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Abstract—In this paper, we propose a distributed network cod-
ing (DNC) scheme based on the Raptor codes for wireless relay
networks (WRNs), where a group of source nodes communicate
with a single sink through a common relay network in a multi-
hop fashion. At the sink, a graph-based Raptor code is formed on
the fly. After receiving a sufficient number of encoded packets,
the sink begins to decode. The main contributions of this paper
are the derivations of upper and lower bit error rate (BER)
bounds for the proposed Raptor-based DNC scheme.

Index Terms—Distributed network coding, wireless relay net-
works, Raptor codes, Quasi-static Rayleigh fading channel, upper
and lower bounds.

I. INTRODUCTION

Wireless systems, such as last mile, sensor or community
networks, are likely to be a major form of future commu-
nications. Next generation wireless communication networks
will go beyond point-to-point or point-to-multipoint paradigms
of existing cellular networks. They will be based on complex
interactions, where individual communication nodes cooperate
with one another in order to improve the performance of
their own communication and that of the entire network.
Cooperative communications [1], [2], based on the use of
relay nodes, have emerged as a promising approach to increase
spectral and power efficiency, communication coverage and
reliability.

As a special channel coding strategy developed for co-
operative communication networks, distributed coding tech-
niques attracted significant research interest recently. The
distributed code construction concept has been applied to
conventional channel coding to form, for example, distributed
turbo codes [3], distributed space-time codes [4] and dis-
tributed low-density parity-check (LDPC) codes [5]. These
developments show that the distributed coding schemes are
capable of improving the transmission reliability in coopera-
tive communication networks [1].

Cooperative communication offers a significant advantage
in improving communication reliability, increasing spectral
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efficiency and reducing energy consumption [1], [2]. A widely
used cooperative communication technique is network cod-
ing [6]. Network coding is a novel approach to enhance the
network capacity [6]. When network coding is employed, the
relay nodes are allowed to encode the packets received from
multiple source nodes to compress the data, and whenever
possible, to reduce the number of transmissions and bandwidth
consumption. Prior work shows that network coding achieves
the multi-cast network capacity by transmitting linear combi-
nations of received data [7], [8].

Due to the broadcast nature of wireless channels, network
coding appears to be a natural fit for cooperative communi-
cation networks where multiple source nodes communicate
with a common sink through multiple relay nodes. There are a
large number of published papers in this area, e.g., [9]–[14]. A
distributed network coding scheme for wireless relay networks
(WRNs) using Luby-transform (LT) [15] codes, referred to as
distributed network coding (DNC) scheme [16], was proposed
to reduce the network code design to the problem of designing
a Tanner graph code by matching a real-time network topology
to a code on graph. LT codes are a class of fountain codes.
Fountain codes [17], which are also referred to as rateless
codes, can provide reliable transmission by using continuous
transmission schemes. Specifically, fountain codes transform a
data sequence into a potentially unlimited number of encoded
packets, such that it is possible to correctly decode the original
data sequence, as long as a number of encoded packets with
the length slightly larger than the original data sequence are
received.

In the aforementioned works, source nodes are assumed
to be able to communicate directly with their common sink.
However, in some WRN applications, where direct links
between source nodes and the common sink are not always
available, communications of data occur in a multi-hop way.
In this paper, we propose a DNC scheme for WRNs, where no
directly links exist between the source nodes and their com-
mon sink, based on Raptor codes [18], in which a conventional
outer code is concatenated with an inner LT code to reduce the
error floor. The main challenge of introducing Raptor codes
into WRNs is to conduct precoding in a decentralized man-978-1-4799-4657-0/14/$31.00 c⃝ 2014 IEEE



ner [19]. Different decentralized methods have been studied in
previous works, such as the random-walk based decentralized
fountain codes algorithm given in [20] and the efficient two-
hop decentralized precoder described in [21]. In this paper, a
WRN with multiple source nodes, multiple relay nodes and
a single sink is considered. All the source nodes send their
data packets to the relay nodes by using a random access
MAC (Media Access Control) protocol. All the relay nodes
which participate in the process of transmission form two
relay groups, namely, a precoding relay group and an LT-
coding relay group. The two relay groups are formed in a
decentralized way. The operations of the relay nodes in the
LT-coding and precoding relay groups are also decentralized.
Each relay node in the LT-coding and precoding relay groups
selects packets uniformly at random from its buffer and then
performs a linear network coding. At the sink a graph code is
formed on the fly.

We derive analytical upper and lower bounds for the bit
error rate (BER) of the proposed Raptor-based DNC scheme
over Rayleigh fading channels under maximum-likelihood
(ML) decoding [22] [23]. These derived bounds are shown to
be asymptotically tight with the increasing of the expanding
coefficient. As the derived analytical bounds are tight for large
SNRs, our ML analysis is of interest and may be used to
optimize degree distributions for the proposed scheme [24, Ch.
8, p. 283]. The analytical bounds can also be used to compare
the performance of Raptor codes with different parameters.

