are 2K − 1 nonzero error sequences e, of which(
K
t

)
have weight t. Taking these factors into account, we have

that the bit error probability of the Raptor code can be lower
bounded by Pb > max{0, ξRaptor

L }, where

ξRaptor
L =

K∑
t=1

t

K

(
K

t

)
ξtL(1− ξL)

K−t

·Pr

(
w(eHT ) = 0, w(e) = t

)
−1

2

K∑
t=1

t

K

(
K

t

)
ξtU (1− ξU )

K−t

·Pr(eHT = 0, e′HT = 0, w(e) = t). (21)

The scaling factor t/K in (21) is the number of erroneous
information bits per information symbol in a weight-t infor-
mation error sequence. Therefore, we can get the BER lower
bound on the bit error probability of Raptor codes which can
be described as:

Theorem 2: Consider a Raptor code with parameters Ω(x),
μ(x), KL, K , Q, r and expanding coefficient η. Its lower
BER bound under ML decoding over a fast Rayleigh fading
channel is Pb > max{0, ξRaptor

L }, where ξRaptor
L is given by

ξRaptor
L

=
K∑
t=1

t

K

(
K

t

)
ξtL(1− ξL)

K−t

⎛
⎝∑

w(h)

Ωw(h)ς
R,w(h)
t

⎞
⎠

K−KL

−1

2

K∑
t=1

t

K

(
K

t

)
ξtU (1− ξU )

K−t
t∑

τ0=0

∑
τ1=t−τ0

K−τ0∑
τ2=0(

t
τ0

)
2t

(
K−τ0

τ1

)
2K−τ0

(
K−τ0

τ2

)
2K−τ0

⎛
⎝∑

w(h)

Ωw(h)ζ(τ0, τ1, τ2, t)

⎞
⎠

K−KL

,
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where

ς
R,w(h)
t

=

∑
α=even,0≤α≤t

(
t
α

)(
K−t

w(h)−α

)
(

K
w(h)

) ,

ζ(τ0, τ1, τ2, t)

=

min{τ0,w(h)}∑
w(hτ0 )=0

min{τ1,w(h)−w(hτ0 )}∑
w(hτ1 )=0∑

w(hτ2 )=min{τ2,w(h)−w(hτ0 )−w(hτ1 )}(
τ0

w(hτ0 )

)
2τ0

(
τ1

w(hτ1 )

)
2τ1

(
τ2

w(hτ2

)
2τ2

·
[
A(w(hτ0), τ0)A(w(hτ1), τ1)A(w(hτ2), τ2)

+A(w(hτ0), τ0)A(w(hτ1), τ1)A(w(hτ2), τ2)

]
,

A(w(hτp), τp)

=

∑
α=even,0≤α≤min{τp,w(hτp )}

(
τp
α

)( K−τp
w(h)−α

)
(

K
w(h)

) ,

A(w(hτp), τp)

=

∑
α=odd,α≤min{τp,w(hτp )}

(
τp
α

)( K−τp
w(h)−α

)
(

K
w(h)

) ,

and hτp is the subvector of h, τp is the length of hτp , and
p ∈ {0, 1, 2}.

V. NUMERICAL AND SIMULATION RESULTS

In this section, we present numerical and simulation results
for the LT-based DNC scheme and the proposed Raptor-based
DNC scheme over quasi-static Rayleigh fading channels. Due
to the time-varying channels of the wireless network, within
each transmission round, a Raptor code is generated on-the-fly
to match the instantaneous network topology. Thus, the BER
performance of an ensemble of codes is analyzed. We consider
the case of K = 100, KL = 50 and 98, which correspond to
the pre-code rate r = 0.5 and 0.98, respectively. We evaluate
the upper and lower bounds on the bit error probability under
ML decoding by using the degree distribution Ω(x) = rx +
(1 − r)x4 for the pre-code in the precoding phase and the
degree distribution described in [24]6 for the LT code in the
LT-coding phase:

μ(x) = 0.007969x+ 0.493570x2 + 0.166220x3

+0.072646x4 + 0.082558x5 + 0.056058x8

+0.037229x9 + 0.055590x19 + 0.025023x65

+0.003135x66. (22)

Fig. 3 shows the BER bounds of the constructed LT codes
and Raptor codes ensemble, respectively, at an average Es/N0

of 7dB, where Es is the average energy per transmitted

6We only use this degree distribution as an example. In our future work,
we will design the optimal degree distribution function for LT codes over
the Rayleigh fading channel. This can possibly be based on our developed
analytical bounds.
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Fig. 3. BER bounds comparison for LT-based and Raptor-based DNC
schemes over Rayleigh fading channels with KL = 98, K = 100 and
Es/N0 = 7dB.

