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Abstract: Road traffic congestion can inevitably de-
grade road infrastructure and decrease travel efficiency
in urban traffic networks, which can be relieved by
employing appropriate congestion control. Accord-
ing to different developmental driving forces, in this
paper, the evolution of road traffic congestion control
is divided into two stages. The ever-growing num-
ber of advanced sensing techniques can be seen as the
key driving force of the first stage, called the sens-
ing stage, in which congestion control strategies ex-
perienced rapid growth owing to the accessibility of
traffic data. At the second stage, i.e., the communica-
tion stage, communication and computation capabil-
ity can be regarded as the identifying symbols for this
stage, where the ability of collecting finer-grained in-
sight into transportation and mobility reality improves
dramatically with advances in vehicular networks, Big
Data, and artificial intelligence. Specifically, as the
pre-requisite for congestion control, in this paper, ex-
isting congestion detection techniques are first elab-
orated and classified. Then, a comprehensive survey
of the recent advances for current congestion control
strategies with a focus on traffic signal control, vehi-
cle route guidance, and their combined techniques is
provided. In this regard, the evolution of these strate-
gies with continuous development of sensing, com-
munication, and computation capability are also intro-
duced. Finally, the paper concludes with several re-
search challenges and trends to fully promote the in-
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tegration of advanced techniques for traffic congestion
mitigation in transportation systems.
Keywords: road traffic congestion control; congestion
detection; traffic signal control; vehicle route guid-
ance; sensing techniques; communication and compu-
tation capability

I. INTRODUCTION

1.1 Road Traffic Congestion and Need for
Traffic Control

In recent decades, road traffic congestion has experi-
enced unprecedented growth in almost all metropoli-
tan areas because of the dramatic development of traf-
fic demands for all transportation modes. The Texas
Transportation Institute reported that traffic conges-
tion caused a waste of time and fuel consumption
valued at over $150 billion during 2014 for the 470
metropolitan areas in the United States, which was
projected to expand to almost $190 billion in 2020
[1, 2]. Additionally, on the basis of the Urban Mobil-
ity Scorecard in 2015, road traffic congestion caused
over three billion gallons of extra fuel dissipation dur-
ing 2014, which led to more CO2 emissions and se-
rious greenhouse effects [1]. More importantly, the
negative impacts of traffic congestion are becoming in-
creasingly severe, as shown in Figure 1, and the travel
delays of each auto commuter are rapidly increasing
in cities of all sizes. That is to say, congestion is not
just a problem of big cities; an ever-growing number
of urban areas around the world are also experiencing
increasingly severe traffic conditions.
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To relieve these negative impacts, congestion mit-
igation strategies are extensively adopted by world-
wide transportation authorities. According to an urban
transportation report for 498 U.S. urban areas, conges-
tion mitigation strategies are gauged to reduce more
than 370 million hours of vehicle travel time and save
$8.5 billion in 2011 by using a combination of real-
time traffic information, control technologies, operat-
ing practices, and construction programs [3]. If these
strategies can be adopted on most roadways, the ben-
efits are expected to decrease more than 800 million
hours of travel time valued at $20 billion [3]. These
significant benefits have encouraged both industry and
academia to make continuous research and develop-
ment efforts for congestion control and mitigation.

1.2 Evolution of Congestion Control Strate-
gies

The capability of detecting road congestion is the
premise of traffic control and management. However,
estimating the traffic situation of an urban road net-
work is a difficult problem due to its intrinsic charac-
teristics: 1) traffic conditions are inherently stochastic;
and 2) the type, accessibility, coverage, and quality of
real-time data vary significantly [4]. As the expansion
of data collection techniques in intelligent transporta-
tion systems (ITSs), a large amount of advanced sens-
ing, communication, and intelligence technologies are
investigated and employed in traffic congestion detec-
tion, such as video cameras [5], vehicular networks
[6], and social media [7], which provide many promis-
ing approaches for understanding congestion in urban
networks with high accuracy and low latency.

Among congestion mitigation strategies, traffic sig-
nal control and route choice are the most extensively
applied and perhaps the most effective ways of con-
trolling and relieving congestion. After the appearance
of elementary traffic signal control and vehicle guid-
ance strategies in the last century, traffic signal con-
trol and vehicle route guidance have undergone con-
tinuous improvements. In general, the evolution of
these traffic congestion control methods can be clas-
sified into two stages: sensing and communication,
as illustrated in Figure 2. The key driving force for
the first stage is the ever-growing advanced sensing
techniques. Specifically, the earlier traffic light con-
trollers adopted fixed-time control methods by using
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Figure 1. Congestion growth trend in different sizes of cities
(small, less than 500,000; medium, 500,000 to 1 million;
large, 1 to 3 million; very large, more than 3 million), based
on [3].

pre-determined cycles and split time plans, such as the
traffic network study tool (TRANSYT) [8]. After that,
a number of traffic-responsive signal control strategies
were achieved gradually under the trend of advanced
sensing techniques, such as the Split, Cycle and Off-
set Optimization Technique (SCOOT) [9] and Sydney
Cooperative Adaptive Traffic System (SCATS) [10],
which can better respond to the prevailing traffic con-
ditions and relieve traffic congestion effectively. For
vehicle route guidance, the re-routing methods also
evolved from deterministic to adaptive strategies uti-
lizing the real-time traffic information provided by ad-
vanced sensing techniques, which greatly improved
the traffic efficiency considering traffic uncertainty.

Since the 2000s, traffic congestion mitigation strate-
gies have undergone vigorous development, which has
dramatically enhanced the ability for grasping more
nuanced insight into transportation systems [11] with
the development of vehicular networks, Big Data, and
artificial intelligence. All promote traffic control re-
search into the next stage, in which the intelligence
and communication capability can be regarded as the
identifying symbols [12, 13]. First, during the last
25 years, data have increased tremendously in various
fields, especially within transportation systems. The
volume and variety (source, type, and format) of trans-
portation data raise many opportunities for current ITS
administrators to conduct effective traffic monitoring,
decision-making, and data management. Meanwhile,
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Figure 2. Development of traffic congestion mitigation strategies.

artificial intelligence provides advanced algorithms in
terms of 1) collecting and analyzing the massive real-
time traffic data rapidly, and 2) conducting pattern
recognition, prediction, and classification for differ-
ent applications in ITSs. In particular, vehicular net-
works act as a “porter” to maintain the computation
process, and transmit traffic data to places with com-
puting capacity and advanced algorithms. In summary,
this communication stage synthesizes functions for the
acquisition of massive, heterogeneous, and real-time
data and the applications of collected traffic data by
employing the advanced information analytical algo-
rithms, which enables transport issues to be conducted
from a pioneering perspective and lays the foundation
for more intelligent and efficient transportation sys-
tems in the future [14].

1.3 Contributions and Organization

This paper is aimed at elaborating the evolution of key
congestion control technologies in both sensing and
communication stages. Unlike existing surveys about
road congestion control that concentrated on the appli-
cations of advanced techniques for traffic signal con-
trol [13, 15, 16] or vehicle route choice [17], the pa-

per provides a comprehensive review for urban con-
gestion control strategies from the perspective of sens-
ing, communication and computation, which can not
only present a reference for researchers from different
fields to understand the key technologies and devel-
opment process of this research area, but also share
the novel ideas about state-of-the-art techniques, chal-
lenges and future research with transportation experts
to raise more new issues and challenges in this topic.
In particular, the contributions of this paper are the fol-
lowing. First, congestion detection methods are intro-
duced and classified according to different data col-
lection and sensing techniques. The pros and cons
of these techniques for congestion detection are dis-
cussed. Next, as extensively applied congestion mit-
igation strategies, traffic signal control, vehicle route
guidance, and their combined techniques are intro-
duced. Their development processes based on evolv-
ing advanced sensing, communication, and computa-
tion capability are also presented. Finally, detailed dis-
cussions of the trends and future research directions of
traffic congestion control are provided.

The rest of this paper is organized as follows. In
Section II, existing traffic congestion detection meth-
ods utilizing different sensing techniques are intro-
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duced. In Sections III, IV, and V, reviews of traf-
fic signal control, route guidance, and their combined
techniques are presented, respectively. Discussions
of challenges and future research directions are high-
lighted in Section VI. Finally, Section VII concludes
the paper.