II. SYSTEM MODEL

Before the introduction of the system model, we first recall
the basic knowledge of the Raptor codes.

A. Raptor Codes

Raptor codes are the first class of fountain codes with linear
time encoding and decoding. The key idea of Raptor coding
is concatenating a traditional error correcting code with an LT
code to relax the condition that all input symbols need to be
recovered in LT codes. The encoding process is carried out in
two phases:

• Encode k input symbols with an (n, k) error correcting
block code to form n intermediate symbols.

• Encode the n intermediate symbols with an LT code.
Each output symbol is generated by randomly choosing a
degree d following the degree distribution µ(x), and then
choosing d distinct input symbols uniformly at random,
and operating XOR on them.

Thus, a Raptor code can be specified by parameters
(k,C, µ(x)), where C is the (n, k) error correcting block code,
called the pre-code, and µ(x) is the generator polynomial of
the degree distribution of the LT code.

Corresponding to the encoding process, the decoding pro-
cess also can be divided into two phases:

• Recover required fraction of intermediate symbols from
the received symbols at the sink.

• Recover all input symbols from the fixed fraction of
intermediate symbols, which is recovered at the first
phase.

B. Distributed Raptor Codes for Wireless Relay Networks

As shown in Fig. 1, we consider a wireless relay network
with KL source nodes communicating with a single sink
through a common relay network. We assume that there are
K relay nodes in the relay network. We consider a random
access MAC protocol, e.g., Carrier Sense Multiple Access-
Collision Avoidance (CSMA-CA). Further, we only consider
3-hop transmissions. We assume that all the relay nodes in
the network know previously the degree distributions of the
designed distributed Raptor codes.

The relay nodes can be classified into two groups: a
precoding relay group R1, and an LT-coding relay group R2.
Depending on the header information of received packets, a
relay node determines which group it belongs to. We assume
that we have a priori knowledge of the total number of relay
nodes in the precoding relay group and denote this number by
KP . The priori knowledge can be obtained through a priori
measurements of the relay network or simply by estimating the
number of the relay nodes which are within the transmission
range of the source nodes. More detailed description of the
classification of the two groups will be given later in this
section. Fig. 1 shows the model of the investigated system.
Let Si, R1

j′ , R2
j and D represent the ith source node, the

j′th relay node in relay group R1, the jth relay node in relay
group R2 and the sink, respectively, where i ∈ {1, 2, . . . ,KL},
j′ ∈ {1, 2, . . . ,KP } and j ∈ {1, 2, . . . , N}.

Fig. 1. A network graph used to describe the system model.

We assume that the channels between the source and relay
nodes in the precoding relay group, between the relay nodes
in the two relay groups, and between the relay nodes in the
LT-coding relay group and the sink are quasi-static Rayleigh
fading channels and spatially independent. We denote by ~osi,j′
the fading coefficient of the link between the ith source node
Si and the j′th relay node R1

j′ in relay group R1. Let ~toj′,j
and ~Dt

j be the channel fading coefficients of the links between
R1

j′ and the jth relay node R2
j in relay group R2, and between

R2
j and the sink D, respectively. The fading coefficients ~osi,j′ ,



~toj′,j and ~Dt
j remain constant over the length of one data

packet, but change independently from packet to packet. These
fading coefficients have unit mean square values [25], i.e.,
E{| ~osi,j′ |2} = 1, E{| ~toj′,j |2} = 1 and E{| ~Dt

j |2} = 1.
Here E{·} denotes the expectation. We allow the relay nodes
to operate with different transmit powers.

For simplicity, we adopt the binary phase shift keying
(BPSK) [26] modulation and assume perfect channel state
information (CSI) at the receivers. The data delivery from the
source nodes to the sink is carried out in four phases, i.e., the
broadcast phase, the precoding phase, the LT-coding phase and
the data recovery phase.

Broadcast phase: The information sequence of each source
node is segmented into a number of equal length data segments
at first. Then a header and a cycle redundance check (CRC)
code are added to each data segment to form a data packet.
Denote by mi ∈ GF(2)ϵ×1, i ∈ {1, 2, · · · ,KL}, the data
packet of the ith source node. The header consists of the
identity of the node, the number of hops of the transmitted
packets, etc. The number of hops for the packets transmitted
from source nodes is set to 1.

Precoding phase: In the precoding phase, LDPC codes
are used. Ω(x) is the generator polynomial of the degree
distribution of the LDPC codes [18] [27]. The information
of the degree distribution Ω(x) =

∑n
p=1 Ωpx

p is previously
stored in the relay nodes. When a relay node receives a packet,
it decodes the packet and checks the correctness of the decoded
packet by using CRC. If the packet is correct, the relay node
then checks the number of hops of the received packet. If the
number is equal to 1, the node determines that it belongs to
the precoding relay group.