information symbol. It can be seen that the lower bound of the
LT codes we derived in this paper is asymptotically tight to the
upper bound given in [25] as the expanding coefficient grows.
Also, from the figure we can see that the BER performance of
the proposed Raptor-based DNC scheme is much better than
that of the LT-based DNC scheme regardless of the expanding
coefficient. The proposed DNC scheme on the basis of the
Raptor codes has about two orders of magnitude improvement
of BER performance compared with the scheme based on the
LT codes if the expanding coefficient is large enough, e.g.,
η = 2. The analytical upper bound of the proposed Raptor-
based DNC scheme is asymptotically tight to the lower bound
in a greater expanding coefficient extent.

Fig. 4 shows the BER bounds of the constructed Raptor
codes ensemble at an average Es/N0 of 7dB and 10 dB,
respectively. The information length of the LDPC codes is
KL = 98, and that of the LT codes is K = 100, which
correspond to 98 source nodes and 100 relay nodes in R1,
respectively. It can be seen from the figure that as Es/N0

increases, e.g., Es/N0 changes from 7dB to 10dB, the upper
and lower BER bounds of the proposed DNC scheme based
on the Raptor codes become tighter, especially when the
expanding coefficient is large enough, e.g., η ≥ 1.5. This
phenomenon can be explained by examining the difference
between the upper and lower bounds given by Theorem 1 and
Theorem 2 in Section IV, respectively. The difference between
the two bounds can be represented by

ξRaptor
U − ξRaptor

L

=

K∑
w(e)=t=1

t

K

(
K

t

)[⎛⎝∑
w(h)

Ωw(h)ς
R,w(h)
t

⎞
⎠

K−KL

· (ξtU (1− ξU )
K−t − ξtL(1− ξL)

K−t
)
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Fig. 4. BER bounds of constructed Raptor codes ensemble over the Rayleigh
fading channel with KL = 98, K = 100, Es/N0 = 7dB and 10dB,
respectively.

−1

2
ξtU (1 − ξU )

K−t

·
t∑

τ0=0

∑
τ1=t−τ0

K−τ0∑
τ2=0

(
t
τ0

)
2t

(
K−τ0
τ1

)
2K−τ0

(
K−τ0
τ2

)
2K−τ0

·
⎛
⎝∑

w(h)

Ωw(h)ζ(τ0, τ1, τ2, t)

⎞
⎠

K−KL ]
. (23)

We only consider the effect from Es/N0 to
ξRaptor
U − ξRaptor

L . Let B(t) and A(t) denote the terms of∑t
τ0=0

∑
τ1=t−τ0

∑K−τ0
τ2=0

( t
τ0
)

2t
(K−τ0

τ1
)

2K−τ0

(K−τ0
τ2

)
2K−τ0

(∑
w(h) Ωw(h)

ζ(τ0, τ1, τ2, t)

)K−KL

and
(∑

w(h) Ωw(h)ς
R,w(h)
t

)K−KL

in (23), respectively. These two terms do not depend on
Es/N0. Therefore, (23) can be rewritten as

ξRaptor
U − ξRaptor

L

=

K∑
w(e)=t=1

t

K

(
K

t

)[(
A(t) +

1

2
B(t)

)
ξtU (1− ξU )

K−t

−A(t)ξtL(1 − ξL)
K−t

]
. (24)

Let f(ξτ ) denote ξtτ (1−ξτ )
K−t in (24), where τ ∈ {U,L}.

From Fig. 3, it can be seen that when the expanding coefficient
η ≥ 1.5, the values of both the upper and lower BER bounds
of LT codes are smaller than 10−2. Fig. 5 illustrates the change
of f(ξτ ) with ξτ when ξτ ≤ 0.01. In this figure, green and
blue lines denote the cases when t = 1 and 100, respectively.
Red lines between the green and blue ones denote the cases
when 1 < t < 100.

From Fig. 5 we can see that when ξτ ≤ 0.01, f(ξτ )
is a monotonically increasing function. Since ξU is always
bigger than ξL when η ≤ 1.5, f(ξU ) can be represented by
the function f(ξL), that is f(ξU ) = f(ξL) + Δ, where Δ

0 0.002 0.004 0.006 0.008 0.01
10

−300

10
−200

10
−100

10
0

ξτ

f(
ξ τ)

t=1

t=100

Fig. 5. f(ξτ ) with K = 100.

represents the difference between f(ξU ) and f(ξL). Thus, (24)
becomes

ξRaptor
U − ξRaptor

L

=
K∑

w(e)=t=1

t

K

(
K

t

)(
1

2
B(t)f(ξU ) +A(t)Δ

)
. (25)

As the Es/N0 increases, ξU described in Theorem 1 be-
comes smaller. Since f(ξU ) = ξtU (1− ξU )

K−t is a monoton-
ically increasing function in the region of 0 ≤ ξU ≤ 0.01,
f(ξU ) becomes smaller with the increases of Es/N0.