II. TRAFFIC CONGESTION DETECTION

As a pre-requisite to relieving traffic congestion, traffic
congestion detection is becoming increasingly impor-
tant. Based on the detected congestion-related infor-
mation, many congestion mitigation strategies, such as
traffic signal control and vehicle rerouting, can be uti-
lized to relieve congestion. To collect traffic informa-
tion and monitor traffic congestion, stationary roadside
sensors are widely used. The inductive loop detector
is among the most applied technique for congestion
detection to monitor real-time travel speed and road
density [18–20]. In the last decade, vision-based vehi-
cle detection technologies have become an extremely
active research area; they use image processing tech-
niques to analyze and calculate road density for traffic
congestion detection [21, 22]. Many other stationary
roadside sensors, such as radio-frequency identifica-
tion (RFID) readers [23] and magnetic sensors [24] are
also used in traffic information acquisition and have
demonstrated their effectiveness in traffic congestion
detection. Moreover, as another widely used road
information collection technique, probe-vehicle-based
techniques also play vital roles in traffic congestion
detection. Probe-based techniques can be classified
into two categories: global-positioning-system- (GPS-
) based [25, 26] and cellular-signal-based techniques
[27]. The widespread use of GPS devices in vehicles
provides a feasible solution for urban congestion de-
tection, which aggregates real-time GPS traces from
probe vehicles to analyze and estimate traffic condi-
tions. With the prevalence of mobile phones, conges-
tion detection using cellular-signal-based techniques
has also drawn much attention, and utilizes embed-
ded sensors such as accelerometers (road traffic con-
dition recognition) and cellular signals (map match-
ing) to detect road traffic congestion in urban areas. In
recent years, researchers have investigated the use of
vehicular networks to discover traffic congestion in-
formation [28, 29]; such networks collect traffic in-
formation from surrounding vehicles periodically via

vehicular communications and monitor real-time traf-
fic conditions on road segments. Furthermore, due to
the rapid development of mobile devices, many works
have been developed to detect congestion based on so-
cial media platforms (e.g., Twitter and WeChat) by us-
ing syntactic analysis [30, 31]. The comparisons of
these congestion detection techniques are presented in
Table 1.

2.1 Stationary Roadside Sensors

Considering the huge installation and maintenance
costs for stationary roadside monitors, these sensors
cannot be installed on all roads in urban traffic net-
works. Therefore, for the road segments with installed
sensors, the traffic information (e.g., travel speed, road
occupancy, and traffic flow etc.) can be measured di-
rectly. For road segments without installed roadside
sensors, however, the traffic information can be esti-
mated indirectly using traffic information of other road
segments with sensors and traffic correlation between
road segments [39, 40].

2.1.1 Direct Detection

Stationary roadside sensors, such as inductive loop de-
tectors and image processing and magnetic sensors
are among the most widely accepted methods for traf-
fic measurements. Based on these roadside sensors,
many approaches have been proposed to acquire traf-
fic information and estimate congestion on road seg-
ments, which provides a significant premise for real-
time traffic control and congestion mitigation in traffic
networks.

Inductive loop detectors: As one of the most com-
monly used roadside detectors [41], inductive detec-
tion loops are deployed across the roadway and occupy
a major portion of the lanes where traffic detection is
required. There are two main categories of loop detec-
tors: single- and double loop detectors [42]. Single-
loop detectors are more suitable for vehicle counting,
while double-loop detectors are fit to capture vehicle
travel speeds. Cherrett et al. [43] utilized single-
inductive-loop detectors to calculate the average loop
occupancy time per vehicle and the average time gap
between vehicles, which were used to detect conges-
tion on the detected road segments. In [44], Lao et
al. took the ratio of traffic demand (traffic flow rate)
and traffic supply (road capacity) into consideration
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Table 1. Comparison of traffic congestion detection techniques.

Techniques Advantages Disadvantages

Stationary
Road-side
Sensors

Inductive loop
detector

• Mature techniques

• Easy to implement

• Low production cost

• High installation and maintenance costs

• Limited coverage

• Damage on road surface [32]

Video camera
• Collect more traffic parameters

• Captured pictures can be used repeatedly

• Sensitive to weather condition and scene
changes

• Limited coverage

• Vast storage space and powerful comput-
ing capability [33]

Magnetic
sensor

• Robust in extreme weather conditions

• Energy-efficient with wireless transmis-
sion and easy to install or maintain

• Effective when working with other sen-
sors or as a node in a sensor network

• Cannot detect static vehicles

• Limited coverage [34]

Probe-
based
Techniques

GPS based
technique

• Less installation and maintenance costs

• More accurate and timely in vehicle local-
ization

• High coverage

• Limited representation

• Power hungry

• GPS localization performance is not sta-
ble in urban areas [35]

Cellular signal
based

technique

• Less installation and maintenance costs

• High coverage

• High reliability in vehicle localization

• High sampling representation

• Inaccuracy in estimating vehicle positions
and motions

• Difficulty in computing travel speed [26]

Radar/Lidar
based

technique

• Direct distance measurement

• Effective when detecting obstacles in road
environment

• Good performance in poor visibility envi-
ronments

• Difficulty in detecting highly reflective
objects

• Sensitive to radars and lidars measure-
ment latency

• Poor very near (< 2m) measurement [36]

Vehicular Networks

• Less installation and maintenance costs

• High coverage

• Easy to deploy and extend

• Low costs and delays in traffic informa-
tion detection

• V2X message transmission can be re-
stricted by high buildings close to the
streets

• Sensitive to V2X communication latency

• Communication overhead and packet col-
lisions [37]

Social Networks

• Widely used social networks and media
platform

• Low costs and delays

• More congestion related information

• Status update messages are unstructured
and irregular with informal words and
misspellings [38]

• Malicious attacks and trust issue

to detect congestion on urban road segments based on
single-loop-detector data, which can be used for con-
gestion quantification and traffic control. In [45], Ali
et al. presented a novel inductive loop sensor that can

not only sense and classify the vehicle type (e.g., bicy-
cle, car, or bus), but provide precise vehicle counting;
they have been used in field tests and shown their ef-
fectiveness in detecting vehicles and congestion. Ki
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et al. [46] utilized an error-filtering method based on
a double-loop detector to enhance the precision for
speed metering and congestion detection on road seg-
ments. Li et al. [2] identified the congestion bottle-
necks based on inductive loop detector data in Taipei
urban road networks. Furthermore, in [47], by differ-
entiating congestion effects among road segments and
intersections, a congestion propagation based method
was developed to attribute the root cause of congestion
to road capacity and signal control respectively. Ex-
periments using the loop detector data in Taipei were
carried out to identify congestion root causes of the
road network, which provides specific guidance for
road administrators to mitigate traffic congestion.

Video camera: Video camera techniques in vehi-
cle detection have drawn significant attention recently
and many efforts have been fulfilled in theory and ap-
plication [48–51]. Utilizing video cameras, a number
of image processing techniques have been proposed to
identify and classify vehicles on urban roads, and have
provided rich traffic information for congestion detec-
tion in urban areas. The main idea of congestion de-
tection based on video cameras is to distinguish fore-
ground objects (moving vehicles on road segments)
from stationary backgrounds (e.g., roads, trees, and
street-parked vehicles) and calculate the average travel
speed and road occupancy for congestion detection.
Hsiao et al. [49] proposed a streaming-based method
for road congestion detection. Vehicles in each image
are detected using the background-extraction method.
The encoded vehicles and road segments utilize dif-
ferent bit rates and decode two bit streams for vehi-
cle counting and traffic congestion detection. Fried-
man and Russell [50] developed a probabilistic tech-
nique to separate background and vehicles, wherein
an expectation-maximization- (EM-) algorithm-based
method was proposed to differentiate moving vehicles
and backgrounds. Zhang, Luo, and Zhou [51] pre-
sented a background-updating algorithm for road con-
dition monitoring using road videos. They created the
corresponding matching relationship of the same vehi-
cles between continuous image frames and predicted
the positions of target vehicles on the next frame using
Kalman filtering. When the gap between the predicted
and actual positions of a vehicle exceeded a prescribed
value, this vehicle was considered a “congestion vehi-
cle”, and if the quantity of “congestion vehicles” ex-
ceeded a certain threshold, the road could be seen as

being congested.
Magnetic sensors: Magnetic sensors can identify

the movement of vehicles on road segments by mea-
suring magnetic field variation. This fact has been uti-
lized to detect congestion and acquire traffic informa-
tion [24]. In [52], Cheung et al. proposed a vehicle
monitoring technique using roadside magnetic sensors
that can achieve accurate vehicle detection and count-
ing. Lan et al. [53] detected and classified travel-
ing vehicles by processing magnetic signals for road
segments with deployed magnetic sensors, in which
the features of magnetic signals were extracted to esti-
mate the traveling direction and type of vehicles. Re-
searchers in [54] constructed a wireless system to de-
tect vehicle arrivals, departures, and speed using mag-
netic sensors and accelerometers that can be used in
traffic flow and road occupancy estimation for conges-
tion detection. In [32], Wang et al. studied vehicle
detection using magnetic sensors. Based on the mag-
netic signals, wavelet methods were used to remove
the negative effects of noise and increase the precision
for vehicle surveillance and congestion detection.