• At first, each relay node in R1 selects a number p
with probability Ωp according to its pre-stored degree
distribution Ω(x). The received data packet from Si at
R1

j′ , (R1
j′ ∈ R1), can be written as yosi,j′ = ~osi,j′xi + no

i,j′ .
Here xi = (−1)mi ∈ {±1}ϵ is the transmitted data packet
from Si, no

i,j′ is the additive white Gaussian noise vector
of size ϵ×1 at R1

j′ , where ϵ denotes the length of the data
packet. Then each relay node in R1 decodes the received
data packets from the source nodes. If the decoded packet
is correct, the node then puts the correctly decoded data
segments together with its connection information into its
buffer.

• After collecting enough number of data segments, i.e.,
the number of data segments in a relay node’s buffer is
larger than its selected number p, the relay node selects
a number p of data segments from its buffer to perform
network coding by using linear combinations in the field
of GF(2) [22]. Since p ≪ KL, it is with high probability
that there are p correctly decoded data segments in the
buffer. Thus, we can always assume that this network
coding process is achievable. The network-coded data are
then augmented with a header and a CRC code to form a
network-coded data packet. Denote by sj′ ∈ GF (2)ϵ×1,
j′ ∈ {1, 2, . . . ,KP }, the network-coded data packet at
R1

j′ . The header contains the connection information

and the number of hops of the packet. The connection
information includes the identities of the source nodes
which are used to form the network coded packet and the
identity of the relay node from which the coded packet is
broadcast. The number of hops for the packets transmitted
from the relay nodes in precoding group R1 is set to 2.

• The network-coded data packet is then broadcast at each
relay node in R1 to the network with a probability PP ,
where PP = K

KP
. Here K = KL

r denote the total number
of the selected relay nodes in R1 and r is the desired code
rate of the pre-code.

LT-coding phase: In the LT-coding phase, LT codes are
used. µ(x) is the generator polynomial of the degree dis-
tribution of the LT codes [15] [18]. The information of the
degree distribution µ(x) =

∑
q µqx

q is previously stored in
the relay nodes. If a relay node receives a packet with the
number of hops of 2, then it determines that it belongs to the
LT-coding relay group. Note that the relay node belonging to
the LT-coding relay group may also belong to the precoding
relay group. But in different phases, it performs its operation
according to different degree distributions.

• Each relay node in R2 first randomly selects a number of
q with probability µq according to the pre-stored degree
distribution µ(x). The received data packet from R1

j′ at
R2

j can be represented as ytoj′,j = ~toj′,jxoj′ + nt
j′,j . Here

xoj′ = (−1)sj′ ∈ {±1}ϵ is the modulated data packet
transmitted from R1

j′ . nt
j′,j is the additive white Gaussian

noise vector of size ϵ × 1 at R2
j . Then each relay node

in R2 decodes the received data packets from the relay
nodes in R1, checks the correctness using CRC code, and
puts the correctly decoded data segments together with
their connection information into its buffer.

• After collecting enough number of data segments, i.e.,
the number of data segments in the relay node’s buffer is
larger than its previously selected number q, each relay
node in R2 randomly selects a number q of data segments
from its buffer to perform network coding by using linear
combinations in the field of GF(2). Since q ≪ K, we
can always assume that this network coding process is
possible to achieve. The formed network coded data
segment is then appended with a CRC code and a header.
The header contains the connection information and the
number of hops of the packet. The connection information
includes the identities of the source nodes and the relay
nodes in R1 which are used to form the network coded
data segment, it also includes the identity of the relay
node in R2 from which the packet is transmitted. The
number of hops for the packets transmitted from any
nodes in R2 is set to 3.

• The network-coded packet is then broadcast to the sink.

Data recovery phase: The sink knows whether the packets
are from LT coding group by checking the number of hops of
the received packets, i.e., if the number of hops of a received
packet equals to 3, then it is from the LT-coding group. The
received data packet from the jth relay node in R2 at the sink



D can be expressed as yDt
j = ~Dt

j xt
j +nD

j , where xtj ∈ {±1}ϵ
is the modulated data packet transmitted from R2

j , and nD
j is

the additive white Gaussian noise vector of size ϵ × 1. After
receiving Q data packets from the relay nodes in relay group
R2, where Q ≥ K, the sink begins to decode by using the
ML algorithm, based on the soft information of the received
data packets.

Since a small header, which contains the connection infor-
mation, is added in each packet when each relay node forwards
data, the sink knows how the checks are formed and can
accordingly replicate the code on graph, as shown in Fig. 2.
The formed code graph consists of KL input data packets,
corresponding to the KL source nodes, K precoding data
packets, corresponding to the K relay nodes which are selected
to transmit network-coded packets in R1, and Q output data
packets. The length of each header is much shorter than that
of the data packet, therefore, the throughput loss due to the
header can be neglected.

Fig. 2. A Tanner graph of Raptor code derived from the system model.