From the Theorem 1 and the Lemma, we can express ξU as
ξU = ξL +Δo, where

Δo =

K∑
κ=2

κ

K

(
K

κ

)[⎛⎝∑
w(c)

μw(c)ς
w(c)
κ

⎞
⎠

Q

+

Q∑
k=1

1

π

(
Q

k

)
βk
κ(1− βκ)

Q−k

·
∫ π/2

0

⎛
⎝ 1

1 +
Ek

s

N0 sin2(θ)

⎞
⎠

k

dθ

]
. (26)

Thus, Δ = f(ξU ) − f(ξL) can also be written as Δ =
f(ξL + Δo) − f(ξL). From the Lemma and (26) we can see
that with the increases of Es/N0, both ξL and Δo become
smaller. Let ΔξL and ΔΔo represent the variations of ξL and
Δo, respectively, with the changes of Es/N0. That is, if the
transmitted symbol energy at a particular node is changed from
Es1 to Es2, then ΔΔg = Δg(Es2/N0)−Δg(Es1/N0), where
g ∈ {ξL, o}. With the above notations, the ratio between ΔξL

and ΔΔo can be represented by

ΔξL

ΔΔo

=

∑Q
k=1

1
π

(
Q
k

)
βk
1 (1− β1)

Q−k∑K
κ=2

κ
K

(
K
κ

)∑Q
k=1

1
π

(
Q
k

)
βk
κ(1− βκ)Q−k

. (27)

It can be seen that Es/N0 is not included in (27). This
means that no matter how the Es/N0 changes, the relationship
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Fig. 6. The ratio
ΔξL
ΔΔo

.

between the variations ΔξL and ΔΔo is always the same.
Fig. 6 shows the ratio value changes as a function of the
expanding coefficient η. From Fig. 6 we can see that

ΔξL

ΔΔo

is much smaller than 1 over all the expanding coefficients. It
means that the variation of ξL is much smaller than that of
Δo. Corresponding to this, f(ξL+Δo) changes much greater
than f(ξL) with the increase of Es/N0. Thus, the change of
Δ = f(ξL+Δo)−f(ξL) is mainly determined by f(ξL+Δo),
that is to say, as Es/N0 increases, Δ becomes smaller.

From what has been discussed above, we may finally draw
the conclusion that as Es/N0 increases, both f(ξU ) and Δ
become smaller. Therefore, as a result of the increases of
Es/N0, the difference between the upper bound ξRaptor

U of
the proposed DNC scheme based on the Raptor codes and the
lower bound ξRaptor

L becomes smaller.
Fig. 7 shows the BER bounds of the constructed Raptor

codes ensemble with KL = 50 and 98, which correspond
to the code rate of 0.5 and 0.98, respectively, at an average
Es/N0 of 10 dB. It can be seen that as the code rate of the
LDPC codes, which are used in the construction of the Raptor
codes, decreases, the BER bounds get better. The reason is that
if take code rate of the pre-code in the precoding phase into
consider, the overall expanding coefficient equals to η

r . As r
changes to smaller, the overall expanding coefficient becomes
larger. Thus, the BER performance of the Raptor codes get
better as the code rate of the LDPC codes decreases.

VI. CONCLUSION

In this work, we proposed a Raptor-based DNC scheme
for WSNs. We proposed to use such a coding scheme for
matching a code-on-graph to a network-on-graph to achieve
a combined network-channel coding gain. We first developed
lower BER bound of the LT-based DNC scheme over fast
Rayleigh fading channels under ML decoding. Then, we
derived analytical upper and lower bounds on ML decoding for
the proposed Raptor-based DNC scheme. From the numerical
and simulation results, we can see that the derived upper and

1 1.5 2 2.5 3
10

−10

10
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10
−6

10
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10
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10
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expanding coefficient η

B
E

R

 

 

r=0.5,upper bound
r=0.5,lower bound
r=0.98,upper bound
r=0.98,lower bound

Fig. 7. BER performance bounds of constructed Raptor codes ensemble over
the Rayleigh fading channel with KL = 50 and 98, respectively, K = 100
and Es/N0 = 10dB.

lower BER bounds come closer, particularly as the length of
the codewords is increased with a larger expanding coefficient.
In our future work, we will use the developed bounds to
optimize degree distributions of rateless codes over Rayleigh
fading channels.
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