2.1.2 Indirect Detection

Because of the high costs of roadside data collection
facilities, stationary roadside detectors are often de-
ployed on limited numbers of road segments, and are
therefore insufficient to meet requirements for traffic
data collection in metropolitan areas around the World
[39, 40]. Accordingly, for road segments without traf-
fic detectors, traffic congestion must be estimated in-
directly utilizing the measurement data on other road
segments and their traffic correlations. Most exist-
ing works on traffic data imputation were conducted
assuming partially missing data, which considers the
unavailable data at certain times on road segments be-
cause of sensor failure and noise interference [55, 56].
There are also few works focusing on the problem of
traffic data imputation considering complete unavail-
ability of traffic data for road segments without sensor
deployment. In [40], according to historically avail-
able traffic data on road segments with installed sen-
sors, Abadi et al. first generated traffic flows for all
road segments in a network using an urban mobility
simulator. Then, they optimized and adjusted the route
plans for all origin-to-destination pairs and exploited a
route plan that minimized the gaps between available
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traffic data and the imputed flows on all road segments.
Finally, according to the optimized route plans, the
traffic flows of road segments without equipped traffic
sensors can be estimated. Simulation results showed
the effectiveness of the presented technique in missing
data imputation for road segments without traffic de-
tector deployment, which also provided a meaningful
approach to detect congestion for these road segments.

2.2 Probe-based Techniques

Owing to the extensive coverage and low costs of mo-
bile phones compared to traditional stationary road-
side sensors [57], probe-based technologies for traffic
surveillance have been seen as one of the most popu-
lar topics in mobile sensing and provide an important
technique for real-time traffic information collection
and traffic condition estimation [26]. According to
the different localization techniques used, probe-based
road detection methods can be generally categorized
as GPS-, cellular-signal-, and radar/lidar-based tech-
niques. GPS-based techniques provide efficient and
effective methods for collecting traffic data and con-
gestion detection in urban areas by locating the po-
sitions for vehicles and acquiring the real-time travel
speeds. Cellular-signal-based techniques utilize cell-
tower signal information to identify vehicle locations
via tower hand-offs, triangulation, or their combina-
tion, and provide more energy-efficient and alterna-
tive methods of monitoring traffic information and
detecting urban congestion. Radar/lidar-based tech-
niques measure the distance and velocity of objects
relative to ego-vehicle enabling vehicles to conduct
vehicle location and target recognition for realizing
autonomous driving, which are conducive to vehicle
collision avoidance, and can further improve the traf-
fic efficiency in road networks.

2.2.1 GPS-based Techniques

GPS-based mobile devices (e.g., mobile phones and
vehicle navigation systems) have attracted consider-
able attention owing to their continuously reduced
costs and improved positioning accuracy [58]. These
technologies provide rich traffic information for traffic
condition estimation and congestion detection, such as
precise vehicle positions and real-time travel speeds,
accelerations, and travel directions. Herrera et al.
[26] conducted a large-scale field experiment based on

GPS-based probe vehicles and inductive loop detec-
tors separately to evaluate the traffic monitoring feasi-
bility and accuracy of GPS-enabled mobile phones in
collecting traffic information. The results showed that
the GPS-based approach can achieve realistic speed
estimation and congestion detection. Based on GPS
traces from probe vehicles, Yoon et al. in [25] pre-
sented speed thresholds of each road segment to cat-
egorize traffic on road segments as congested or free-
flowing. In [59], Castro, Zhang, and Li calculated road
traffic densities and predicted traffic conditions based
on taxi GPS traces from Hangzhou, China. The exper-
imental results validated the accuracy of the method in
traffic congestion detection and prediction.

2.2.2 Mobile-phone-based Techniques

With the prevalence of mobile phones and the poten-
tial of collecting traffic data on vehicles over a large
coverage area without requiring expensive infrastruc-
ture, mobile phones are being increasingly applied as
traffic probes [60, 27, 35, 61]. Caceres et al. in [27]
estimated road traffic flows by counting the vehicles
switching from one cell to another. Experimental re-
sults showed that the reasonably accurate traffic flow
estimates were achieved using the proposed method by
comparison with vehicle volume measurements col-
lected from loop detectors. In [35], Lv et al. esti-
mated congestion degrees for road segments based on
cellular signals and on-board accelerometers in mo-
bile phones. Experimental results indicated the ef-
fectiveness and energy efficiency of the proposed sys-
tem in vehicle monitoring and congestion estimation.
By monitoring the period that a vehicle with mobile
devices remained connected to a base station until it
joined another one, Thajchayapong et al. presented a
mobile-phone-based method to identify congested ar-
eas [61]. The field test results showed that the pro-
posed congestion identification method based on cell
dwell time agreed very well with that obtained from
video records, which indicated the effectiveness of the
method in congestion detection.

2.2.3 Radar/Lidar-based Techniques

The sensors in autonomous vehicles, such as radar and
lidar, are also leveraged to collect data from road net-
works, which is an important prerequisite for the safe
driving of autonomous vehicles, and can be further uti-
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lized to detect road conditions. The measurement of
radars mainly includes distance, relative velocity, and
direction [62, 63]. The distance is estimated according
to the round-trip time of electromagnetic waves from
a radar via a target back to the radar. The relative ve-
locity is calculated based on the Doppler effect and
the direction is estimated by using the antenna array
in radars. Danzer et al. [64] leveraged sparse radar
data from autonomous vehicles to detect 2D objects in
road networks. Experiment results indicated that the
proposed strategy can achieve a higher classification
accuracy than the other algorithms. Akita and Mita
[65] utilized the Long Short Term Memory (LSTM)
strategy to track and classify the target objects of the
road environment, which indicated the potential to be
applied for road condition detection in urban traffic
networks.

Lidars can be used to detect target distance and cre-
ate a 3D point cloud map around vehicles. Most ex-
isting techniques for target distance detection using li-
dars are based on the pulse measurement and phase
shift measurement [66]. Pulse measurement utilizes
the round-trip time of a laser pulse to and from a tar-
get to calculate the distance. Phase measurement mea-
sures the distance based on the phase difference be-
tween the emitted and returned laser pulses. Hata and
Wolf [67] utilized a multilayer lidar to detect road en-
vironment features for vehicle localization to enable
the obstacle detection and navigation systems for au-
tonomous vehicles. Wang et al. [68] studied the
pedestrian recognition and tracking problem for au-
tonomous vehicles with the utilization of 3D lidar,
which can promote the real-time path planning of au-
tonomous vehicles. Jimenez and Naranjo [69] devel-
oped algorithms to enhance the obstacle detection and
classification abilities using a laserscanner, which can
benefit vehicle collision avoidance and further relieve
the potential incident-induced congestion in road net-
works.

2.3 Vehicular Networks

In recent years, transportation researchers have shifted
their focus to more advanced sensing technology,
i.e., vehicular networks, because of the potential of
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communication in acquiring real-time traffic in-
formation [70–72]. In VANETs, each vehicle could

monitor its neighboring traffic conditions by on-board
sensor units and exchange the detected data via V2V
and V2I communication [73]. Then, each vehicle
can estimate road conditions by computing the aver-
age travel speed, traffic density, and road travel times.
In [74], Younes and Boukerche detected and ana-
lyzed congested road segments with reasonable accu-
racy and efficiency by using a cooperative vehicular
communication protocol. Researchers in [75] devel-
oped an event-driven architecture to collect and pro-
cess VANET messages for traffic congestion level de-
tection. Simulation results suggested that the proposed
mechanism can detect traffic congestion with short de-
lay and provide detailed congestion information (e.g.,
congested lanes and queue length). In [76], Mallah et
al. presented an approach for road congestion classifi-
cation in urban road networks using VANETs, and the
performance evaluation results showed the accuracy of
the framework in classifying urban congestion.