If the data packets cannot be recovered completely at the
sink, the sink simply sends a data request to the relay nodes in
relay group R2 to ask for another network-coded data packet.
After receiving the request from the sink, each relay node in
the LT-coding relay group transmits a new formed data packet
to the sink with the probability of 1

N , where N is the number
of relay nodes in the LT-coding relay group. We assume that
this number can be estimated. As a result, every time the sink
sends a transmit request to the relay nodes, only one relay
node responds to the request. The responding relay node is
regarded as the (Q + 1)th node. This process runs until all
the information can be recovered at the sink. Since the relay
nodes are asked for data transmission one by one, redundant
transmissions are avoided.

III. UPPER AND LOWER BOUNDS ON THE BIT ERROR
PROBABILITY OF RAPTOR CODES

In this section, we derive both upper and lower bounds on
the bit error probability of the proposed finite-length Raptor-
based DNC scheme under ML decoding over Rayleigh fading
channels.

The data packets from all the source nodes are arranged into
a matrix Λ = [m1,m2, · · · ,mKL

] ∈ GF(2)ϵ×KL . All the data

packets formed at all the relay nodes in R1 during the precod-
ing phase are grouped into a matrix Λs = [s1, s2, · · · , sK ] ∈
GF(2)ϵ×K , where sj′ ∈ GF(2)ϵ×1, j′ ∈ {1, 2, · · · ,K}, is the
network-coded data packet of the j′th selected relay node in
R1. The output data packets of the relay nodes in R1 and R2

are formed as described in Section II, according to the pre-
determined degree distributions Ω(x) and µ(x), respectively.

The network-coded data packets formed at R2 in the LT-
coding phase are then transmitted over quasi-static Rayleigh
fading channels to the sink D. Let Q denote the number of
data packets collected at the sink. Then Q can be expressed
as Q = ηK = η

rKL, where the expanding coefficient η is a
real number equal to or greater than one.

The output from the Q relay nodes in R2 can be represented
by V = ΛsG = ΛGLG, where V ∈ GF(2)ϵ×Q. GL is a
randomly generated KL × K binary matrix formed at R1,
which is associated with the graph code used in the precoding
phase of the Raptor code. G is a randomly generated K ×
Q binary matrix formed at R2, which is associated with the
LT code. The jth column of V is the transmitted data packet
from the jth relay node in R2. Since the binary information
sequences of the source nodes are assumed to be i.i.d, we only
consider an arbitrary row of Λ in the analysis and denoted by
m. Let v be the corresponding row of V when m is chosen as
the input, i.e., v = mGLG.

The (i, j′)th element of GL(i, j
′) is equal to one if the ith

source node’s data is used to generate the output data at the
j′th selected relay node in R1, otherwise it is zero. In a similar
way, G(j′, j) = 1, if the data of the j′th selected relay node
in R1 is used to generate the output data of the jth relay
node in R2, otherwise it is zero. Since the both applied codes
are linear, their performance is independent of the transmitted
information sequence. Thus, we can assume that the all zero
sequence is transmitted, i.e., m = 0. The error information
sequence is denoted by e.

A. Upper Bound on the Bit Error Probability of Raptor Codes
The probability of decoding error for the Raptor codes

is calculated by the probability that the information cannot
be recovered correctly either by the LT decoder or by the
precoding decoder. We assume that after the LT decoder, the
error sequence is e. The probability that the precoding decoder
fails to recover the information can be computed as

Pr(eHT = 0) =
K∑
t=1

Pr(eHT = 0, w(e) = t), (1)

where H is the parity check matrix of the generator matrix
GL. HT is the transpose matrix of the parity check matrix H.

The term in the right side of (1) can be expressed as

Pr(eHT = 0, w(e) = t)

=

∑
w(h)

Ωw(h)Pr((e ⊗ h) = 0, w(e) = t|w(h))

K−KL

,(2)

where h is a column vector of the matrix HT , Ωw(h) is the
probability that h has weight w(h).



When t = 1, the probability Pr(e⊗h = 0|w(h), w(e) = t))
in (2) is equal to the probability that all the elements in a
special row of HT are zeros, and the special row corresponds
to the position where the nonzero value occurs in the error
sequence e. When t > 1, let ζ = {i1, i2, · · · , it} be the set of
size |ζ| = w(e) = t ≤ K, whose elements are the positions
where all the nonzero values exist in e. Let h(ζ) be the corre-
sponding subvector of h. Then Pr(e⊗h = 0|w(h), w(e) = t))
is equal to the probability that h(ζ) contains an even number
of ones. Therefore

Pr(e ⊗ h = 0, w(e) = t|w(h))

=

∑
α=even,0≤α≤t

(
t
α

)(
K−t

w(h)−α

)(
K

w(h)

) = ς
R,w(h)
t . (3)

Note that (1) depends on e only through w(e) = t. Also,
there are 2K − 1 nonzero error sequences e, of which

(
K
t

)
have weight t. Taking these factors into account, we have that
the information bit error probability of the Raptor code can
be upper bounded by Pb < min{1, ξRaptor

U }, where

ξRaptor
U =

K∑
t=1

t

K

(
K

t

)[
ξtU (1− ξU )

K−t

·Pr(eHT = 0, w(e) = t)

]
. (4)

The scaling factor t/K in (4) is the number of erroneous
bits per information sequence in a weight-t information error
sequence. Therefore, we can get the BER upper bound of
Raptor codes which can be described as:

Theorem 1: Consider a Raptor code with parameters Ω(x),
µ(x), KL, K, Q, r and expanding coefficient η. Its upper
BER bound under ML decoding over a fast Rayleigh fading
channel is Pb < min{1, ξRaptor

U }, where ξRaptor
U is given by

ξRaptor
U =

K∑
t=1

t

K

(
K

t

)
ξtU (1− ξU )

K−t

·

∑
w(h)

Ωw(h)ς
R,w(h)
t

K−KL

where

ς
R,w(h)
t =

∑
α=even,0≤α≤t

(
t
α

)(
K−t

w(h)−α

)(
K

w(h)

) ,

where h is a column vector of the matrix HT , HT is the
transpose matrix of the parity check matrix H, and Ωw(h) is
the probability that h has weight w(h).

At the sink, the received data packets form a data matrix
V′ = [yDt

1 , . . . , yDt
j , . . . , yDt

Q ]. The decoding process at the
sink is in a line-by-line order. And due to the fact that the
fading coefficients remain constant over the length of one
data packet but change independently among different packets,
the decoding process at the sink can be seen as over a fast
Rayleigh fading channel but with perfect CSI. ξU is the upper

BER bound of the LT codes over the special fast Rayleigh
fading channel under ML decoding [16]. It can be written as

ξU < min

{
1,

K∑
κ=1

κ

K

(
K

κ

)[∑
w(c)

µw(c)ς
w(c)
κ

Q

+

Q∑
k=1

1

π

(
Q

k

)
βk
κ(1− βκ)

Q−k

·
∫ π/2

0

 1

1 +
Ek

s

N0 sin2(θ)

k

dθ

]}
,

where

ςw(c)
κ =

∑
α=even,α≤κ

(
κ
α

)(
K−κ

w(c)−α

)(
K

w(c)

) ,

βκ =
∑
w(c)

µw(c)(1− ςw(c)
κ ).

B. Lower Bound on the Bit Error Probability of Raptor Codes

The error probability of Raptor codes can be lower bounded
by following the Bonferroni inequality [28]. The probability
can be computed as

Pb =
K∑
t=1

t

K

(
K

t

)
ξtL(1− ξL)

K−tPr(eHT = 0, w(e) = t)

−1

2

K∑
t=1

t

K

(
K

t

)
ξtU (1− ξU )

K−t

·Pr(eHT = 0, e′HT = 0, w(e) = t), (5)

where e′ is another nonzero error sequence different from the
error sequence e.

Let z ∈ GF (2)K and Iz = {iz1 , iz2 , . . . , izτ } be the set of
indices such that z(t) = 1 for t ∈ Iz , otherwise z(t) = 0.
Define three binary vectors z0, z1 and z2 as z0(t) = 1 if and
only if t ∈ Iz0 := Ie ∩ Ie′ , z1(t) = 1 if and only if t ∈
Iz1 := Ie\Ie′ and z2(t) = 1 if and only if t ∈ Iz2 := Ie′\Ie.
Let τ0, τ1 and τ2 be the size of the sets Iz0 , Iz1 and Iz2 ,
respectively. Then, Pr(eHT = 0, e′HT = 0, w(e) = t) in (5)
can be expressed as

Pr(eHT = 0, e′HT = 0, w(e) = t)

=
t∑

τ0=0

∑
τ1=t−τ0

K−τ0∑
τ2=0

(
t
τ0

)
2t

(
K−τ0
t−τ0

)
2K−τ0

(
K−τ0
τ2

)
2K−τ0

( ∑
w(h)

Ωw(h)

·Pr(e ⊗ h = 0, e′ ⊗ h = 0, w(e) = t|τ0, τ1, τ2)
)K−KL

.(6)

Corresponding to the three sets Iz0 , Iz1 and Iz2 , each
column of the matrix HT , h, can be divided into three parts,
hτ0 , hτ1 and hτ2 . Let hτ0 be the subvector of h such that all
the elements of this subvector are selected from h according
to the indices in set Iz0 . The length of hτ0 is τ0. The same
operation is applied to the formation of hτ1 and hτ2 , in which
the elements are selected according to the indices in set Iz1



and Iz2 , and have length τ1 and τ2, respectively. Therefore,
the conditional probability of the last product term in (10) can
be computed as

Pr(e ⊗ h = 0, e′ ⊗ h = 0, w(e) = t|τ0, τ1, τ2)
= Pr(eτ0 ⊗ hτ0 = 0)Pr(eτ1 ⊗ hτ1 = 0)

·Pr(e′τ2 ⊗ hτ2 = 0) + Pr(eτ0 ⊗ hτ0 = 1)
Pr(eτ1 ⊗ hτ1 = 1)Pr(e′τ2 ⊗ hτ2 = 1)