2.4 Social Networks

With the rapid growth of mobile communication de-
vices, social networks have become widespread re-
cently, providing a modern form for real-time traffic
information exchange. People can share ideas, express
their opinions, and report real-life events based on so-
cial platforms such as Twitter, Weibo, and WeChat,
which always contribute a large amount of valuable
information for traffic condition detection (e.g., road
congestion and accidents) [7]. In this case, many
works have recently employed social media mes-
sages in traffic congestion detection. For example,
Wanichayapong et al. [30] utilized syntactic analysis
to extract congestion-related information from Twitter
and classified them into traffic events and locations for
the convenience of congestion reports. In [31], Andrea
et al. developed a road condition surveillance system
by extracting traffic information from tweets to iden-
tify real-time traffic jams and accidents. Experimental
results indicated that the system distinguished traffic-
related and unrelated information with 95.75% accu-
racy and extracted traffic events (e.g., congestion or
crashes) with an accuracy of 88.89%.

III. TRAFFIC SIGNAL CONTROL
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Traffic signal control has become widespread in al-
most all areas of the world and is generally acknowl-
edged to be the most crucial and credible traffic control
strategy, particularly in large cities. By setting time in-
tervals for vehicles with traffic rights at each intersec-
tion, optimizing traffic signals can reduce congestion
levels and vehicle travel time. The key parameters for
traffic signal control usually involve phase, split, cycle
length, and offset. A phase defines a combination of
one or more traffic actions that receive priority at the
same time during the signaling interval. The split is
the total time allotted to each phase of a traffic light
cycle. Cycle length is the time during the complete
period of a traffic light cycle. The offset refers to the
time delay between the start of green times at succes-
sive intersections. The explanation of a four-phase cy-
cle at intersections is shown in Figure 3 to elaborate
the four control variables.

There have already been numerous studies devoted
to traffic light control strategies for mitigating road
congestion and promoting traffic efficiency in urban
areas. Generally speaking, traffic signal control can be
categorized as fixed-time and traffic-responsive con-
trol strategies. Fixed-time control strategies are popu-
lar in most current urban traffic networks because of
the easy implementation and low management cost.
Moreover, fixed-time control strategies are suitable
for regular traffic conditions with under-saturated traf-
fic flows by employing the pre-determined cycle and
split based on historical traffic demand. However,
traffic systems are always dynamic and often non-
predictable, resulting in the inefficiencies of fixed-
time strategies. With the development of advanced
sensing techniques, traffic-responsive control strate-
gies have gradually attracted more attention and have
improved on the limitation of fixed-time control strate-
gies. Specifically, the splits, cycle lengths, and offsets
for responsive strategies can be adjusted in real time
according to the monitored road information, which
makes traffic signals better able to adapt to real-time
road conditions, reduce travel delays, and improve the
efficiency of urban traffic networks.

3.1 Fixed-time Strategies

Fixed-time strategies with a pre-defined split and cycle
length are suitably utilized at intersections with com-
paratively stable traffic flows. The earlier works on

Figure 3. Breakdown of four-phase cycle at intersections.

fixed-time strategies were applied to isolated intersec-
tions, which determine the optimal phase, split, and
cycle to optimize travel delays and improve road ca-
pacity. Webster [77] established a traffic signal con-
trol strategy to minimize average vehicle delays that
paved the way for the currently used traffic signal con-
trol strategies. Well-known examples of fixed-time
traffic signal control at isolated intersections are SIG-
CAP and SIGSET proposed in [78] and [79], respec-
tively. The former is suitable for intersections with
heavy traffic demand to maximize the capacity of in-
tersections and avoid over-saturation, while the latter
is generally applied under unsaturated conditions to
minimize the total intersection delays. To optimize
earlier-generation fixed-time signal control for an iso-
lated intersection, the strategies have been evolved to
achieve traffic signal coordinated control in road net-
works. MAXBAND [80] developed a signal coordi-
nation system to maximize the bandwidth of the green
wave band for vehicles by optimizing the offsets be-
tween successive intersections on bidirectional arter-
ies. Then, many variants and extensions were devel-
oped, taking more new parameters into consideration,
such as queue clearance time and left-turn movements
[81]. Furthermore, offline software was also intro-
duced in traffic signal control, providing the optimal
signal arrangement for all intersections in traffic net-
works. TRANSYT [8] is perhaps the most well-known
instance, which prepares a great quantity of fixed-time
signal strategies for different times of day and chooses
the most appropriate plan in real time according to the
corresponding road conditions. The first on-site im-
plementation of the signal control strategy evolved by
TRANSYT showed an average travel time savings of
16% over road networks [82].

Although these fixed-time strategies cannot respond
to real-time traffic conditions in a timely manner, es-
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pecially when some special events or traffic incidents
occur, these strategies are still quite efficient in re-
ducing travel delays and mitigating urban traffic con-
gestion. In recent years, various sensing techniques,
such as loop detectors, have been more widely de-
ployed in large cities worldwide. Traffic-responsive
control strategies gradually indicate their adaptability
to changing traffic conditions, which provides more
potential methods for traffic signal control to better fit
real traffic networks.

3.2 Traffic-responsive Strategies

During the past few decades, driven by advanced
sensing and communication techniques, an increasing
number of responsive signal control strategies have
been presented that automatically respond to the pre-
vailing traffic conditions and indicate their greater
control efficiency than fixed-time strategies [83]. A
number of strategies, such as SCOOT and SCATS,
have been extensively applied in many cities around
the World and have achieved reduced travel delays and
road congestion. An illustration of the sensing and
communication signal control system is given in Fig-
ure 4. When vehicles arrive at a traffic signal, their
identification numbers, locations, arrival times, and
travel speeds can be collected using sensing technolo-
gies and V2V communications to estimate the real-
time traffic density. Then, the aggregated informa-
tion is disseminated to traffic signal controllers via
V2I communications and controllers in adjacent inter-
sections that can also communicate with each other
through wireless communications to share a wider
range of traffic information. Specifically, according
to the control scale of signal control systems, traffic-
responsive control strategies can be categorized as iso-
lated signal control, coordinated signal control, and
network-wide signal control strategies. The typical
strategies and their application conditions of these
three categories of traffic-responsive control strategies
are now presented.

3.2.1 Isolated Signal Control

Responsive isolated signal control strategies are appli-
cable to single intersections by adjusting signal phase,
split, and cycle length according to real-time traffic
conditions at each intersection. Chang and Park [84]
developed a signal control algorithm to enable unob-

V2V Communications

V2V Communications

V2I Communications

Signal Coordination

Sensing Technologies

Figure 4. Intersection traffic signal control using VANETs.

structed traffic at each intersection. The algorithm cal-
culated traffic volume and congestion degree on each
lane using V2V communications to decide the cycle
length and split for the next cycle. The algorithm
was verified under a single-intersection model and
showed its effectiveness in minimizing average vehi-
cle waiting times and queue lengths at intersections
compared with random control and best-first control
systems [85]. Pandit et al. [86] developed a signal
control method in which VANETs were employed to
detect average road speed, calculate the vehicle distri-
bution in networks, and then optimize the schedule of
traffic signals at each intersection. They formulated
the vehicular signal control issue as a job scheduling
problem and in which each job was regarded as a pla-
toon of vehicles passing through the same intersection.
Based on the wireless communications between vehi-
cles and roadside infrastructures, researchers in [87]
developed algorithms to schedule vehicle queues at in-
tersections on the basis of their journey lengths. Simu-
lation results showed that the proposed algorithms can
decrease congestion at intersections by 80% compared
to static signal control strategies.

3.2.2 Coordinated Signal Control

In addition to signal phase, split, and cycle length, co-
ordinated traffic signal control strategies consider the
offset between successive intersections to relieve con-
gestion at an urban zone or an entire road network
with many intersections. SCOOT is often consid-
ered a traffic-responsive version of TRANSYT, which
makes adjustments of splits, cycle lengths, and offsets
with a small-step increment on the basis of the mon-
itored traffic volume and occupancy from upstream
road segments. SCATS is another prevalent traffic sig-
nal control strategy applied in many cities, such as
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Sydney, Melbourne, and Shanghai, and is deployed at
more than 42,000 intersections in approximately 154
metropolises [88]. It uses automatic plan selection
from a library in response to the real-time road condi-
tions and adjusts signal parameters (e.g., cycle length,
split, and offset) for each intersection in road networks
[10, 89]. Specifically, at each intersection, the split
and cycle length are determined depending on vehicle
presence on each lane from inductive detective loops.
Additionally, by setting a pre-determined offset dur-
ing the start time of a particular phase, traffic signals
for several successive nodes can be adjusted along a
given path and a green wave can be generated. The
self-organizing traffic lights (SOTL) system was pro-
posed according to the principle that each intersec-
tion selects a phase with the highest demand. There
is no direct coordination between the traffic signals
at intersections in this system; however, indirect co-
ordination is provided using the communication about
the traffic arrivals and departures between neighbor-
ing intersections [90, 91]. Many other works based on
back-pressure are also presented as dedicated to urban
traffic-responsive signal control [92, 93]. These sys-
tems are constructed and implemented in a distributed
manner with pre-determined or adaptive routes and
choose the phase according to local information, such
as queue length, on each road segment of an inter-
section. Simulation and analytical results show that
maximum network throughput can be achieved by
employing a back-pressure traffic signal control sys-
tem, and better performance can be provided com-
pared to those provided by fixed-time strategies and
SCATS. However, these aforementioned strategies are
usually effective when traffic conditions in a network
are under-saturated; the performance of these strate-
gies was reported to deteriorate in cases of saturated
traffic conditions [94]. To this end, a number of
model-based responsive strategies, such as PRODYN
[95] and RHODES [96], have been developed for traf-
fic signal control and utilize dynamic programming to
optimize traffic signals of urban networks based on a
high-fidelity model [97]. A traffic-responsive urban
control (TUC) [98–100] system has been deployed
on road networks of five metropolises and has been
shown to be economical and efficient in both simula-
tions and field implementations, even under saturated
traffic conditions. Specifically, cycle length and offset
adjustments are employed every few minutes and the

corresponding values for the next cycle are computed
based on the real-time traffic flows of current road seg-
ments. Split is controlled in every cycle, which pre-
dicts traffic flows on road segments during the next
cycle time using a store-and-forward model to achieve
split control for each cycle. As the key step to conduct
signal control, this paper briefly reviews the TUC split
control method, which is presented as follows.

First, the dynamic system for traffic flows on a road
network is represented by using a store-and-forward
model, as shown in (1).

x (k + 1) = x(k) +B∆g(k), (1)

where x is a vector of the traffic flows on road seg-
ments; B is constant matrix reflecting the network
characteristics; ∆g(k) = g(k) − gN ; g is a vector
of green times for each phase in a cycle and gN com-
prises the corresponding constant nominal green time
gNi .

Then, to minimize the negative effects of over-
saturation and the spillover of vehicle queues and
take the maximum road capacity into consideration,
a quadratic criterion that combines both traffic flows
and green times can be written as

ȷ =
1

2

∞∑
k=0

(xT(k)Qx(k) +∆gT(k)R∆g(k)), (2)

where Q and R are non-negative diagonal matrices.
The elements of Q are determined as the inverse of
road capacity on each road segment. In addition, the
step length of the control response can be affected by
a weight matrix R = rI, where r can be calculated
during trial and error to realize a robust signal control
in the whole road network.

Finally, based on the linear model (1) and an
appropriate quadratic objective, a Linear-Quadratic-
Regulator (LQR) approach is performed to obtain an
effective gain matrix and enables a closed-loop solu-
tion, as given in (3).

g(k) = gN − Lx(k), (3)

where L is a solution for signal splits in each cy-
cle, while cycle lengths and offsets can be determined
according to other algorithms [101]. In summary,
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the optimization problem in TUC is of quadratic pro-
gramming, thus TUC works efficiently in coordinating
traffic signal control on large road networks and has
achieved satisfactory achievements in various coun-
tries, especially in saturated road situations.

Furthermore, vehicular-network-based techniques
for responsive signal control have also attracted much
attention and enable additional capabilities, such as
predicting the duration before vehicles arrive at inter-
sections and cooperating neighboring traffic signals to
find the best schedule. Younes and Boukerche [102]
developed a coordinated signal control strategy based
on vehicular networks to provide the optimal vehicle
scheduling for entire traffic networks. Simulation re-
sults indicated that the strategy can increase the traffic
fluency and throughput by 70% compared to random
and separate traffic light schedules [103]. Liu et al.
[104] proposed a distributed cooperative signal con-
trol system in which a cooperative algorithm was used
to achieve cooperation among controllers at successive
intersections. Simulation results demonstrated that the
proposed control system utilizing vehicular networks
outperformed adaptive signal control methods in terms
of road capacities, queue lengths at intersections, and
vehicle waiting times. In addition, simulation re-
sults also provided an interesting notion that collab-
oration mechanisms were promising for traffic fluency
and congestion mitigation in metropolises. Moreover,
by using different artificial-intelligence-based meth-
ods (e.g., fuzzy systems, neural networks, and re-
inforcement learning), many advanced signal control
strategies have been proposed, due to their intrinsic ad-
vantages, as follows. 1) These strategies can provide
the optimal signal control policy without consideration
of system models, and 2) the computational efficiency
can be guaranteed on the high-dimensional state space.
Gokulan and Srinivasan [105] developed a responsive
signal control method considering a fuzzy multi-agent
framework. Simulation results demonstrated its ef-
ficiency in alleviating congestion at successive inter-
sections. Jin and Ma [106] presented a multi-agent
framework for intelligent traffic signal control based
on reinforcement learning. A case study based on
three neighboring intersections in Stockholm was de-
veloped to illustrate the advantages of the proposed
framework in vehicle travel delays, fuel consumption,
and number of stops. Prashanth et al. [107] proposed
a reinforcement-learning-based intelligent signal con-

trol strategy, and indicated its advantages in terms of
delays and queue length compared with the fixed-time
strategies and SOTL [90]. Liang et al. [108] devel-
oped a deep reinforcement learning model for signal
control in which the duration change of phases were
actions and the reward was the cumulative latency dif-
ference between two successive cycles. Simulations
based on SUMO illustrated the high efficiency of the
proposed model in reducing average delays at inter-
sections.

3.2.3 Network-wide Signal Control

All of the aforementioned strategies utilize a computa-
tionally heavy controller and are limited for use at one
intersection or a few at best, which leads to the fact
that these strategies are infeasible for large-scale traf-
fic signal control due to the extremely high dimension
of the joint action space. Recently, with the success-
ful application of reinforcement learning, several stud-
ies of network-wide traffic signal control have been
proposed attributed to the enhanced learning ability
of reinforcement learning on complex tasks [109]. In
[110], Chu et al. proposed a multi-agent deep rein-
forcement learning algorithm for traffic signal control
in an entire road network. Simulation results based
on the road network of Monaco city demonstrated the
effectiveness of the proposed signal control strategy
in robustness, average queue length, and intersection
delays for the entire road network. According to the
real-time traffic data collected by the Internet of Ve-
hicles, Zhou et al. [111] developed a de-centralized
reinforcement learning strategy for signal control, in
which the Internet of Vehicles was utilized to gather
traffic data and then transmit the data to an aggrega-
tion point for network-wide signal control. Simulation
results showed that, compared with the state-of-the-art
methods, the proposed method can decrease the con-
vergence time while achieving comparable traffic con-
trol performance for the entire road network. Chen et
al. [112] presented a decentralized multi-agent rein-
forcement learning approach to conduct a large-scale
traffic signal control. As shown in Figure 5, each lo-
cal agent broadcasts its state observation and receives
state observations of other neighboring agents. Then
each local critic network approximates its own value
function for signal control. Simulation results based
on SUMO confirmed the effectiveness of the proposed
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Figure 5. A road network with large-scale signal control
[112].

control strategy in average travel speed, travel delay
and queue length over other algorithms.