=

min{τ0,w(h)}∑
w(hτ0 )=0

min{τ1,w(h)−w(hτ0 )}∑
w(hτ1 )=0∑

w(hτ2 )=min{τ2,w(h)−w(hτ0 )−w(hτ1 )}

·

(
τ0

w(hτ0 )

)
2τ0

(
τ1

w(hτ1 )

)
2τ1

(
τ2

w(hτ2 )

)
2τ2

·
[
A(w(hτ0), τ0)A(w(hτ1), τ1)A(w(hτ2), τ2)

+A(w(hτ0), τ0)A(w(hτ1), τ1)A(w(hτ2), τ2)

]
, (7)

where eτ0 and eτ1 are subvectors of e with length τ0 and τ1,
respectively. The subvector eτ0 is formed by selecting elements
from e according to the indices in set Iz0 , and the elements
in eτ1 are selected by the same way according to the indices
in set Iz1 . All the elements in eτ0 and eτ1 are in one-to-one
correspondence with that of hτ0 and hτ1 , respectively. e′τ2 is
the subvector of e′ with length τ2, and the elements of e′τ2 are
selected from e′ according to the indices in set Iz2 . The same
as the case of eτ0 and eτ1 , all the elements in e′τ2 are in one-to-
one correspondence with that of hτ2 . w(hτp) is the Hamming
weight of hτp . Denote by A(w(hτp), τp) the probability that
zp ⊗ hτp = 0, and A(w(hτp), τp) the probability that zp ⊗
hτp = 1. A(w(hτp), τp) and A(w(hτp), τp) can be computed
respectively as

A(w(hτp), τp)

= Pr

(
zp ⊗ hτp = 0|w(h), w(hτ2), τp

)
=

∑
α=even,0≤α≤min{τp,w(hτp )}

(
τp
α

)( K−τp
w(h)−α

)(
K

w(h)

) ,

A(w(hτp), τp)

= Pr

(
zp ⊗ hτp = 1|w(h), w(hτ2), τp

)
=

∑
α=odd,α≤min{τp,w(hτp )}

(
τp
α

)( K−τp
w(h)−α

)(
K

w(h)

) . (8)

We note that (5) depends on e only through w(e) = t. Also,
there are 2K−1 nonzero error sequences e, of which

(
K
t

)
have

weight t. Taking these factors into account, we have that the
bit error probability of the Raptor code can be lower bounded
by Pb > max{0, ξRaptor

L }, where

ξRaptor
L =

K∑
t=1

t

K

(
K

t

)
ξtL(1− ξL)

K−t

·Pr

(
w(eHT ) = 0, w(e) = t

)
−1

2

K∑
t=1

t

K

(
K

t

)
ξtU (1− ξU )

K−t

·Pr(eHT = 0, e′HT = 0, w(e) = t). (9)

The scaling factor t/K in (9) is the number of erroneous
information bits per information symbol in a weight-t infor-
mation error sequence. Therefore, we can get the BER lower
bound on the bit error probability of Raptor codes which can
be described as

Theorem 2: Consider a Raptor code with parameters Ω(x),
µ(x), KL, K, Q, r and expanding coefficient η. Its lower BER
bound under ML decoding over a fast Rayleigh fading channel
is Pb > max{0, ξRaptor

L }, where ξRaptor
L is given by

ξRaptor
L

=

K∑
t=1

t

K

(
K

t

)
ξtL(1− ξL)

K−t

∑
w(h)

Ωw(h)ς
R,w(h)
t

K−KL

−1

2

K∑
t=1

t

K

(
K

t

)
ξtU (1− ξU )

K−t
t∑

τ0=0

∑
τ1=t−τ0

K−τ0∑
τ2=0

·
(

t
τ0

)
2t

(
K−τ0

τ1

)
2K−τ0

(
K−τ0

τ2

)
2K−τ0

∑
w(h)

Ωw(h)ζ(τ0, τ1, τ2, t)

K−KL

,

where ξL is the lower BER bound of the LT codes over the
special fast Rayleigh fading channel under ML decoding. It
is given by the probability that only one bit in the decoded
sequence is not recovered correctly [18].

ς
R,w(h)
t

=

∑
α=even,0≤α≤t

(
t
α

)(
K−t

w(h)−α

)(
K

w(h)

) ,

ζ(τ0, τ1, τ2, t)

=

min{τ0,w(h)}∑
w(hτ0 )=0

min{τ1,w(h)−w(hτ0 )}∑
w(hτ1 )=0∑

w(hτ2 )=min{τ2,w(h)−w(hτ0 )−w(hτ1 )}

·

(
τ0

w(hτ0 )

)
2τ0

(
τ1

w(hτ1 )

)
2τ1

(
τ2

w(hτ2

)
2τ2

·
[
A(w(hτ0), τ0)A(w(hτ1), τ1)A(w(hτ2), τ2)

+A(w(hτ0), τ0)A(w(hτ1), τ1)A(w(hτ2), τ2)

]
,

A(w(hτp), τp)

=

∑
α=even,0≤α≤min{τp,w(hτp )}

(
τp
α

)( K−τp
w(h)−α

)(
K

w(h)

) ,

A(w(hτp), τp)

=

∑
α=odd,α≤min{τp,w(hτp )}

(
τp
α

)( K−τp
w(h)−α

)(
K

w(h)

) ,



and hτp is the subvector of h, τp is the length of hτp , and
p ∈ {0, 1, 2}.