IV. VEHICLE ROUTE GUIDANCE

Vehicle route guidance enables drivers to obtain indi-
vidual instructions from the departure location to the
destination based on travel costs, such as travel time
and distance. A route choice mechanism is the key
technique of vehicle navigation systems that allows
utilization of traffic networks in a more organized way
and serves as an effective approach to manage urban
traffic congestion [113, 114]. With the help of Big
Data and communication technologies, finer-grained
traffic information, such as congestion, queue lengths,
average travel speeds, traffic flows, and delays at in-
tersections, can be obtained and disseminated in real
time. It is reasonable to predict that most vehicles
will be equipped with wireless communication devices
in the foreseeable future that allows vehicles to com-
municate with neighboring vehicles and roadside in-
frastructures [115]. In that event, dynamic vehicle
routing based on constantly updating traffic informa-
tion becomes possible, enabling vehicles to obtain a
comprehensive global insight into traffic networks and
perform the appropriate re-routing decisions to avoid
unexpected congestion. Generally, according to how
the route guidance system may react in urban road
networks to conduct optimum routing guidance for
drivers, route guidance strategies can be classified as
follows.

• Deterministic versus stochastic: whether en-
route vehicles will react and re-route their pre-
determined travel route from the origin to destina-
tion (OD) considering the change of traffic condi-
tions (e.g., traffic incidents and special events);

• Reactive versus predictive: whether the route
guidance strategies consider the real-time traffic
information only or the combination of the current
road conditions and their prediction in the future;

• Centralized versus decentralized: whether a
central system provides all route selections for all
vehicles or individual vehicle needs to make its
own path guidance decision.

4.1 Deterministic Versus Stochastic Strategies

Route guidance strategies can be divided into deter-
ministic and stochastic strategies according to whether
the travel costs of routes between different OD pairs
are deterministic or stochastic and whether vehicles
will change their pre-determined travel route in re-
sponse to the unexpected road events, such as inci-
dents and road construction.

Deterministic strategies determine and maintain
paths from origins to destinations to achieve a more
efficient route for vehicles without consideration of
the temporal dependence and stochastic nature of traf-
fic networks. Most of these strategies are proposed
using shortest-path algorithms [116, 117], which pro-
vide paths between OD pairs for vehicles to minimize
the sum of travel costs. The costs are usually de-
fined based on vehicle travel time, which are deter-
mined at the start of journeys and without regard to
the large variance of travel time in a stochastic traffic
condition. A common algorithm is proposed in [116]
via a Dijkstra algorithm to search the shortest paths
between two nodes [116] or from a single origin as
the “source” to many other destinations. Many vari-
ants have been developed based on a Dijkstra algo-
rithm [118, 119]. In [118], Wagner and Willhalm out-
lined several latest extensions of a Dijkstra algorithm,
which improved the computational speed of the Dijk-
stra algorithm and classified them into three classical
techniques: bidirectional search (searching paths from
source and destination simultaneously) [120], goal-
directed search or A* algorithm (modifying the pri-
ority of active nodes to push towards the target) [119],
and hierarchical methods (using a hierarchical archi-
tecture and considering a relatively small subgraph of
the “hierarchical graph” to search the shortest path).
Many other works on multiple shortest paths between
an OD pair have also been proposed to provide a de-
terministic route guidance for vehicles; these works
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take user preferences and alternative path constraints
into consideration [121, 122] to produce more efficient
navigation applications.

In addition to the development of deterministic route
guidance strategies, it is important to realize that the
shortest path does not always ensure a suitable and re-
liable travel time for vehicle navigation [123]. Owing
to many uncertain factors in road networks, such as
unexpected roadwork and incidents, traffic networks
are neither static nor perfectly deterministic and, con-
sequently, the shortest path may exhibit a large vari-
ance [124], which may lead to increased travel costs
for an intuitively shorter route. Moreover, with the
development of low cost and reliable sensing tech-
niques (e.g., inductive loop detectors and probe vehi-
cles), real-time traffic information becomes available
gradually, which makes the dynamic routing strate-
gies more feasible in modern urban traffic manage-
ment systems. Hence, much attention has been paid
to develop stochastic route guidance strategies to cater
to such uncertainties in transportation systems [125–
130].

In stochastic route guidance strategies, the optimal
paths of vehicles may vary according to the uncertain
nature of road traffic conditions. This uncertain na-
ture is typically manifested in two aspects: temporal
dependence (traffic conditions in the same roads are
different in different times of the day) and randomness
(there are many unexpected non-recurrent congestion
events due to incidents or extreme weather causing
difficulties in estimating travel times precisely) [125].
A number of studies of vehicle routing guidance that
consider only the temporal dependence are available
[126, 127]. Haghani et al. [126] presented a tempo-
ral route guidance strategy considering varying road
travel times and compared vehicle travel times of the
proposed strategies with those of static route plan-
ning. The results suggested that when the uncertain-
ties of the travel time information increase, the dy-
namic routing strategy became increasingly superior
to a static strategy. Lorini et al. [127] proposed a
dynamic vehicle routing strategy considering tempo-
ral dependence and dynamic perturbations. The ex-
perimental results showed the advantages of the pro-
posed strategy in travel time variance under the dy-
namic perturbation compared with static route strate-
gies. In [128], Hall first considered both temporal de-
pendence and stochastic natures of traffic networks to

make routing choices for vehicles. Then, many studies
were developed for temporally dependent and stochas-
tic vehicle optimal path problems [123, 124, 129, 130].
Nie et al. [129] proposed a shortest-path strategy that
allowed travelers to better plan their trips during ran-
dom travel times with the prescribed vehicle arrival
times. Researchers in [130] developed a stochastic
route guidance model considering temporally depen-
dent road travel times in the face of road congestion.
Experiments were conducted based on the Singapore
traffic network. Numerical results indicated that the
presented dynamic strategy outperformed static rout-
ing guidance strategies in total travel time and routing
efficiency.

4.2 Reactive Versus Predictive Strategies

Considering whether a route choice algorithm is re-
active or predictive, vehicle navigation strategies can
also be categorized as reactive or predictive. Reac-
tive route choice strategies are only based on current
conditions of a road network without consideration of
future traffic conditions, while predictive route choice
strategies utilize a traffic prediction model to fore-
cast the road conditions in the near future and provide
prospective path planning for vehicles. This classifi-
cation is meaningful because it indicates the robust-
ness and complexity of road guidance strategies. Re-
active strategies are less complex compared with pre-
dictive approaches, while predictive strategies can pro-
vide greater robustness to congestion and incidents.

By deploying a road network traffic monitoring in-
frastructure, such as cameras and inductive loop detec-
tors, the network-based service provides drivers with a
current view of road conditions and “reacts” to deter-
mine the route selected [131]. In this circumstance,
reactive route guidance, known as feedback routing,
has been widely applied in route choice systems with
massive real-time traffic information [132–137]. Fur-
thermore, from an industry perspective, Google [132]
and TomTom [133] have utilized monitored real-time
road information to calculate the shortest routes for ve-
hicles. Nericell [134] and CarTel [135] utilized probe-
vehicle data monitored by onboard devices to detect
road conditions and estimate travel times for road seg-
ments in a network. In academia, Gao and Chabini
[136] provided various approximations for paths with
minimum travel costs, wherein a routing policy was
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Figure 6. Vehicle route choice via V2I communications
[140].

decided by drivers as the trip progresses according to
the current travel times. In [137], Chen et al. pro-
posed a real-time vehicle navigation algorithm based
on wireless sensor networks that provided several real-
time route choices considering drivers’ diverse navi-
gation requirements. Attributed to the development of
vehicular networks, Vondra, Becvar, and Mach [138]
developed a route choice strategy with consideration
of traveling time and throughput via both cellular and
vehicular networks. Chai et al. [139] combined a route
choice method through V2V and V2I communications
that allowed travelers to make route choice decisions
at each intersection according to real-time road infor-
mation. Simulation results indicated the dynamic con-
trol technique could decrease average queue lengths
at intersections and improve flow fluency for entire
road networks. Zhang et al. [140] proposed a joint
traffic-communication optimization strategy to trans-
mit rerouting information via V2I communications for
vehicles traversing the road segment with an incident.
As illustrated in Figure 6, the Mobile Edge Computing
(MEC) server is deployed at the roadside of a road seg-
ment and the MEC server can disseminate the rerout-
ing traffic information with consideration of vehicle
rerouting travel costs and communication costs. Sim-
ulation results demonstrated that the proposed strategy
can achieve minimum total cost of vehicle rerouting
and information transmission comparing with existing
methods.

Leveraging the growth of sensing techniques, as in-
troduced in Section II, massive traffic information is
accurately and easily monitored in real time. In this
case, the evolution process of traffic flows can be an-
alyzed and discovered when these data can be utilized
efficiently [141, 142]. As an important issue for intel-

ligent transportation systems, many short-term traffic
prediction models have been developed, such as the
auto-regressive integrated moving average (ARIMA)
model and its variants [40, 143, 144], Kalman-filter
methods [145, 146], neural networks [147–149], and
fuzzy techniques [150], which provide the shortest
path in anticipation of future road traffic conditions
to avoid potential traffic congestion. Predictive rout-
ing strategies, known as proactive strategies, have at-
tracted great attention recently [131, 151, 152]. Pan
et al. [131] developed several route choice strate-
gies for drivers to proactively compute tailored re-
routing guidance when congestion was predicted on
their routes. Simulation results indicated that the route
choice methods were valuable for congestion mitiga-
tion and can better cater to the spatio-temporal charac-
teristics of road conditions than existing approaches.
Claes et al. [152] proposed an anticipatory vehicle
routing approach to avoid traffic jams that predicted
road conditions in the near future to detect possible
congestion and allowed vehicles to re-route. Simula-
tion results suggested that the forecast vehicle rout-
ing method not only allowed vehicles to avoid con-
gestion, but also prevented them from contributing to
congestion as well. Wang et al. [153] developed a
vehicle re-routing system by using V2I communica-
tions, which assisted drivers to make optimal route
choices for congestion avoidance. Specifically, when
an unpredictable traffic congestion was identified, an
intelligent traffic light at each intersection was utilized
to gather traffic information about real-time road con-
ditions and vehicle destinations and provide the op-
timal routes for vehicles. Simulations showed that
the proposed system could increase travel time re-
liability by 65.42% and reduce average travel times
by 38.02% compared with the fastest and shortest re-
routing methods [153]. Acting as a powerful location
and navigation map, the high definition (HD) map can
provide detailed road information around and further
around the corner to support predictive cruise control
[154]. In [155], Jian et al. proposed a local motion
planning and obstacle avoidance method using the HD
map. Simulations based on an autonomous driving ex-
perimental platform verified that the proposed method
can improve the safety and comfort of vehicle motion
planning. Takeuchi et al. [156] presented a blind area
traffic prediction method based on the HD map and
3D lidar. Experiment results using the actual vehi-
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cle with lidar in urban road networks demonstrated the
effectiveness of the proposed method in safe velocity
prediction compared with existing methods. Chu et
al. [157] developed a predictive cruise control strategy
based on the HD map information. Evaluation via sim-
ulation and experimental tests illustrated the proposed
strategy can reduce 8.73% fuel consumption compared
with the cruise control system without HD map Infor-
mation.

4.3 Centralized Versus Decentralized Strate-
gies

Route choice in road networks can be computed by
a centralized system that controls the state of the en-
tire road network or by a distributed system that pro-
vides optimization from the viewpoint of individual
drivers. The centralized routing scheme allows a re-
liable and robust system at the network level in which
individual drivers may suffer because the users’ op-
timal routing may not always be consistent with that
for the entire road network. However, the decentral-
ized route choice method provides optimality concerns
for individual vehicles and is not necessarily robust
from a network perspective. Meanwhile, the decen-
tralized strategy has benefits in terms of area cover-
age, road coverage, route update interval, and compu-
tational complexity.

A centralized route choice strategy determines paths
for all vehicles in a road network according to the
collected traffic data from vehicles and road infras-
tructure using a centralized system that computes the
new or re-routed path for a particular vehicle to mini-
mize average traveling times at the network level and
even relieve possible traffic congestion in traffic net-
works. Several works on shortest-path problems have
been proposed using the centralized architecture [158–
161]. Kanoh and Hara [158] formulated the shortest-
path problem as a multi-objective optimization prob-
lem and utilized a centralized algorithm for individual
vehicle navigation. In [161], Yamashita, Izumi and
Kurumatani investigated a vehicle navigation mech-
anism using a centralized approach to reduce traffic
congestion, in which drivers informed the route in-
formation server of their future routes and the server
calculated prospective traffic conditions based on the
collected routes, and then sent this information to the
drivers. Based on vehicular social networks, Lin et al.
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Figure 7. Illustration of relationship between route choice
and signal control [163].

presented a vehicle route selection algorithm in [162]
in which the social correlations among vehicles were
considered to categorize vehicles as different classifi-
cations and then calculated the optimal routes for each
group of vehicles. Simulation results demonstrated the
algorithm could achieve efficient traffic flow control
and relieve traffic congestion in road networks.

Despite achieving better network throughput than
decentralized systems, there are still two inherent
problems with centralized systems. First, central
servers must conduct intensive calculations to receive
location updates and send the re-routing paths for ve-
hicles, which makes centralized systems infeasible for
large areas with a large number of vehicles. Second,
a centralized approach requires real-time vehicle lo-
cations and a high compliance rate to achieve the ef-
fectiveness of the guidance systems, which will lead
to major privacy concerns for users since a sequence
of location can reveal drivers’ identities [164, 165].
Moreover, since transportation systems are often ge-
ographically distributed, as one of the powerful tech-
nologies for large-scale distributed systems, agent-
based methods have emerged dramatically in recent
years, indicating their great suitability for road traf-
fic detection [166]. In this case, many decentralized
systems have been developed to study vehicle route
choice problems [152, 167–169]. Deflorio [167] pro-
posed a decentralized and reactive route guidance sys-
tem, which can achieve dynamic user equilibrium in
a road network. Simulation results showed a travel
time reduction as the penetration rate of the system
increased. Tatomir and Rothkrantz [168] presented a
hierarchical routing system to provide drivers with dy-
namic routing in which a hierarchy algorithm was in-
troduced to divide traffic networks into multiple less
complex networks. The algorithm showed high adap-
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tivity to the dynamic changes caused by the special
events in road networks, such as incidents and con-
certs. In [169], Wedde and Senge presented a decen-
tralized vehicle routing guidance approach based on
distributed vehicle-to-infrastructure architecture that
provided a higher update frequency of traffic data
information, even for large regions. Simulation re-
sults demonstrated that the proposed system outper-
formed dynamic shortest-path methods in data update
frequency and average vehicle travel times.

V. SIGNAL CONTROL AND ROUTE
CHOICE COMBINED TECHNIQUES

Route choice and traffic signal control often interact
with each other [170]. As shown in Figure 7, non-
equilibrium traffic flows on different routes between
the same OD pair may cause the traffic control pol-
icy to change the green-time proportion for balancing
the travel costs on different routes (travel costs often
refer to the travel times). Such changes, in turn, give
rise to fluctuations in route travel costs, which further
causes vehicles to change routes for lower travel costs
[170, 171], and the traffic network will be stable if and
only if route choice and traffic signal control can reach
equilibrium simultaneously [172, 173]. Based on this
notion, researchers have developed many traffic con-
trol policies considering both traffic signal control and
vehicle route choice to relieve congestion and enhance
road capacity in traffic networks.

Smith presented a P0 control policy [173] and
proved that a Wardrop equilibrium can be found by
taking traffic signal control into consideration, which
can achieve the maximum network throughput [170,
171]. Xiao and Lo [174] formulated a combined dy-
namical traffic system that encompassed both route
choice and traffic signal control and investigated the
interactions between adaptive traffic control and day-
to-day route choice adjustments of travelers. In [113],
Cao et al. developed a pheromone-based system to
relieve road congestion that unified both signal con-
trol and dynamic vehicle re-routing. Simulation re-
sults showed that the system with combined vehicle
re-routing and signal control outperformed other ap-
proaches that only considered vehicle re-routing or
signal control strategy in traffic congestion and fuel
consumption. In [175], a hybrid system that incorpo-
rated flow divergence and signal control in a general

network was investigated. The proposed control pol-
icy and theoretical results derived in [175] can be uti-
lized to boost road capacity and mitigate congestion
in traffic networks. Moreover, with joint considera-
tion of the route choice method, a novel traffic signal
control policy was proposed in [163] to mitigate the
negative effects of incident-induced congestion, which
exhibited a more rapid recovery rate from an incident
and improved the stability of a road network system
experiencing incidents. The condition for the exis-
tence of new equilibrium after an incident was given
in [163] and the stability of a road network system was
also proved by using Lyapunov stability theorem. The
proposed strategy was tested on a one-OD three-route
road network and numerical results illustrated the ef-
fectiveness of the control policy.

VI. DISCUSSION

First, in this section, challenges in traffic control and
management are discussed. Then, open data sources
are introduced in subsection 6.2. Finally, future direc-
tions are also given.