IV. NUMERICAL AND SIMULATION RESULTS

In this section, we present numerical and simulation results
for the LT-based DNC scheme and the proposed Raptor-based
DNC scheme over quasi-static Rayleigh fading channels. Due
to the time-varying channels of the wireless network, within
each transmission round, a Raptor code is generated on-the-fly
to match the instantaneous network topology. Thus, the BER
performance of an ensemble of codes is analyzed. We consider
the case of K = 100, KL = 50 and 98, which correspond to
the pre-code rate r = 0.5 and 0.98, respectively. We evaluate
the upper and lower bounds on the bit error probability under
ML decoding by using the degree distribution Ω(x) = rx +
(1 − r)x4 for the pre-code in the precoding phase and the
degree distribution described in [18] for the LT code in the
LT-coding phase:

µ(x) = 0.007969x+ 0.493570x2 + 0.166220x3

+0.072646x4 + 0.082558x5 + 0.056058x8

+0.037229x9 + 0.055590x19 + 0.025023x65

+0.003135x66. (10)
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Fig. 3. BER bounds of constructed LT and Raptor codes ensemble over the
Rayleigh fading channel with KL = 98, K = 100, Es/N0 = 7dB and
10dB, respectively.

Fig. 3 shows the BER bounds of the constructed LT and
Raptor codes ensemble at an average Es/N0 of 7dB and
10 dB, respectively. The information length of the LDPC
codes is KL = 98, and that of the LT codes is K = 100,
which correspond to 98 source nodes and 100 relay nodes
in R1, respectively. It can be seen from the figure that as
Es/N0 increases, e.g., Es/N0 changes from 7dB to 10dB, the
upper and lower BER bounds of the proposed DNC scheme

based on the Raptor codes become tighter, especially when
the expanding coefficient is large enough, e.g., η ≥ 1.5. This
phenomenon can be explained by examining the difference
between the upper and lower bounds given by Theorem 1 and
Theorem 2 in Section III, respectively. The difference between
the two bounds can be represented by

ξRaptor
U − ξRaptor

L

=

K∑
w(e)=t=1

t

K

(
K

t

)[∑
w(h)

Ωw(h)ς
R,w(h)
t

K−KL

·
(
ξtU (1− ξU )

K−t − ξtL(1− ξL)
K−t

)
−1

2
ξtU (1− ξU )

K−t

·
t∑

τ0=0

∑
τ1=t−τ0

K−τ0∑
τ2=0

(
t
τ0

)
2t

(
K−τ0
τ1

)
2K−τ0

(
K−τ0
τ2

)
2K−τ0

·

∑
w(h)

Ωw(h)ζ(τ0, τ1, τ2, t)

K−KL ]
. (11)

We only consider the effect from Es/N0 to
ξRaptor
U − ξRaptor

L . Let B(t) and A(t) denote the terms of∑t
τ0=0

∑
τ1=t−τ0

∑K−τ0
τ2=0

( t
τ0
)

2t
(K−τ0

τ1
)

2K−τ0

(K−τ0
τ2

)
2K−τ0

(∑
w(h) Ωw(h)

ζ(τ0, τ1, τ2, t)

)K−KL

and
(∑

w(h) Ωw(h)ς
R,w(h)
t

)K−KL

in (11), respectively. These two terms do not depend on
Es/N0. Therefore, (11) can be rewritten as

ξRaptor
U − ξRaptor

L

=
K∑

w(e)=t=1

t

K

(
K

t

)[(
A(t) +

1

2
B(t)

)
ξtU (1− ξU )

K−t

−A(t)ξtL(1− ξL)
K−t

]
. (12)

Let f(ξτ ) denote ξtτ (1−ξτ )
K−t in (12), where τ ∈ {U,L}.

From Fig. 3, it can be seen that when the expanding coefficient
η ≥ 1.5, the values of both the upper and lower BER bounds
of LT codes are smaller than 10−2. Fig. 4 illustrates the change
of f(ξτ ) with ξτ when ξτ ≤ 0.01. In this figure, green and
blue lines denote the cases when t = 1 and 100, respectively.
Red lines between the green and blue ones denote the cases
when 1 < t < 100.

From Fig. 4 we can see that when ξτ ≤ 0.01, f(ξτ ) is a
monotonically increasing function. Since ξU is always bigger
than ξL when η ≤ 1.5, f(ξU ) can be represented by the
function f(ξL), that is f(ξU ) = f(ξL)+∆, where ∆ represents
the difference between f(ξU ) and f(ξL). Thus, (12) becomes

ξRaptor
U − ξRaptor

L

=
K∑

w(e)=t=1

t

K

(
K

t

)(
1

2
B(t)f(ξU ) +A(t)∆

)
. (13)
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Fig. 4. f(ξτ ) with K = 100.