6.1 Challenges

Although the existing research on congestion miti-
gation have made great achievements in ITSs, there
are still many challenges that have not been fully ad-
dressed. The main open challenges of urban conges-
tion control in ITSs are the following.

6.1.1 Public Dataset

A large variety of transportation applications have
been studied based on available datasets, such as
congestion detection, traffic signal control, and route
guidance. However, much difficulty is caused by
conducting direct comparisons between the proposed
methods and algorithms due to lack of a common
framework. One possible reason for this is the diver-
sity of road topology, traffic conditions, and even lo-
cal traffic regulations around the World. It would be
beneficial for researchers of traffic management to de-
termine several unified objectives for evaluation and
comparison among different methods as achieved in
visual object classes by PASCAL [176].
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6.1.2 Data Collection

Owing to complicated road structures and rapid move-
ment of vehicles in urban scenarios, data collected in
ITSs might be inaccurate, incomplete, or unreliable in
particular locations (e.g., tunnels) and at certain times
(e.g., at night and in extreme weather) [177]. It is a
possible way to deal with the challenges of investing
new sensor technologies to improve the data collection
capability. Specifically, based on continuously devel-
oping Internet of Things (IoT) techniques, more ad-
vanced sensing techniques can be invented that would
effectively improve the automation and quality of traf-
fic data collection.

6.1.3 Data Processing

Traffic data are a necessity for congestion-related ap-
plications, including traffic state recognition, traffic
control, and vehicle re-routing. However, the exist-
ing traffic data are collected from diverse sources with
different formats and should also be compared with
historical data, which poses a significant challenge for
data centers to process the massive amount of data in
a short time. Many distributed data processing archi-
tectures have been presented based on cloud, fog, and
edge computing [178–180], which offloaded a large
portion of computation at the roadside infrastructures
and vehicles, and thus, provided satisfactory solutions
to achieving real-time data processing.

6.1.4 Security and Privacy

Security and privacy are enduring problems and have
drawn widespread concern within the transportation
and mobility domains. Privacy is possibly the most
serious issue confronted by transportation authorities,
which arises due to the conflicting requirements of
opening and harnessing data to and for the public to
improve transportation system performance and pro-
tect personal information from leakage [14]. For this
reason, security and privacy protection are crucial for
emerging technologies including vehicular networks
and Big Data, and transportation administrators also
face urgent challenges regarding private data collec-
tion. Surprisingly, there is a scarcity of references
dedicated to guaranteeing the integrity, confidentiality,
and security for traffic data in ITSs [181]. There is no
doubt that overcoming these challenges with appropri-

Figure 8. Big Data architecture for vehicular networks.

ate techniques will validly guarantee the utilization of
traffic data and ensure the rights of traffic participants
in compliance with privacy recommendations, regula-
tions, and laws.

6.2 Open Data Sources

As mentioned above, open data sources are impor-
tant for research in transportation and contribute valu-
able information and knowledge to ITSs. Unfortu-
nately, most existing works utilized proprietary traf-
fic data, which are rarely available online. This fact
was raised in [182], in which guidance was provided
for transportation administrators, including opening
and maintaining data, overcoming potential barriers
for their implementation, and improving communica-
tions between transportation organizations and their
customers.

Here, a number of open data sources currently
used in transportation systems are introduced. In the
U.S., 228 transit agencies share their schedule data
to Google [183] (more than 475 around the World),
which publishes the data as part of its Google Maps
service. A geo-spatial analytics database is shared
[184] by the San Francisco Department of Public
Health, which includes the monitoring, analysis, and
evaluation of traffic spatial data and injury data to pro-
mote public health and equity. Another open geo-
graphic dataset for ITSs was exhibited in [185], which
unveiled correlation patterns between geographic fea-
tures and user preferences by using the public Yelp
dataset. For video camera data, grayscale images
of road intersections from long-distance and high-
vantage perspective are available in [186] and a new
three-dimensional dataset for visual traffic monitoring
is provided in [187].
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6.3 Future Research

6.3.1 5G and Beyond Communications

To strengthen the connectivity of vehicles, 5G and
beyond technologies, enhanced by multiaccess edge
computing, provide flexible and cost-effective solu-
tions to support vehicle-to-Everything communica-
tions [188, 189]. Specifically, 5G and beyond tech-
nologies allow vehicles to receive a tremendous vol-
ume of real-time traffic data via broadcasting mes-
sages from the surrounding environment, which can
provide effective information services about route
guidance, collision warning and congestion avoid-
ance. Furthermore, due to the advantages of mas-
sive device connectivity, high data rate and low la-
tency, 5G and beyond communications technologies
have the potential to be widely applied to enable a va-
riety of advanced vehicle-to-Everything applications
[190, 191], such as vehicle platoons and cooperative
driving, which can promote a more convenient and
safer driving environment, alleviate road congestion
and improve traffic flows in road networks.

6.3.2 Big Data for Vehicular Networks

As the expansion of IoT and vehicular applications,
massive amounts of data are generated from various
sources with different formats, locations, and informa-
tion contents, and have become an important concern
for vehicular networks [192]. To address the intrin-
sic shortcomings of centralized control systems and
offload their computational burden at local servers,
cloud, fog, and edge computing based on Big Data
analysis have been considered a promising way for
the continuous evolution of vehicular networks, which
have boosted the existing vehicular networks to the
Big Data era [193]. Based on [194], a Big Data ar-
chitecture for vehicular networks is presented in Fig-
ure 8 that is composed of two layers: the fog layer and
edge layer. The architecture with combined vehicu-
lar networks and Big Data analysis is expected to have
advantages over traditional vehicular networks in its
latency, efficiency, coverage, and service scalability,
which hence leads to the potential to be applied and
deployed in real traffic networks and provides a flour-
ishing future research direction for congestion mitiga-
tion.

6.3.3 Vehicle-road Cooperation Systems

By deploying a large amount of roadside IoT equip-
ment, the vehicle-road cooperation system is consid-
ered an effective means of reducing traffic congestion
and improving traffic safety [195], and provides a po-
tential application scenario for the integration of en-
hanced mobile broadband (eMBB), massive machine
type of communication (mMTC), and ultra-reliable
and low latency communications (URLLC) users in
5G and beyond wireless communications. Specifi-
cally, by using information, sensor, and wireless com-
munications and control technologies, vehicle-road
cooperation systems can achieve real-time perception
of vehicle and road conditions, safety status analysis,
and emergency warnings. This strengthens the infor-
mation exchange between vehicles and roads, and is
used to optimize the operation and management of
intelligent transportation systems, thereby forming a
safe and efficient transportation system.

6.3.4 Connected and Autonomous Vehicles

Connected and autonomous vehicles (CAVs), which
allow vehicles to receive non-line-of-sight road infor-
mation from Vehicle-to-Everything communications,
provide an opportunity for solving traffic problems
and supporting sustainable development in urban road
networks. In recent years, much attention has been
paid to the research of CAV technologies. Traditional
vehicle companies, e.g., BWM, Audi and General
Motors, and Internet auto companies, e.g., Google,
Uber and Tesla are participating in the manufactur-
ing and research of CAVs to achieve enhanced driving
safety, increased traffic throughput and reduced fuel
consumption [36, 196]. Furthermore, because CAVs
are appearing in road networks, and the heterogeneous
traffic environment with mixed human drive vehicles
and CAVs is expected to last a long time [197, 198],
understanding the effects of CAVs on heterogeneous
traffic environments is essential. In this case, es-
tablishing a novel traffic control mechanism that is
friendly to both types of vehicles is still a prosperous
research area to promote the efficiency and safety of
transportation systems.

VII. CONCLUSIONS
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In this work, a comprehensive literature review of traf-
fic congestion mitigation strategies is conducted, with
a specific focus on urban road networks. The litera-
ture survey covers the necessary pre-requisites for the
implementation of congestion control, i.e., congestion
detection. Then, various strategies for signal control,
route choice, and their integration are elaborated and
discussed. Furthermore, as the new trends for research
in congestion mitigation, the architectures and appli-
cations of vehicular networks and Big Data are also
introduced.

Challenges and the potential research trends regard-
ing traffic congestion control may help guide future
research in this area. The initial proposition of this
survey may be purposefully used by academia and in-
dustry. Further extensive research studies for raising
new issues and challenges in this topic are called for.
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