As the Es/N0 increases, ξU described in Theorem 1 be-
comes smaller. Since f(ξU ) = ξtU (1− ξU )

K−t is a monoton-
ically increasing function in the region of 0 ≤ ξU ≤ 0.01,
f(ξU ) becomes smaller with the increases of Es/N0.

From the Theorem 1 and the Lemma, we can express ξU as
ξU = ξL +∆o, where

∆o =

K∑
κ=2

κ

K

(
K

κ

)[∑
w(c)

µw(c)ς
w(c)
κ

Q

+

Q∑
k=1

1

π

(
Q

k

)
βk
κ(1− βκ)

Q−k

·
∫ π/2

0

 1

1 +
Ek

s

N0 sin2(θ)

k

dθ

]
. (14)

Thus, ∆ = f(ξU ) − f(ξL) can also be written as ∆ =
f(ξL + ∆o) − f(ξL). From the Lemma and (14) we can see
that with the increases of Es/N0, both ξL and ∆o become
smaller. Let ∆ξL and ∆∆o represent the variations of ξL and
∆o, respectively, with the changes of Es/N0. That is, if the
transmitted symbol energy at a particular node is changed from
Es1 to Es2, then ∆∆g = ∆g(Es2/N0)−∆g(Es1/N0), where
g ∈ {ξL, o}. With the above notations, the ratio between ∆ξL

and ∆∆o can be represented by

∆ξL

∆∆o

=

∑Q
k=1

1
π

(
Q
k

)
βk
1 (1− β1)

Q−k∑K
κ=2

κ
K

(
K
κ

)∑Q
k=1

1
π

(
Q
k

)
βk
κ(1− βκ)Q−k

.(15)

It can be seen that Es/N0 is not included in (15). This
means that no matter how the Es/N0 changes, the relationship
between the variations ∆ξL and ∆∆o is always the same. Fig. 5
shows the ratio value changes as a function of the expanding

coefficient η. From Fig. 5 we can see that ∆ξL

∆∆o
is much smaller

than 1 over all the expanding coefficients. It means that the
variation of ξL is much smaller than that of ∆o. Corresponding
to this, f(ξL+∆o) changes much greater than f(ξL) with the
increase of Es/N0. Thus, the change of ∆ = f(ξL +∆o) −
f(ξL) is mainly determined by f(ξL +∆o), that is to say, as
Es/N0 increases, ∆ becomes smaller.
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From what has been discussed above, we may finally draw
the conclusion that as Es/N0 increases, both f(ξU ) and ∆
become smaller. Therefore, as a result of the increases of
Es/N0, the difference between the upper bound ξRaptor

U of
the proposed DNC scheme based on the Raptor codes and the
lower bound ξRaptor

L becomes smaller.
The computational complexity of the ML decoding is

O(2
KL
r Q), i.e., O(2KQ). The decoding complexity increases

exponentially with the increasing of KL. In order to ob-
tain the simulation results with a reasonable decoding com-
plexity, we consider the parameters KL = 18, K = 20,
Ω(x) = rx + (1 − r)x4 and the degree distribution, µ(x) =
0.2x2 + 0.35x5 + 0.3x7 + 0.115x10 + 0.01x12 + 0.025x14,
which is designed in our other paper for simulation. Fig. 6
shows the BER performance bounds and simulation results
of the constructed Raptor codes ensemble with K = 20
over Rayleigh fading channels under ML decoding at average
Es/N0 of 7dB and 10dB, respectively. From the figure we
can see that the simulation curve is between the upper and
lower bounds of the constructed Raptor codes ensemble. As
the upper and lower bounds are asymptotically tight as the
expanding coefficient grows, the simulation curve coincident
with the bounds, especially when the expanding coefficient
is large enough. For example, η = 2.5 for Es/N0 = 7dB
and η = 2.0 for Es/N0 = 10dB. Thus, we can come to the



conclusion that the derived analytical upper and lower bounds
for the proposed Raptor-based DNC scheme are precise.
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Fig. 6. BER performance bounds and simulation curves comparison for
the constructed Raptor codes ensemble over Rayleigh fading channels with
KL = 18 and K = 20.

V. CONCLUSION

In this work, we first proposed a Raptor-based DNC scheme
for WRNs. We proposed to use such a coding scheme for
matching a code-on-graph to a network-on-graph to achieve
a combined network-channel coding gain. Then, we derived
analytical upper and lower bounds on ML decoding for the
proposed Raptor-based DNC scheme. From the numerical and
simulation results, we can see that the derived upper and lower
BER bounds come closer, particularly as the length of the
codewords is increased with a larger expanding coefficient. In
our future work, we will use the developed bounds to optimize
degree distributions of Fountain codes over Rayleigh fading
channels.
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